Science China Technological Sciences

, Volume 60, Issue 9, pp 1347–1364 | Cite as

Processing of advanced thermoelectric materials

  • JingFeng Li
  • Yu Pan
  • ChaoFeng Wu
  • FuHua Sun
  • TianRan Wei


Last two decades have witnessed significant progress in thermoelectric research, to which materials processing has crucial contributions. Compared with traditional zone-melting method used for fabricating bismuth telluride alloys, new powder-based processes have more freedom for manipulating nanostructures and nanocomposites. Thermoelectric performance enhancement is realized in most thermoelectric materials by introducing fine-grained and nano-composite structures with accurately controlled compositions. This review gives a comprehensive summary on the processing aspects of thermoelectric materials with three focuses on the powder synthesis, advanced sintering process and the formation of nanostructures in bulk materials.


thermoelectrics materials processing nanostructured thermoelectric materials mechanical alloying spark plasma sintering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DiSalvo F J. Thermoelectric cooling and power generation. Science, 1999, 285: 703–706CrossRefGoogle Scholar
  2. 2.
    Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321: 1457–1461CrossRefGoogle Scholar
  3. 3.
    Chen L G, Meng F K, Sun F R. Thermodynamic analyses and optimization for thermoelectric devices: The state of the arts. Sci China Tech Sci, 2016, 59: 442–455CrossRefGoogle Scholar
  4. 4.
    Snyder G J, Toberer E S. Complex thermoelectric materials. Nat Mater, 2008, 7: 105–114CrossRefGoogle Scholar
  5. 5.
    Heremans J P. Thermoelectricity: The ugly duckling. Nature, 2014, 508: 327–328CrossRefGoogle Scholar
  6. 6.
    Zhang X, Zhao L D. Thermoelectric materials: Energy conversion between heat and electricity. J Mater, 2015, 1: 92–105Google Scholar
  7. 7.
    Vineis C J, Shakouri A, Majumdar A, et al. Nanostructured thermoelectrics: Big efficiency gains from small features. Adv Mater, 2010, 22: 3970–3980CrossRefGoogle Scholar
  8. 8.
    Tang Y, Gibbs Z M, Agapito L A, et al. Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. Nat Mater, 2015, 14: 1223–1228CrossRefGoogle Scholar
  9. 9.
    Wang S, Yang J, Wu L, et al. On intensifying carrier impurity scattering to enhance thermoelectric performance in Cr-doped CeyCo4Sb12. Adv Funct Mater, 2015, 25: 6660–6670CrossRefGoogle Scholar
  10. 10.
    Zhu T, Fu C, Xie H, et al. High efficiency half-heusler thermoelectric materials for energy harvesting. Adv Eng Mater, 2015, 5: 1500588CrossRefGoogle Scholar
  11. 11.
    Fu C, Bai S, Liu Y, et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat Commun, 2015, 6: 8144CrossRefGoogle Scholar
  12. 12.
    Chung D Y, Hogan T, Brazis P, et al. CsBi4Te6: A high-performance thermoelectric material for low-temperature applications. Science, 2000, 287: 1024–1027CrossRefGoogle Scholar
  13. 13.
    Shi X, Yang J, Bai S, et al. On the design of high-efficiency thermoelectric clathrates through a systematic cross-substitution of framework elements. Adv Funct Mater, 2010, 20: 755–763CrossRefGoogle Scholar
  14. 14.
    Zhao L D, Lo S H, Zhang Y, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508: 373–377CrossRefGoogle Scholar
  15. 15.
    Duong A T, Nguyen V Q, Duvjir G, et al. Achieving ZT = 2.2 with Bi-doped n-type SnSe single crystals. Nat Commun, 2016, 7: 13713CrossRefGoogle Scholar
  16. 16.
    Zhao L L, Wang X L, Wang J Y, et al. Superior intrinsic thermoelectric performance with zT of 1.8 in single-crystal and melt-quenched highly dense Cu2-xSe bulks. Sci Rep, 2015, 5: 7671CrossRefGoogle Scholar
  17. 17.
    Zhao L D, Tan G, Hao S, et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science, 2016, 351: 141–144CrossRefGoogle Scholar
  18. 18.
    Peng K, Lu X, Zhan H, et al. Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals. Energ Environ Sci, 2016, 9: 454–460CrossRefGoogle Scholar
  19. 19.
    Poudel B, Hao Q, Ma Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320: 634–638CrossRefGoogle Scholar
  20. 20.
    Kim S I, Lee K H, Mun H A, et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science, 2015, 348: 109–114CrossRefGoogle Scholar
  21. 21.
    Hu L, Wu H, Zhu T, et al. Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluride-based solid solutions. Adv Eng Mater, 2015, 5: 1500411CrossRefGoogle Scholar
  22. 22.
    Biswas K, He J, Blum I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012, 489: 414–418CrossRefGoogle Scholar
  23. 23.
    Pei Y, Shi X, LaLonde A, et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473: 66–69CrossRefGoogle Scholar
  24. 24.
    Wu H J, Zhao L D, Zheng F S, et al. Broad temperature plateau for thermoelectric figure of merit ZT > 2 in phase-separated PbTe0.7S0.3. Nat Commun, 2014, 5: 4515Google Scholar
  25. 25.
    Rowe D M. CRC Handbook of Thermoelectrics. London: CRC Press, 1995CrossRefGoogle Scholar
  26. 26.
    Ainsworth L. Single crystal bismuth telluride. Proc Phys Soc B, 1956, 69: 606–612CrossRefGoogle Scholar
  27. 27.
    Fleurial J P, Gailliard L, Triboulet R, et al. Thermal properties of high quality single crystals of bismuth telluride—Part I: Experimental characterization. J Phys Chem Solids, 1988, 49: 1237–1247CrossRefGoogle Scholar
  28. 28.
    Zheng Y, Zhang Q, Su X, et al. Mechanically robust BiSbTe alloys with superior thermoelectric performance: A case study of stable hierarchical nanostructured thermoelectric materials. Adv Eng Mater, 2015, 5: 1401391CrossRefGoogle Scholar
  29. 29.
    Pan Y, Wei T R, Cao Q, et al. Mechanically enhanced p- and n-type Bi2Te3-based thermoelectric materials reprocessed from commercial ingots by ball milling and spark plasma sintering. Mater Sci Eng B, 2015, 197: 75–81CrossRefGoogle Scholar
  30. 30.
    Li J F, Liu W S, Zhao L D, et al. High-performance nanostructured thermoelectric materials. NPG Asia Mater, 2010, 2: 152–158CrossRefGoogle Scholar
  31. 31.
    Sootsman J R, Chung D Y, Kanatzidis M G. New and old concepts in thermoelectric materials. Angew Chem Int Ed, 2009, 48: 8616–8639CrossRefGoogle Scholar
  32. 32.
    Yang J, Yip H L, Jen A K Y. Rational design of advanced thermoelectric materials. Adv Eng Mater, 2013, 3: 549–565CrossRefGoogle Scholar
  33. 33.
    Zebarjadi M, Esfarjani K, Dresselhaus M S, et al. Perspectives on thermoelectrics: From fundamentals to device applications. Energ Environ Sci, 2012, 5: 5147–5162CrossRefGoogle Scholar
  34. 34.
    Zhu T, Liu Y, Fu C, et al. Compromise and synergy in high-efficiency thermoelectric materials. Adv Mater, 2017, 29: 1605884CrossRefGoogle Scholar
  35. 35.
    Zeier W G, Zevalkink A, Gibbs Z M, et al. Thinking like a chemist: Intuition in thermoelectric materials. Angew Chem Int Ed, 2016, 55: 6826–6841CrossRefGoogle Scholar
  36. 36.
    Pichanusakorn P, Bandaru P. Nanostructured thermoelectrics. Mat Sci Eng R, 2010, 67: 19–63CrossRefGoogle Scholar
  37. 37.
    Su X, Fu F, Yan Y, et al. Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing. Nat Commun, 2014, 5: 4908CrossRefGoogle Scholar
  38. 38.
    Chen W C, Wu Y C, Hwang W S, et al. A numerical study of zone-melting process for the thermoelectric material of Bi2Te3. IOP Conf Ser Mater Sci Eng, 2015, 84: 012094CrossRefGoogle Scholar
  39. 39.
    Kanatzidis M G. Nanostructured thermoelectrics: The new paradigm? Chem Mater, 2010, 22: 648–659CrossRefGoogle Scholar
  40. 40.
    Wu D, Zhao L D, Tong X, et al. Superior thermoelectric performance in PbTe–PbS pseudo-binary: Extremely low thermal conductivity and modulated carrier concentration. Energ Environ Sci, 2015, 8: 2056–2068CrossRefGoogle Scholar
  41. 41.
    Hu L, Zhu T, Liu X, et al. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Adv Funct Mater, 2014, 24: 5211–5218CrossRefGoogle Scholar
  42. 42.
    Hsu K F, Loo S, Guo F, et al. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science, 2004, 303: 818–821CrossRefGoogle Scholar
  43. 43.
    Heremans J P, Jovovic V, Toberer E S, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008, 321: 554–557CrossRefGoogle Scholar
  44. 44.
    Pei Y, LaLonde A, Iwanaga S, et al. High thermoelectric figure of merit in heavy hole dominated PbTe. Energ Environ Sci, 2011, 4: 2085CrossRefGoogle Scholar
  45. 45.
    Wang H, Pei Y, LaLonde A D, et al. Heavily doped p-type PbSe with high thermoelectric performance: An alternative for PbTe. Adv Mater, 2011, 23: 1366–1370CrossRefGoogle Scholar
  46. 46.
    Wang H, Schechtel E, Pei Y, et al. High thermoelectric efficiency of n-type PbS. Adv Energ Mater, 2013, 3: 488–495CrossRefGoogle Scholar
  47. 47.
    Liu H, Yuan X, Lu P, et al. Ultrahigh thermoelectric performance by electron and phonon critical scattering in Cu2Se1-xI x. Adv Mater, 2013, 25: 6607–6612CrossRefGoogle Scholar
  48. 48.
    He Y, Day T, Zhang T, et al. High thermoelectric performance in non-toxic earth-abundant copper sulfide. Adv Mater, 2014, 26: 3974–3978CrossRefGoogle Scholar
  49. 49.
    Zhang Q, Chere E K, Sun J, et al. Studies on thermoelectric properties of n-type polycrystalline SnSe1-xSx by iodine doping. Adv Eng Mater, 2015, 5: 1500360CrossRefGoogle Scholar
  50. 50.
    Chen C L, Wang H, Chen Y Y, et al. Thermoelectric properties of p-type polycrystalline SnSe doped with Ag. J Mater Chem A, 2014, 2: 11171CrossRefGoogle Scholar
  51. 51.
    Wu H, Chang C, Feng D, et al. Synergistically optimized electrical and thermal transport properties of SnTe via alloying high-solubility MnTe. Energ Environ Sci, 2015, 8: 3298–3312CrossRefGoogle Scholar
  52. 52.
    Liu X, Zhu T, Wang H, et al. Low electron scattering potentials in high performance Mg2Si0.45Sn0.55 based thermoelectric solid solutions with band convergence. Adv Eng Mater, 2013, 3: 1238–1244CrossRefGoogle Scholar
  53. 53.
    Chen X, Girard S N, Meng F, et al. Approaching the minimum thermal conductivity in rhenium-substituted higher manganese silicides. Adv Eng Mater, 2014, 4: 1400452CrossRefGoogle Scholar
  54. 54.
    Yang C, Huang F, Wu L, et al. New stannite-like p-type thermoelectric material Cu3SbSe4. J Phys D: Appl Phys, 2011, 44: 295404CrossRefGoogle Scholar
  55. 55.
    Lai W, Wang Y, Morelli D T, et al. From bonding asymmetry to anharmonic rattling in Cu12Sb4S13 tetrahedrites: When lone-pair electrons are not so lonely. Adv Funct Mater, 2015, 25: 3648–3657CrossRefGoogle Scholar
  56. 56.
    Rudnev V. Handbook of Induction Heating. 2nd ed. Boca Raton: CRC Press, 2014Google Scholar
  57. 57.
    Shi X, Yang J, Salvador J R, et al. Multiple-filled skutterudites: High thermoelectric figure of merit through separately optimizing electrical and thermal transports. J Am Chem Soc, 2011, 133: 7837–7846CrossRefGoogle Scholar
  58. 58.
    Salvador J R, Shi X, Yang J, et al. Synthesis and transport properties of M3Ni3Sb4 (MZr and Hf): An intermetallic semiconductor. Phys Rev B, 2008, 77: 235217CrossRefGoogle Scholar
  59. 59.
    Moss A R. Arc-melting processes for the refractory metals. J Less Common Met, 1959, 1: 60–72CrossRefGoogle Scholar
  60. 60.
    Yan X, Joshi G, Liu W, et al. Enhanced thermoelectric figure of merit of p-type half-heuslers. Nano Lett, 2011, 11: 556–560CrossRefGoogle Scholar
  61. 61.
    Yamashita O, Sadatomi N. Thermoelectric properties of Si1−xGex (x ≤ 0.10) with alloy and dopant segregations. J Appl Phys, 2000, 88: 245–251CrossRefGoogle Scholar
  62. 62.
    Fu C, Zhu T, Liu Y, et al. Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT >1. Energ Environ Sci, 2015, 8: 216–220CrossRefGoogle Scholar
  63. 63.
    Yu C, Zhu T J, Shi R Z, et al. High-performance half-Heusler thermoelectric materials Hf1−x ZrxNiSn1−ySby prepared by levitation melting and spark plasma sintering. Acta Mater, 2009, 57: 2757–2764CrossRefGoogle Scholar
  64. 64.
    Suryanarayana C, Ivanov E, Boldyrev V V. The science and technology of mechanical alloying. Mater Sci Eng A, 2001, 304–306: 151–158CrossRefGoogle Scholar
  65. 65.
    Liu J, Li J F. Bi2Te3 and Bi2Te3/Nano-SiC prepared by mechanical alloying and spark plasma sintering. Key Eng Mater, 2005, 280–283: 397–400CrossRefGoogle Scholar
  66. 66.
    Ma Y, Hao Q, Poudel B, et al. Enhanced thermoelectric figure- of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks. Nano Lett, 2008, 8: 2580–2584CrossRefGoogle Scholar
  67. 67.
    Pan Y, Wei T R, Wu C F, et al. Electrical and thermal transport properties of spark plasma sintered n-type Bi2Te3−xSex alloys: The combined effect of point defect and Se content. J Mater Chem C, 2015, 3: 10583–10589CrossRefGoogle Scholar
  68. 68.
    Wu C F, Wei T R, Li J F. Electrical and thermal transport properties of Pb1−xSnx Se solid solution thermoelectric materials. Phys Chem Chem Phys, 2015, 17: 13006–13012CrossRefGoogle Scholar
  69. 69.
    Yu B, Zhang Q, Wang H, et al. Thermoelectric property studies on thallium-doped lead telluride prepared by ball milling and hot pressing. J Appl Phys, 2010, 108: 016104CrossRefGoogle Scholar
  70. 70.
    Yang J Y, Aizawa T, Yamamoto A, et al. Thermoelectric properties of n-type (Bi2Se3)x(Bi2Te3)1−x prepared by bulk mechanical alloying and hot pressing. J Alloys Compd, 2000, 312: 326–330CrossRefGoogle Scholar
  71. 71.
    Bouad N, Marin-Ayral R M, Tédenac J C. Mechanical alloying and sintering of lead telluride. J Alloys Compd, 2000, 297: 312–318CrossRefGoogle Scholar
  72. 72.
    Schilz J, Riffel M, Pixius K, et al. Synthesis of thermoelectric materials by mechanical alloying in planetary ball mills. Powder Tech, 1999, 105: 149–154CrossRefGoogle Scholar
  73. 73.
    Li J, Tan Q, Li J F, et al. BiSbTe-Based nanocomposites with high ZT: The effect of SiC nanodispersion on thermoelectric properties. Adv Funct Mater, 2013, 23: 4317–4323CrossRefGoogle Scholar
  74. 74.
    Itô M, Tada T, Katsuyama S. Thermoelectric properties of Fe0.98Co0.02Si2 with ZrO2 and rare-earth oxide dispersion by mechanical alloying. J Alloys Compd, 2003, 350: 296–302CrossRefGoogle Scholar
  75. 75.
    Chen S, Lukas K C, Liu W, et al. Effect of Hf concentration on thermoelectric properties of nanostructured n-type half-heusler materials HfxZr1-xNiSn0.99Sb0.01. Adv Eng Mater, 2013, 3: 1210–1214CrossRefGoogle Scholar
  76. 76.
    Joshi G, Lee H, Lan Y, et al. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon Germanium bulk alloys. Nano Lett, 2008, 8: 4670–4674CrossRefGoogle Scholar
  77. 77.
    Wang X W, Lee H, Lan Y C, et al. Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Appl Phys Lett, 2008, 93: 193121CrossRefGoogle Scholar
  78. 78.
    Pan Y, Li J F. Thermoelectric performance enhancement in n-type Bi2(TeSe)3 alloys owing to nanoscale inhomogeneity combined with a spark plasma-textured microstructure. NPG Asia Mater, 2016, 8: e275CrossRefGoogle Scholar
  79. 79.
    Starý Z, Horák J, Stordeur M, et al. Antisite defects in Sb2−xBixTe3 mixed crystals. J Phys Chem Solids, 1988, 49: 29–34CrossRefGoogle Scholar
  80. 80.
    Navrátil J, Starý Z, Plecháček T. Thermoelectric properties of p-type antimony bismuth telluride alloys prepared by cold pressing. Mater Res Bull, 1996, 31: 1559–1566CrossRefGoogle Scholar
  81. 81.
    Liu W S, Zhang Q, Lan Y, et al. Thermoelectric property studies on Cu-doped n-type CuxBi2Te2.7Se0.3 nanocomposites. Adv Eng Mater, 2011, 1: 577–587CrossRefGoogle Scholar
  82. 82.
    Li F, Li J F, Zhao L D, et al. Polycrystalline BiCuSeO oxide as a potential thermoelectric material. Energ Environ Sci, 2012, 5: 7188–7195CrossRefGoogle Scholar
  83. 83.
    Wei T R, Wu C F, Zhang X, et al. Thermoelectric transport properties of pristine and Na-doped SnSe1−xTex polycrystals. Phys Chem Chem Phys, 2015, 17: 30102–30109CrossRefGoogle Scholar
  84. 84.
    Martin-Lopez R, Lenoir B, Dauscher A, et al. Preparation of n-type Bi–Sb–Te thermoelectric material by mechanical alloying. Solid StateCommun, 1998, 108: 285–288Google Scholar
  85. 85.
    Chen X, Shi L, Zhou J, et al. Effects of ball milling on microstructures and thermoelectric properties of higher manganese silicides. J Alloys Compd, 2015, 641: 30–36CrossRefGoogle Scholar
  86. 86.
    Ge Z H, Zhang B P, Chen Y X, et al. Synthesis and transport property of Cu1.8S as a promising thermoelectric compound. Chem Commun, 2011, 47: 12697–12699CrossRefGoogle Scholar
  87. 87.
    Itoh T, Yamada M. Synthesis of thermoelectric manganese silicide by mechanical alloying and pulse discharge sintering. J Elec Mater, 2009, 38: 925–929CrossRefGoogle Scholar
  88. 88.
    Li J, Tan Q, Li J F. Synthesis and property evaluation of CuFeS2−x as earth-abundant and environmentally-friendly thermoelectric materials. J Alloys Compd, 2013, 551: 143–149CrossRefGoogle Scholar
  89. 89.
    Liu W, Kim H S, Chen S, et al. n-Type thermoelectric material Mg2Sn0.75Ge0.25 for high power generation. Proc Natl Acad Sci USA, 2015, 112: 3269–3274CrossRefGoogle Scholar
  90. 90.
    Shin D K, Jang K W, Ur S C, et al. Thermoelectric properties of higher manganese silicides prepared by mechanical alloying and hot pressing. J Elec Mater, 2013, 42: 1756–1761CrossRefGoogle Scholar
  91. 91.
    Wang H, Li J F, Nan C W, et al. High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering. Appl Phys Lett, 2006, 88: 092104CrossRefGoogle Scholar
  92. 92.
    Yang J, Chen Y, Peng J, et al. Synthesis of CoSb3 skutterudite by mechanical alloying. J Alloys Compd, 2004, 375: 229–232CrossRefGoogle Scholar
  93. 93.
    Tan Q, Zhao L D, Li J F, et al. Thermoelectrics with earth abundant elements: Low thermal conductivity and high thermopower in doped SnS. J Mater Chem A, 2014, 2: 17302–17306CrossRefGoogle Scholar
  94. 94.
    Wei T R, Wang H, Gibbs Z M, et al. Thermoelectric properties of Sn-doped p-type Cu3SbSe4: A compound with large effective mass and small band gap. J Mater Chem A, 2014, 2: 13527–13533CrossRefGoogle Scholar
  95. 95.
    May A F, Fleurial J P, Snyder G J. Thermoelectric performance of lanthanum telluride produced via mechanical alloying. Phys Rev B, 2008, 78: 125205CrossRefGoogle Scholar
  96. 96.
    Umemoto M. Preparation of thermoelectric β-FeSi2 doped with Al and Mn by mechanical alloying (overview). Mater Trans JIM, 1995, 36: 373–383CrossRefGoogle Scholar
  97. 97.
    Wei T R, Wu C F, Sun W, et al. Is Cu3SbSe3 a promising thermoelectric material? RSC Adv, 2015, 5: 42848–42854CrossRefGoogle Scholar
  98. 98.
    Zou M, Li J F, Du B, et al. Fabrication and thermoelectric properties of fine-grained TiNiSn compounds. J Solid State Chem, 2009, 182: 3138–3142CrossRefGoogle Scholar
  99. 99.
    Zou M, Li J F, Guo P, et al. Synthesis and thermoelectric properties of fine-grained FeVSb system half-Heusler compound polycrystals with high phase purity. J Phys D Appl Phys, 2010, 43: 415403CrossRefGoogle Scholar
  100. 100.
    Kanatzia A, Papageorgiou C, Lioutas C, et al. Design of ball-milling experiments on Bi2Te3 thermoelectric material. J Elec Mater, 2013, 42: 1652–1660CrossRefGoogle Scholar
  101. 101.
    Zhang Q, Wang H, Liu W, et al. Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide. Energ Environ Sci, 2012, 5: 5246–5251CrossRefGoogle Scholar
  102. 102.
    Li Z Y, Li J F. Fine-grained and nanostructured AgPbmSbTem+2 alloys with high thermoelectric figure of merit at medium temperature. Adv Energ Mater, 2014, 4: 1300937CrossRefGoogle Scholar
  103. 103.
    Xing Z B, Li Z Y, Tan Q, et al. Composition optimization of p-type AgSnmSbTem+2 thermoelectric materials synthesized by mechanical alloying and spark plasma sintering. J Alloys Compd, 2014, 615: 451–455CrossRefGoogle Scholar
  104. 104.
    Liu W S, Zhang B P, Li J F, et al. Enhanced thermoelectric properties in CoSb3-xTex alloys prepared by mechanical alloying and spark plasma sintering. J Appl Phys, 2007, 102: 103717–103717CrossRefGoogle Scholar
  105. 105.
    Liu W S, Zhang B P, Zhao L D, et al. Improvement of thermoelectric performance of CoSb3−xTex skutterudite compounds by additional substitution of IVB-group elements for Sb. Chem Mater, 2008, 20: 7526–7531CrossRefGoogle Scholar
  106. 106.
    Tan Q, Li J F. Thermoelectric properties of Sn-S bulk materials prepared by mechanical alloying and spark plasma sintering. J Elec Mater, 2014, 43: 2435–2439CrossRefGoogle Scholar
  107. 107.
    Pele V, Barreteau C, Berardan D, et al. Direct synthesis of BiCuChOtype oxychalcogenides by mechanical alloying. J Solid State Chem, 2013, 203: 187–191CrossRefGoogle Scholar
  108. 108.
    Tang X, Xie W, Li H, et al. Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure. Appl Phys Lett, 2007, 90: 012102CrossRefGoogle Scholar
  109. 109.
    Xie W, Tang X, Yan Y, et al. High thermoelectric performance BiSbTe alloy with unique low-dimensional structure. J Appl Phys, 2009, 105: 113713CrossRefGoogle Scholar
  110. 110.
    Xie W, Wang S, Zhu S, et al. High performance Bi2Te3 nanocomposites prepared by single-element-melt-spinning spark-plasma sintering. J Mater Sci, 2013, 48: 2745–2760CrossRefGoogle Scholar
  111. 111.
    Tkatch V I, Denisenko S N, Beloshov O N. Direct measurements of the cooling rates in the single roller rapid solidification technique. Acta Mater, 1997, 45: 2821–2826CrossRefGoogle Scholar
  112. 112.
    Tan G, Liu W, Wang S, et al. Rapid preparation of CeFe4Sb12 skutterudite by melt spinning: Rich nanostructures and high thermoelectric performance. J Mater Chem A, 2013, 1: 12657–12668CrossRefGoogle Scholar
  113. 113.
    Xie W, He J, Kang H J, et al. Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 Nanocomposites. Nano Lett, 2010, 10: 3283–3289CrossRefGoogle Scholar
  114. 114.
    Tkatch V I, Limanovskii A I, Denisenko S N, et al. The effect of the melt-spinning processing parameters on the rate of cooling. Mater Sci Eng-A, 2002, 323: 91–96CrossRefGoogle Scholar
  115. 115.
    Pond R B. Metallic Filaments and Method of Making Same. US Patent No. 2825108, 1958Google Scholar
  116. 116.
    Pond R B. Apparatus for Producing Alloy and Bimetallic Filaments. US Patent No. 2900708, 1959Google Scholar
  117. 117.
    Pond R B, Maddin R. Method of producing rapidly solidified filamentary castings. Trans Met Soc AIME, 1969, 245: 2475–2476Google Scholar
  118. 118.
    Dey T K. Electrical conductivity, thermoelectric power and figure of merit of doped Bi-Sb tapes produced by melt spinning technique. Pramana J Phys, 1990, 34: 243–248CrossRefGoogle Scholar
  119. 119.
    Lee S M, Okamoto Y, Kawahara T, et al. The fabrication and thermoelectric properties of amorphous Si-Ge-Au bulk samples. MRS Proc, 2001, 691: G8–9Google Scholar
  120. 120.
    Kim T S, Kim I S, Kim T K, et al. Thermoelectric properties of p-type 25%Bi2Te3+75%Sb2Te3 alloys manufactured by rapid solidification and hot pressing. Mater Sci Eng B, 2002, 90: 42–46CrossRefGoogle Scholar
  121. 121.
    Chen H Y, Zhao X B, Lu Y F, et al. Microstructures and thermoelectric properties of Fe0.92Mn0.08Six alloys prepared by rapid solidification and hot pressing. J Appl Phys, 2003, 94: 6621–6626CrossRefGoogle Scholar
  122. 122.
    Zhao X B, Chen H Y, Müller E, et al. Microstructure development of Fe2Si5 thermoelectric alloys during rapid solidification, hot pressing and annealing. J Alloys Compd, 2004, 365: 206–210CrossRefGoogle Scholar
  123. 123.
    Wang S, Xie W, Li H, et al. Enhanced performances of melt spun Bi2(Te,Se)3 for n-type thermoelectric legs. Intermetallics, 2011, 19: 1024–1031CrossRefGoogle Scholar
  124. 124.
    Li H, Tang X, Su X, et al. Preparation and thermoelectric properties of high-performance Sb additional Yb0.2Co4Sb12+y bulk materials with nanostructure. Appl Phys Lett, 2008, 92: 202114CrossRefGoogle Scholar
  125. 125.
    Thompson D R, Liu C, Yang J, et al. Rare-earth free p-type filled skutterudites: Mechanisms for low thermal conductivity and effects of Fe/Co ratio on the band structure and charge transport. Acta Mater, 2015, 92: 152–162CrossRefGoogle Scholar
  126. 126.
    Luo W, Li H, Fu F, et al. Improved thermoelectric properties of Al-doped higher manganese silicide prepared by a rapid solidification method. J Elec Mater, 2011, 40: 1233–1237CrossRefGoogle Scholar
  127. 127.
    Zhang Q, Zheng Y, Su X, et al. Enhanced power factor of Mg2Si0.3Sn0.7 synthesized by a non-equilibrium rapid solidification method. Scripta Mater, 2015, 96: 1–4CrossRefGoogle Scholar
  128. 128.
    Yu C, Zhu T J, Xiao K, et al. Reduced grain size and improved thermoelectric properties of melt spun (Hf,Zr)NiSn half-heusler alloys. J Elec Mater, 2010, 39: 2008–2012CrossRefGoogle Scholar
  129. 129.
    Wang S, Li H, Qi D, et al. Enhancement of the thermoelectric performance of β-Zn4Sb3 by in situ nanostructures and minute Cd-doping. Acta Mater, 2011, 59: 4805–4817CrossRefGoogle Scholar
  130. 130.
    Zhu T, Gao H, Chen Y, et al. Ioffe-regel limit and lattice thermal conductivity reduction of high performance (AgSbTe2)15(GeTe)85 thermoelectric materials. J Mater Chem A, 2014, 2: 3251–3256CrossRefGoogle Scholar
  131. 131.
    Sikalidis C. Advances in Ceramics-Synthesis and Characterization, Processing and Specific Applications. Croatia: InTech Publisher, 2011CrossRefGoogle Scholar
  132. 132.
    Sytschev A E, Merzhanov A G. Self-propagating high-temperature synthesis of nanomaterials. Russ Chem Rev, 2004, 73: 147–159CrossRefGoogle Scholar
  133. 133.
    Zheng G, Su X, Liang T, et al. High thermoelectric performance of mechanically robust n-type Bi2Te3−xSex prepared by combustion synthesis. J Mater Chem A, 2015, 3: 6603–6613CrossRefGoogle Scholar
  134. 134.
    Liang T, Su X, Tan X, et al. Ultra-fast non-equilibrium synthesis and phase segregation in InxSn1−x Te thermoelectrics by SHS-PAS processing. J Mater Chem C, 2015, 3: 8550–8558CrossRefGoogle Scholar
  135. 135.
    Delgado A, Cordova S, Lopez I, et al. Mechanically activated combustion synthesis and shockwave consolidation of magnesium silicide. J Alloys Compd, 2016, 658: 422–429CrossRefGoogle Scholar
  136. 136.
    Zhang Q, Su X, Yan Y, et al. Phase segregation and superior thermoelectric properties of Mg2Si1–xSbx (0 ≤x ≤ 0.025) prepared by ultrafast self-propagating high-temperature synthesis. ACS Appl Mater Interface, 2016, 8: 3268–3276CrossRefGoogle Scholar
  137. 137.
    Liang T, Su X, Yan Y, et al. Ultra-fast synthesis and thermoelectric properties of Te doped skutterudites. J Mater Chem A, 2014, 2: 17914–17918CrossRefGoogle Scholar
  138. 138.
    Ren G K, Lan J, Butt S, et al. Enhanced thermoelectric properties in Pb-doped BiCuSeO oxyselenides prepared by ultrafast synthesis. RSC Adv, 2015, 5: 69878–69885CrossRefGoogle Scholar
  139. 139.
    Selig J, Lin S, Lin H T, et al. Economical route to produce high Seebeck coefficient calcium cobaltate for bulk thermoelectric applications. J Am Ceram Soc, 2011, 94: 3245–3248CrossRefGoogle Scholar
  140. 140.
    Lin S, Selig J. Self-propagating high-temperature synthesis of Ca1.24Co1.62O3.86 thermoelectric powders. J Alloys Compd, 2010, 503: 402–409CrossRefGoogle Scholar
  141. 141.
    Li Y, Liu G, Cao T, et al. Enhanced thermoelectric properties of Cu2SnSe3 by (Ag,In)-Co-doping. Adv Funct Mater, 2016, 26: 6025–6032CrossRefGoogle Scholar
  142. 142.
    Bux S K, Fleurial J P, Kaner R B. Nanostructured materials for thermoelectric applications. Chem Commun, 2010, 46: 8311–8324CrossRefGoogle Scholar
  143. 143.
    Fitriani, Ovik R, Long B D, et al. A review on nanostructures of hightemperature thermoelectric materials for waste heat recovery. Renew Sustain Energ Rev, 2016, 64: 635–659CrossRefGoogle Scholar
  144. 144.
    Shi W, Song S, Zhang H. Hydrothermal synthetic strategies of inorganic semiconducting nanostructures. Chem Soc Rev, 2013, 42: 5714–5743CrossRefGoogle Scholar
  145. 145.
    Gharleghi A, Chu Y H, Lin F H, et al. Optimization and analysis of thermoelectric properties of unfilled Co1–x–yNixFeySb3 synthesized via a rapid hydrothermal procedure. ACS Appl Mater Interface, 2016, 8: 5205–5215CrossRefGoogle Scholar
  146. 146.
    Ju H, Kim J. Chemically exfoliated SnSe nanosheets and their SnSe/poly (3,4-ethylenedioxythiophene): Poly (styrenesulfonate) composite films for polymer based thermoelectric applications. ACS Nano, 2016, 10: 5730–5739CrossRefGoogle Scholar
  147. 147.
    Cao Y Q, Zhao X B, Zhu T J, et al. Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure. Appl Phys Lett, 2008, 92: 143106CrossRefGoogle Scholar
  148. 148.
    Zhang H T, Luo X G, Wang C H, et al. Characterization of nanocrystalline bismuth telluride (Bi2Te3) synthesized by a hydrothermal method. J Cryst Growth, 2004, 265: 558–562CrossRefGoogle Scholar
  149. 149.
    Zhao X B, Ji X H, Zhang Y H, et al. Hydrothermal synthesis and microstructure investigation of nanostructured bismuth telluride powder. Appl Phys A, 2005, 80: 1567–1571CrossRefGoogle Scholar
  150. 150.
    Fu J, Song S, Zhang X, et al. Bi2Te3 nanoplates and nanoflowers: Synthesized by hydrothermal process and their enhanced thermoelectric properties. Cryst Eng Comm, 2012, 14: 2159–2165CrossRefGoogle Scholar
  151. 151.
    Liu C J, Lai H C, Liu Y L, et al. High thermoelectric figure-of-merit in p-type nanostructured (Bi,Sb)2Te3 fabricated via hydrothermal synthesis and evacuated-and-encapsulated sintering. J Mater Chem, 2012, 22: 4825–4831CrossRefGoogle Scholar
  152. 152.
    Mi J L, Lock N, Sun T, et al. Biomolecule-assisted hydrothermal synthesis and self-assembly of Bi2Te3 nanostring-cluster hierarchical structure. ACS Nano, 2010, 4: 2523–2530CrossRefGoogle Scholar
  153. 153.
    Zhao X B, Ji X H, Zhang Y H, et al. Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl Phys Lett, 2005, 86: 062111CrossRefGoogle Scholar
  154. 154.
    Ji X, Zhang B, Tritt T M, et al. Solution-chemical syntheses of nanostructured Bi2Te3 and PbTe thermoelectric materials. J Elec Mater, 2007, 36: 721–726CrossRefGoogle Scholar
  155. 155.
    Yokoyama S, Sato K, Muramatsu M, et al. Green synthesis and formation mechanism of nanostructured Bi2Te3 using ascorbic acid in aqueous solution. Adv Powder Tech, 2015, 26: 789–796CrossRefGoogle Scholar
  156. 156.
    Wang Q, Fang Y, Yin H, et al. Inhomogenous doping induced the imperfect self-assembly of nanocrystals for the synthesis of porous AgPb10BiTe12 nanosheets and their thermoelectric transport properties. Chem Commun, 2015, 51: 1594–1596CrossRefGoogle Scholar
  157. 157.
    Li Y, Li F, Dong J, et al. Enhanced mid-temperature thermoelectric performance of textured SnSe polycrystals made of solvothermally synthesized powders. J Mater Chem C, 2016, 4: 2047–2055CrossRefGoogle Scholar
  158. 158.
    Yu S, Yang J, Wu Y, et al. A new low temperature one-step route to metal chalcogenide semiconductors: PbE, Bi2E3 (E = S, Se, Te). J Mater Chem, 1998, 8: 1949–1951CrossRefGoogle Scholar
  159. 159.
    Deng Y, Wei G D, Nan C W. Ligand-assisted control growth of chainlike nanocrystals. Chem Phys Lett, 2003, 368: 639–643CrossRefGoogle Scholar
  160. 160.
    Hong M, Chasapis T C, Chen Z G, et al. n-Type Bi2Te3–xSex nanoplates with enhanced thermoelectric efficiency driven by wide-frequency phonon scatterings and synergistic carrier scatterings. ACS Nano, 2016, 10: 4719–4727CrossRefGoogle Scholar
  161. 161.
    Ibáñez M, Luo Z, Genç A, et al. High-performance thermoelectric nanocomposites from nanocrystal building blocks. Nat Commun, 2016, 7: 10766CrossRefGoogle Scholar
  162. 162.
    Mehta R J, Zhang Y, Karthik C, et al. A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. Nat Mater, 2012, 11: 233–240CrossRefGoogle Scholar
  163. 163.
    Baghbanzadeh M, Carbone L, Cozzoli P D, et al. Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew Chem Int Ed, 2011, 50: 11312–11359CrossRefGoogle Scholar
  164. 164.
    Tsuji M, Hashimoto M, Nishizawa Y, et al. Microwave-assisted synthesis of metallic nanostructures in solution. Chem-Eur J, 2005, 11: 440–452CrossRefGoogle Scholar
  165. 165.
    Li Z, Chen Y, Li J F, et al. Systhesizing SnTe nanocrystals leading to thermoelectric performance enhancement via an ultra-fast microwave hydrothermal method. Nano Energ, 2016, 28: 78–86CrossRefGoogle Scholar
  166. 166.
    Nüchter M, Ondruschka B, Bonrath W, et al. Microwave assisted synthesis—A critical technology overview. Green Chem, 2004, 6: 128–141CrossRefGoogle Scholar
  167. 167.
    Jin R, Liu J, Li G. Facile solvothermal synthesis, growth mechanism and thermoelectric property of flower-like Bi2Te3. Cryst Res Tech, 2014, 49: 460–466CrossRefGoogle Scholar
  168. 168.
    Ciriminna R, Fidalgo A, Pandarus V, et al. The sol-gel route to advanced silica-based materials and recent applications. Chem Rev, 2013, 113: 6592–6620CrossRefGoogle Scholar
  169. 169.
    Fan F J, Yu B, Wang Y X, et al. Colloidal synthesis of Cu2CdSnSe4 nanocrystals and hot-pressing to enhance the thermoelectric figureof-merit. J Am Chem Soc, 2011, 133: 15910–15913CrossRefGoogle Scholar
  170. 170.
    Butt S, Xu W, He W Q, et al. Enhancement of thermoelectric performance in Cd-doped Ca3Co4O9 via spin entropy, defect chemistry and phonon scattering. J Mater Chem A, 2014, 2: 19479–19487CrossRefGoogle Scholar
  171. 171.
    Li F, Li J F. Enhanced thermoelectric performance of separately Ni-doped and Ni/Sr-codoped LaCoO3 nanocomposites. J Am Chem Soc, 2012, 95: 3562–3568Google Scholar
  172. 172.
    Ji X H, Zhao X B, Zhang Y H, et al. Solvothermal synthesis and thermoelectric properties of lanthanum contained Bi–Te and Bi–Se–Te alloys. Mater Lett, 2005, 59: 682–685CrossRefGoogle Scholar
  173. 173.
    Hong M, Chen Z G, Yang L, et al. Enhancing thermoelectric performance of Bi2Te3-based nanostructures through rational structure design. Nanoscale, 2016, 8: 8681–8686CrossRefGoogle Scholar
  174. 174.
    Dong G H, Zhu Y J, Chen L D. Microwave-assisted rapid synthesis of Sb2Te3 nanosheets and thermoelectric properties of bulk samples prepared by spark plasma sintering. J Mater Chem, 2010, 20: 1976–1981CrossRefGoogle Scholar
  175. 175.
    Zhou W, Zhao W, Lu Z, et al. Preparation and thermoelectric properties of sulfur doped Ag2Te nanoparticles via solvothermal methods. Nanoscale, 2012, 4: 3926–3931CrossRefGoogle Scholar
  176. 176.
    Yang H Q, Miao L, Liu C Y, et al. Solvothermal synthesis of wire-like SnxSb2Te3+x with an enhanced thermoelectric performance. Dalton Trans, 2016, 45: 7483–7491CrossRefGoogle Scholar
  177. 177.
    Tan Q, Wu C F, Sun W, et al. Solvothermally synthesized SnS nanorods with high carrier mobility leading to thermoelectric enhancement. RSC Adv, 2016, 6: 43985–43988CrossRefGoogle Scholar
  178. 178.
    James D J, Lu X, Morelli D T, et al. Solvothermal synthesis of tetrahedrite: Speeding up the process of thermoelectric material generation. ACS Appl Mater Interface, 2015, 7: 23623–23632CrossRefGoogle Scholar
  179. 179.
    Zhu Y, Shen H, Guan H. Microwave-assisted synthesis and thermoelelectric properties of CoSb3 compounds. J Mater Sci-Mater Electron, 2012, 23: 2210–2215CrossRefGoogle Scholar
  180. 180.
    Bloxam A. Improved manufacture of electric incandescence lamp laments from tungsten or molybdenum or an alloy thereof. GB Patent, 1906, 27: 13Google Scholar
  181. 181.
    Inoue K. Electric-Discharge Sintering. US Patent No. 3241956, 1966Google Scholar
  182. 182.
    Zhang Q, Ai X, Wang L, et al. Improved thermoelectric performance of silver nanoparticles-dispersed Bi2Te3 composites deriving from hierarchical two-phased heterostructure. Adv Funct Mater, 2015, 25: 966–976CrossRefGoogle Scholar
  183. 183.
    Soni A, Shen Y, Yin M, et al. Interface driven energy filtering of thermoelectric power in spark plasma sintered Bi2Te2.7Se0.3 nanoplatelet composites. Nano Lett, 2012, 12: 4305–4310CrossRefGoogle Scholar
  184. 184.
    Aminorroaya Yamini S, Brewis M, Byrnes J, et al. Fabrication of thermoelectric materials—Thermal stability and repeatability of achieved efficiencies. J Mater Chem C, 2015, 3: 10610–10615CrossRefGoogle Scholar
  185. 185.
    He Y, Lu P, Shi X, et al. Ultrahigh thermoelectric performance in mosaic crystals. Adv Mater, 2015, 27: 3639–3644CrossRefGoogle Scholar
  186. 186.
    Liu Y, Lin Y, Shi Z, et al. Preparation of Ca3Co4O9 and improvement of its thermoelectric properties by spark plasma sintering. J Am Ceram Soc, 2005, 88: 1337–1340CrossRefGoogle Scholar
  187. 187.
    Li X Y, Chen L D, Fan J F, et al. Thermoelectric properties of Te-doped CoSb3 by spark plasma sintering. J Appl Phys, 2005, 98: 083702CrossRefGoogle Scholar
  188. 188.
    Souma T, Nakamoto G, Kurisu M. Low-temperature thermoelectric properties of α- and β-Zn4Sb3 bulk crystals prepared by a gradient freeze method and a spark plasma sintering method. J Alloys Compd, 2002, 340: 275–280CrossRefGoogle Scholar
  189. 189.
    Kim K H, Shim S H, Shim K B, et al. Microstructural and thermoelectric characteristics of zinc oxide-based thermoelectric materials fabricated using a spark plasma sintering process. J Am Ceram Soc, 2005, 88: 628–632CrossRefGoogle Scholar
  190. 190.
    Kuo C H, Hwang C S, Jeng M S, et al. Thermoelectric transport properties of bismuth telluride bulk materials fabricated by ball milling and spark plasma sintering. J Alloys Compd, 2010, 496: 687–690CrossRefGoogle Scholar
  191. 191.
    Munir Z A, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J Mater Sci, 2006, 41: 763–777CrossRefGoogle Scholar
  192. 192.
    Omori M. Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater Sci Eng A, 2000, 287: 183–188CrossRefGoogle Scholar
  193. 193.
    Guillon O, Gonzalez-Julian J, Dargatz B, et al. Field-assisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments. Adv Eng Mater, 2014, 16: 830–849CrossRefGoogle Scholar
  194. 194.
    Liu H, Shi X, Xu F, et al. Copper ion liquid-like thermoelectrics. Nat Mater, 2012, 11: 422–425CrossRefGoogle Scholar
  195. 195.
    Meng Q L, Kong S, Huang Z, et al. Simultaneous enhancement in the power factor and thermoelectric performance of copper sulfide by In2S3 doping. J Mater Chem A, 2016, 4: 12624–12629CrossRefGoogle Scholar
  196. 196.
    Qiu W, Xi L, Wei P, et al. Part-crystalline part-liquid state and rattlinglike thermal damping in materials with chemical-bond hierarchy. Proc Natl Acad Sci USA, 2014, 111: 15031–15035CrossRefGoogle Scholar
  197. 197.
    Kirkham M, Majsztrik P, Skoug E, et al. High-temperature order/disorder transition in the thermoelectric Cu3SbSe3. J Mater Res, 2011, 26: 2001–2005CrossRefGoogle Scholar
  198. 198.
    Toberer E S, Cox C A, Brown S R, et al. Traversing the metal-insulator transition in a zintl phase: Rational enhancement of thermoelectric efficiency in Yb14Mn1−xAlxSb11. Adv Funct Mater, 2008, 18: 2795–2800CrossRefGoogle Scholar
  199. 199.
    Tyagi K, Gahtori B, Bathula S, et al. Thermoelectric properties of Cu3SbSe3 with intrinsically ultralow lattice thermal conductivity. J Mater Chem A, 2014, 2: 15829–15835CrossRefGoogle Scholar
  200. 200.
    Yan X, Poudel B, Ma Y, et al. Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. Nano Lett, 2010, 10: 3373–3378CrossRefGoogle Scholar
  201. 201.
    Sui J, Li J, He J, et al. Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides. Energ Environ Sci, 2013, 6: 2916–2920CrossRefGoogle Scholar
  202. 202.
    Jiang Q, Yan H, Khaliq J, et al. Large ZT enhancement in hot forged nanostructured p-type Bi0.5Sb1.5Te3 bulk alloys. J Mater Chem A, 2014, 2: 5785–5790CrossRefGoogle Scholar
  203. 203.
    Shen J J, Zhu T J, Zhao X B, et al. Recrystallization induced in situ nanostructures in bulk bismuth antimony tellurides: A simple top down route and improved thermoelectric properties. Energ Environ Sci, 2010, 3: 1519–1523CrossRefGoogle Scholar
  204. 204.
    Medlin D L, Snyder G J. Interfaces in bulk thermoelectric materials. Curr Opin Colloid In, 2009, 14: 226–235CrossRefGoogle Scholar
  205. 205.
    Mikami M, Guilmeau E, Funahashi R, et al. Enhancement of electrical properties of the thermoelectric compound Ca3Co4O9 through use of large-grained powder. J Mater Res, 2005, 20: 2491–2497CrossRefGoogle Scholar
  206. 206.
    Ur S C, Nash P, Kim I H. Thermoelectric properties of Zn4Sb3 processed by sinter-forging. Mater Lett, 2004, 58: 2937–2941CrossRefGoogle Scholar
  207. 207.
    Yamashita O, Tomiyoshi S. Effect of Annealing on thermoelectric properties of bismuth telluride compounds. Jpn J Appl Phys, 2003, 42: 492–500CrossRefGoogle Scholar
  208. 208.
    Schultz J M, McHugh J P, Tiller W A. Effects of heavy deformation and annealing on the electrical properties of Bi2Te3. J Appl Phys, 1962, 33: 2443–2450CrossRefGoogle Scholar
  209. 209.
    Zhao L D, Zhang B P, Liu W S, et al. Effects of annealing on electrical properties of n-type Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. J Alloys Compd, 2009, 467: 91–97CrossRefGoogle Scholar
  210. 210.
    Schumacher C, Reinsberg K G, Rostek R, et al. Optimizations of pulsed plated p- and n-type Bi2Te3-based ternary compounds by annealing in different ambient atmospheres. Adv Energ Mater, 2013, 3: 95–104CrossRefGoogle Scholar
  211. 211.
    Zhou M, Li J F, Kita T. Nanostructured AgPbmSbTem+2 system bulk materials with enhanced thermoelectric performance. J Am Chem Soc, 2008, 130: 4527–4532CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • JingFeng Li
    • 1
  • Yu Pan
    • 1
  • ChaoFeng Wu
    • 1
  • FuHua Sun
    • 1
  • TianRan Wei
    • 1
  1. 1.State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and EngineeringTsinghua UniversityBeijingChina

Personalised recommendations