Advertisement

Science China Technological Sciences

, Volume 62, Issue 1, pp 144–150 | Cite as

Reconstructing the flux-rope topology using the FOTE method

  • ZuZheng Chen
  • HuiShan FuEmail author
  • TieYan Wang
  • Dong Cao
  • FangZheng Peng
  • Jian Yang
  • Yin Xu
Article
  • 14 Downloads

Abstract

With high-resolution data of the Magnetospheric Multiscale (MMS) mission, we observe a magnetic flux rope (MFR) in the Earth’s magnetosheath. This MFR, showing a clear bipolar variation of the magnetic field in the normal component to local current sheet, contains a strong core field. We use the FOTE method to reconstruct the topology of this MFR and find it is consistent with previous expectation. For the first time, the spiral field and core field of the MFR are both revealed from the FOTE method. Comparing topologies reconstructed at different times, we suggest that the axis of the MFR rotates about 88° at different spatial location. Shape and size of the normal projection to axis vary with the spatial location as well. Inside the MFR, a significant increase of plasma density from 40 to 80 cm−3, a sharp decrease of ion temperature from 200 to 50 eV, an enhancement of cold ions and a series of filamentary currents are found.

Keywords

magnetic flux rope First-Order Taylor Expansion (FOTE) method reconstructing three-dimensional topology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang Y M, Zhuang B, Hu Q, et al. On the twists of interplanetary magnetic flux ropes observed at 1 AU. J Geophys Res-Space Phys, 2016, 121: 9316–9339CrossRefGoogle Scholar
  2. 2.
    Feng H Q, Wu D J, Wang J M, et al. Magnetic reconnection exhausts at the boundaries of small interplanetary magnetic flux ropes. Astron Astrophys, 2011, 527: A67CrossRefGoogle Scholar
  3. 3.
    Farrugia C J, Osherovich V A, Burlaga L F. Magnetic flux rope versus the Spheromak as models for interplanetary magnetic clouds. J Geophys Res, 1995, 100: 12293–12306CrossRefGoogle Scholar
  4. 4.
    Russell C T, Elphic R C. Initial ISEE magnetometer results: Magnetopause observations. Space Sci Rev, 1978, 22: 681–715CrossRefGoogle Scholar
  5. 5.
    Eastwood J P, Phan T D, Cassak P A, et al. Ion-scale secondary flux ropes generated by magnetopause reconnection as resolved by MMS. Geophys Res Lett, 2016, 43: 4716–4724CrossRefGoogle Scholar
  6. 6.
    Hwang K J, Sibeck D G, Giles B L, et al. The substructure of a flux transfer event observed by the MMS spacecraft. Geophys Res Lett, 2016, 43: 9434–9443CrossRefGoogle Scholar
  7. 7.
    Pu Z Y, Raeder J, Zhong J, et al. Magnetic topologies of an in vivo FTE observed by Double Star/TC-1 at Earth’s magnetopause. Geophys Res Lett, 2013, 40: 3502–3506CrossRefGoogle Scholar
  8. 8.
    Lv L Q, Pu Z Y, Xie L. Multiple magnetic topologies in flux transfer events: THEMIS measurements. Sci China Tech Sci, 2016, 59: 1283–1293CrossRefGoogle Scholar
  9. 9.
    Wang R, Lu Q, Nakamura R, et al. Coalescence of magnetic flux ropes in the ion diffusion region of magnetic reconnection. Nat Phys, 2015, 12: 263–267CrossRefGoogle Scholar
  10. 10.
    Slavin J A, Lepping R P, Gjerloev J, et al. Geotail observations of magnetic flux ropes in the plasma sheet. J Geophys Res, 2003, 108: 1015CrossRefGoogle Scholar
  11. 11.
    Yang Y Y, Shen C, Zhang Y C, et al. The force-free configuration of flux ropes in geomagnetotail: Cluster observations. J Geophys Res-Space Phys, 2014, 119: 6327–6341CrossRefGoogle Scholar
  12. 12.
    Liu W L, Li X, Sarris T, et al. Observation and modeling of the injection observed by THEMIS and LANL satellites during the 23 March 2007 substorm event. J Geophys Res, 2009, 114: A00C18CrossRefGoogle Scholar
  13. 13.
    Tian A M, Shi Q Q, Zong Q G, et al. Analysis of magnetotail flux rope events by ARTEMIS observations. Sci China Tech Sci, 2014, 57: 1010–1019CrossRefGoogle Scholar
  14. 14.
    Fear R C, Milan S E, Fazakerley A N, et al. Simultaneous observations of flux transfer events by THEMIS, Cluster, Double Star, and SuperDARN: Acceleration of FTEs. J Geophys Res, 2009, 114: A10213CrossRefGoogle Scholar
  15. 15.
    Fu H S, Cao J B, Khotyaintsev Y V, et al. Dipolarization fronts as a consequence of transient reconnection: In situ evidence. Geophys Res Lett, 2013, 40: 6023–6027CrossRefGoogle Scholar
  16. 16.
    Zhang J, Chen H, Li Z, et al. Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud radar. J Geophys Res, 2010, 115: A08229CrossRefGoogle Scholar
  17. 17.
    Vinogradov A A, Vasko I Y, Artemyev A V, et al. Kinetic models of magnetic flux ropes observed in the Earth magnetosphere. Phys Plasmas, 2016, 23: 072901CrossRefGoogle Scholar
  18. 18.
    Zhang Y C, Shen C, Liu Z X, et al. Two different types of plasmoids in the plasma sheet: Cluster multisatellite analysis application. J Geophys Res-Space Phys, 2013, 118: 5437–5444CrossRefGoogle Scholar
  19. 19.
    Zhong J, Pu Z Y, Dunlop M W, et al. Three-dimensional magnetic flux rope structure formed by multiple sequential X-line reconnection at the magnetopause. J Geophys Res-Space Phys, 2013, 118: 1904–1911CrossRefGoogle Scholar
  20. 20.
    Farrugia C J, Lavraud B, Torbert R B, et al. Magnetospheric Multiscale Mission observations and non-force free modeling of a flux transfer event immersed in a super-Alfvénic flow. Geophys Res Lett, 2016, 43: 6070–6077CrossRefGoogle Scholar
  21. 21.
    Sonnerup B U Ö, Scheible M. Minimum and maximum variance analysis. In: Paschmann G, Daly P, eds. Analysis Methods for Multispacecraft Data. Netherlands: ISSI/ESA, 1998. 185–220Google Scholar
  22. 22.
    Rong Z J, Wan W X, Shen C, et al. Method for inferring the axis orientation of cylindrical magnetic flux rope based on single-point measurement. J Geophys Res-Space Phys, 2013, 118: 271–283CrossRefGoogle Scholar
  23. 23.
    Sonnerup B U Ö, Guo M. Magnetopause transects. Geophys Res Lett, 1996, 23: 3679–3682CrossRefGoogle Scholar
  24. 24.
    Hasegawa H, Sonnerup B U Ö, Eriksson S, et al. Dual-spacecraft reconstruction of a three-dimensional magnetic flux rope at the Earth’s magnetopause. Ann Geophys, 2015, 33: 169–184CrossRefGoogle Scholar
  25. 25.
    Hasegawa H, Sonnerup B U Ö, Owen C J, et al. The structure of flux transfer events recovered from Cluster data. Ann Geophys, 2006, 24: 603–618CrossRefGoogle Scholar
  26. 26.
    Hu Q, Qiu J, Krucker S. Magnetic field line lengths inside interplanetary magnetic flux ropes. J Geophys Res-Space Phys, 2015, 120: 5266–5283CrossRefGoogle Scholar
  27. 27.
    Hu Q. The Grad-Shafranov reconstruction in twenty years: 1996–2016. Sci China Earth Sci, 2017, 60: 1466–1494CrossRefGoogle Scholar
  28. 28.
    Lu S W, Zong Q G, Vogiatzis I, et al. Reconstruction of plasmoid and traveling compression region in the near-Earth magnetotail. Sci China Tech Sci, 2015, 58: 330–337CrossRefGoogle Scholar
  29. 29.
    Fu H S, Vaivads A, Khotyaintsev Y V, et al. How to find magnetic nulls and reconstruct field topology with MMS data? J Geophys Res-Space Phys, 2015, 120: 3758–3782CrossRefGoogle Scholar
  30. 30.
    Fu H S, Cao J B, Vaivads A, et al. Identifying magnetic reconnection events using the FOTE method. J Geophys Res-Space Phys, 2016, 121: 1263–1272CrossRefGoogle Scholar
  31. 31.
    Fu H S, Vaivads A, Khotyaintsev Y V, et al. Intermittent energy dissipation by turbulent reconnection. Geophys Res Lett, 2017, 44: 37–43CrossRefGoogle Scholar
  32. 32.
    Burch J L, Moore T E, Torbert R B, et al. Magnetospheric multiscale overview and science objectives. Space Sci Rev, 2016, 199: 5–21CrossRefGoogle Scholar
  33. 33.
    Russell C T, Anderson B J, Baumjohann W, et al. The magnetospheric multiscale magnetometers. Space Sci Rev, 2016, 199: 189–256CrossRefGoogle Scholar
  34. 34.
    Pollock C, Moore T, Jacques A, et al. Fast plasma investigation for magnetospheric multiscale. Space Sci Rev, 2016, 199: 331–406CrossRefGoogle Scholar
  35. 35.
    Torbert R B, Russell C T, Magnes W, et al. The FIELDS instrument suite on MMS: Scientific objectives, measurements, and data products. Space Sci Rev, 2016, 199: 105–135CrossRefGoogle Scholar
  36. 36.
    Lindqvist P A, Olsson G, Torbert R B, et al. The spin-plane double probe electric field instrument for MMS. Space Sci Rev, 2016, 199: 137–165CrossRefGoogle Scholar
  37. 37.
    Hasegawa H, Kitamura N, Saito Y, et al. Decay of mesoscale flux transfer events during quasi-continuous spatially extended reconnection at the magnetopause. Geophys Res Lett, 2016, 43: 4755–4762CrossRefGoogle Scholar
  38. 38.
    Huang S Y, Sahraoui F, Retino A, et al. MMS observations of ionscale magnetic island in the magnetosheath turbulent plasma. Geophys Res Lett, 2016, 43: 7850–7858CrossRefGoogle Scholar
  39. 39.
    Roux A, Robert P, Fontaine D, et al. What is the nature of magnetosheath FTEs? J Geophys Res-Space Phys, 2015, 120: 4576–4595CrossRefGoogle Scholar
  40. 40.
    Scholer M. Strong core magnetic fields in magnetopause flux transfer events. Geophys Res Lett, 1988, 15: 748–751CrossRefGoogle Scholar
  41. 41.
    Wang R, Lu Q, Nakamura R, et al. Interaction of magnetic flux ropes via magnetic reconnection observed at the magnetopause. J Geophys Res-Space Phys, 2017, 122: 10436–10447CrossRefGoogle Scholar
  42. 42.
    Chaston C C, Yao Y, Lin N, et al. Ion heating by broadband electromagnetic waves in the magnetosheath and across the magnetopause. J Geophys Res-Space Phys, 2013, 118: 5579–5591CrossRefGoogle Scholar
  43. 43.
    Fu H S, Khotyaintsev Y V, Vaivads A, et al. Energetic electron acceleration by unsteady magnetic reconnection. Nat Phys, 2013, 9: 426–430CrossRefGoogle Scholar
  44. 44.
    Fu H S, Cao J B, Cully C M, et al. Whistler-mode waves inside flux pileup region: Structured or unstructured? J Geophys Res-Space Phys, 2014, 119: 9089–9100CrossRefGoogle Scholar
  45. 45.
    Cao J B, Mazelle C, Belmont G, et al. Oblique ring instability driven by nongyrotropic ions: Application to observations at comet Grigg-Skjellerup. J Geophys Res, 1998, 103: 2055–2067CrossRefGoogle Scholar
  46. 46.
    Cao J B, Wei X H, Duan A Y, et al. Slow magnetosonic waves detected in reconnection diffusion region in the Earth’s magnetotail. J Geophys Res-Space Phys, 2013, 118: 1659–1666CrossRefGoogle Scholar
  47. 47.
    Cao D, Fu H S, Cao J B, et al. MMS observations of whistler waves in electron diffusion region. Geophys Res Lett, 2017, 44: 3954–3962CrossRefGoogle Scholar
  48. 48.
    Wang J, Cao J B, Fu H S, et al. Enhancement of oxygen in the magnetic island associated with dipolarization fronts. J Geophys Res-Space Phys, 2017, 122: 185–193CrossRefGoogle Scholar
  49. 49.
    Fu H S, Khotyaintsev Y V, Vaivads A, et al. Electric structure of dipolarization front at sub-proton scale. Geophys Res Lett, 2012, 39: L06105CrossRefGoogle Scholar
  50. 50.
    Dunlop M W, Balogh A, Glassmeier K H, et al. Four-point Cluster application of magnetic field analysis tools: The Curlometer. J Geophys Res, 2002, 107: 1384CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • ZuZheng Chen
    • 1
  • HuiShan Fu
    • 1
    Email author
  • TieYan Wang
    • 1
  • Dong Cao
    • 1
  • FangZheng Peng
    • 1
  • Jian Yang
    • 1
  • Yin Xu
    • 1
  1. 1.School of Space and EnvironmentBeihang UniversityBeijingChina

Personalised recommendations