Science China Technological Sciences

, Volume 60, Issue 10, pp 1447–1457 | Cite as

Recent progress on mixed-anion type visible-light induced photocatalysts

  • ZhiHuan ZhaoEmail author
  • JiMin Fan
  • HongHong Chang
  • Yusuke Asakura
  • Shu YinEmail author


Environmentally friendly soft chemical processes, including solvothermal/hydrothermal process and mechanochemical process, for the synthesis of mixed anion type visible-light induced photocatalysts are introduced in this review paper. Titania and strontium titanate based anion doped photocatalysts can be effectively prepared at such low-temperature as below 200 °C. Especially, the mechanochemical process is a useful method for the synthesis of various mixed ions doping functional materials at low temperatures. The mixed anion type photocatalytic compounds consisted of N/O, N/F/O, S/O, N/C/O, show excellent visible light absorption ability and photocatalytic activities, indicating the potential applications in environmental purifications. Full-spectra active long wavelength light induced photocatalyst, full-time active photocatalyst system and infrared radiation (IR) shielding multifunctional photocatalysts will be introduced also.


solvothermal hydrothermal mechanochemical mixed-anion visible light induced photocatalyst 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37–38CrossRefGoogle Scholar
  2. 2.
    Kubacka A, Fernández-García M, Colón G. Advanced nanoarchitectures for solar photocatalytic applications. Chem Rev, 2012, 112: 1555–1614CrossRefGoogle Scholar
  3. 3.
    Barbé C J, Arendse F, Comte P, et al. Nanocrystalline titanium oxide electrodes for photovoltaic applications. J Am Ceramic Soc, 2005, 80: 3157–3171CrossRefGoogle Scholar
  4. 4.
    Altın I, Sökmen M. Preparation of TiO2-polystyrene photocatalyst from waste material and its usability for removal of various pollutants. Appl Catal B-Environ, 2014, 144: 694–701CrossRefGoogle Scholar
  5. 5.
    Mills A, Le Hunte S. An overview of semiconductor photocatalysis. J Photochem Photobiol A-Chem, 1997, 108: 1–35CrossRefGoogle Scholar
  6. 6.
    Sato T, Zhang P, Yin S. High performance visible light responsive photocatalysts for environmental cleanup via solution processing. Prog Cryst Growth Ch, 2012, 58: 92–105CrossRefGoogle Scholar
  7. 7.
    Yin S. Creation of advanced optical responsive functionality of ceramics by green processes. J Ceram Soc Jpn, 2015, 123: 823–834CrossRefGoogle Scholar
  8. 8.
    Ong W J, Tan L L, Ng Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem Rev, 2016, 116: 7159–7329CrossRefGoogle Scholar
  9. 9.
    Low J, Cheng B, Yu J. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: A review. Appl Surface Sci, 2017, 392: 658–686CrossRefGoogle Scholar
  10. 10.
    Ni Z, Sun Y, Zhang Y, et al. Fabrication, modification and application of (BiO)2CO3-based photocatalysts: A review. Appl Surface Sci, 2016, 365: 314–335CrossRefGoogle Scholar
  11. 11.
    Gomathi Devi L, Kavitha R. A review on plasmonic metal TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system. Appl Surface Sci, 2016, 360: 601–622CrossRefGoogle Scholar
  12. 12.
    Li X, Yu J, Wageh S, et al. Graphene in photocatalysis: A review. Small, 2016, 12: 6640–6696CrossRefGoogle Scholar
  13. 13.
    Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293: 269–271CrossRefGoogle Scholar
  14. 14.
    Morikawa T, Asahi R, Ohwaki T, Aoki K, Taga Y. Band gap narrowing of titanium dioxide by nitrogen doping. Jpn J Appl Phys, 2001, 40: L561–L563CrossRefGoogle Scholar
  15. 15.
    Fu C, Gong Y, Wu Y, et al. Photocatalytic enhancement of TiO2 by B and Zr co-doping and modulation of microstructure. Appl Surface Sci, 2016, 379: 83–90CrossRefGoogle Scholar
  16. 16.
    Wang K, Li Q, Liu B, et al. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl Catal B-Environ, 2015, 176–177: 44–52CrossRefGoogle Scholar
  17. 17.
    Liu W X, Liu Q, Li X F, et al. Photocatalytic degradation of coking wastewater by nanocrystalline (Fe, N) co-doped TiO2 powders. Sci China Tech Sci, 2010, 53: 1477–1482CrossRefGoogle Scholar
  18. 18.
    Ong W J, Putri L K, Tan L L, et al. Heterostructured AgX/g-C3N4 (X=Cl and Br) nanocomposites via a sonication-assisted depositionprecipitation approach: Emerging role of halide ions in the synergistic photocatalytic reduction of carbon dioxide. Appl Catal B-Environ, 2016, 180: 530–543CrossRefGoogle Scholar
  19. 19.
    Li D, Chen F, Jiang D, et al. Enhanced photocatalytic activity of N-doped TiO2 nanocrystals with exposed {001} facets. Appl Surface Sci, 2016, 390: 689–695CrossRefGoogle Scholar
  20. 20.
    Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2−xNx powders. J Phys Chem B, 2003, 107: 5483–5486CrossRefGoogle Scholar
  21. 21.
    Irie H, Watanabe Y, Hashimoto K. Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chem Lett, 2003, 32: 772–773CrossRefGoogle Scholar
  22. 22.
    Khan S U M, Al-Shahry M, Ingler W B. Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 2002, 297: 2243–2245CrossRefGoogle Scholar
  23. 23.
    Umebayashi T, Yamaki T, Itoh H, et al. Band gap narrowing of titanium dioxide by sulfur doping. Appl Phys Lett, 2002, 81: 454–456CrossRefGoogle Scholar
  24. 24.
    Anpo M. Recent Developments on Visible Light Response Type Photocatalysts. Tokyo: NTS, 2002. 9Google Scholar
  25. 25.
    Yoshimura M. Soft solution processing: Concept and realization of direct fabrication of shaped ceramics (nano-crystals, whiskers, films, and/or patterns) in solutions without post-firing. J Mater Sci, 2006, 41: 1299–1306CrossRefGoogle Scholar
  26. 26.
    Byrappa K, Yoshimura M. Handbook of Hydrothermal Technology. New York: Noyes Publications, 2001Google Scholar
  27. 27.
    Yin S, Aita Y, Komatsu M, et al. Synthesis of excellent visible-light induced TiO2−xNy photocatalyst by homogeneous precipitation—solvothermal process. J Mater Chem, 2005, 15: 674–682CrossRefGoogle Scholar
  28. 28.
    Yin S, Aita Y, Komatsu M, et al. Visible-light-induced photocatalytic activity of TiO2−xNy prepared by solvothermal process in urea–alcohol system. J Eur Ceramic Soc, 2006, 26: 2735–2742CrossRefGoogle Scholar
  29. 29.
    Komatsu M, Aita Y, Yin S, et al. Solvothermal synthesis of visiblelight reactive titania nanocrystals. Trans Mater Res Soc Jpn, 2004, 29: 2297–2300Google Scholar
  30. 30.
    Wu X, Yin S, Dong Q, et al. Synthesis of high visible light active carbon doped TiO2 photocatalyst by a facile calcination assisted solvothermal method. Appl Catal B-Environ, 2013, 142–143: 450–457CrossRefGoogle Scholar
  31. 31.
    Wu X, Yin S, Dong Q, et al. Photocatalytic properties of Nd and C codoped TiO2 with the whole range of visible light absorption. J Phys Chem C, 2013, 117: 8345–8352CrossRefGoogle Scholar
  32. 32.
    Yin S, Liu B, Zhang P, et al. Photocatalytic oxidation of NOx under visible LED light irradiation over nitrogen-doped titania particles with iron or platinum loading. J Phys Chem C, 2008, 112: 12425–12431CrossRefGoogle Scholar
  33. 33.
    Wang J, Yin S, Zhang Q, et al. Mechanochemical synthesis of fluorine-doped SrTiO3 and Its photo-oxidation properties. Chem Lett, 2003, 32: 540–541CrossRefGoogle Scholar
  34. 34.
    Sulaeman U, Yin S, Sato T. Solvothermal synthesis and photocatalytic properties of nitrogen-doped SrTiO3 nanoparticles. J Nanomaterials, 2010, 2010: 1–6CrossRefGoogle Scholar
  35. 35.
    Sulaeman U, Yin S, Sato T. Visible light photocatalytic activity induced by the carboxyl group chemically bonded on the surface of Sr-TiO3. Appl Catal B-Environ, 2011, 102: 286–290CrossRefGoogle Scholar
  36. 36.
    Ikoma T, Zhang Q, Saito F, et al. Radicals in the mechanochemical dechlorination of hazardous organochlorine compounds using CaO nanoparticles. Bull Chem Soc Jpn, 2001, 74: 2303–2309CrossRefGoogle Scholar
  37. 37.
    Lee J, Zhang Q, Saito F. Mechanochemical synthesis of lanthanum oxyfluoride by grinding lanthanum oxide with poly(vinylidene fluoride). Ind Eng Chem Res, 2001, 40: 4785–4788CrossRefGoogle Scholar
  38. 38.
    Yin S, Zhang Q, Saito F, et al. Preparation of visible light-activated titania photocatalyst by mechanochemical method. Chem Lett, 2003, 32: 358–359CrossRefGoogle Scholar
  39. 39.
    Yin S, Yamaki H, Komatsu M, et al. Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine. J Mater Chem, 2003, 13: 2996CrossRefGoogle Scholar
  40. 40.
    Zhang Q, Wang J, Yin S, et al. Synthesis of a visible-light active TiO2−xSx photocatalyst by means of mechanochemical doping. J Am Ceramic Soc, 2004, 87: 1161–1163CrossRefGoogle Scholar
  41. 41.
    Yin S, Zhang Q, Saito F, Sato T. Synthesis of titanium dioxide-based, visible-light induced photocatalysts by mechanochemical doping. In: Sopicka-Lizer M, Eds. High Energy Ball Milling: Mechanochemical Processing of Nanopowders. Boca Raton: CRC Press, 2010. 304–330CrossRefGoogle Scholar
  42. 42.
    Kang I C, Zhang Q, Yin S, et al. Preparation of a visible sensitive carbon doped TiO2 photo-catalyst by grinding TiO2 with ethanol and heating treatment. Appl Catal B-Environ, 2008, 80: 81–87CrossRefGoogle Scholar
  43. 43.
    Yin S, Ihara K, Komatsu M, et al. Low temperature synthesis of TiO2−xNy powders and films with visible light responsive photocatalytic activity. Solid State Commun, 2006, 137: 132–137CrossRefGoogle Scholar
  44. 44.
    Pansila P, Witit-Anun N, Chaiyakun S. Influence of sputtering power on structure and photocatalyst properties of DC magnetron sputtered TiO2 thin film. Procedia Eng, 2012, 32: 862–867CrossRefGoogle Scholar
  45. 45.
    Yin S, Sato T. Synthesis and photocatalytic properties of fibrous titania prepared from protonic layered tetratitanate precursor in supercritical alcohols. Ind Eng Chem Res, 2000, 39: 4526–4530CrossRefGoogle Scholar
  46. 46.
    Li H, Yin S, Wang Y, et al. Current progress on persistent fluorescence- assisted composite photocatalysts. Funct Mater Lett, 2013, 06: 1330005CrossRefGoogle Scholar
  47. 47.
    Li H, Yin S, Sato T. Persistent deNOx ability of CaAl2O4:(Eu, Nd)/TiO2−xNy luminescent photocatalyst. Nanoscale Res Lett, 2011, 6:5Google Scholar
  48. 48.
    Li H, Yin S, Sato T. Novel luminescent photocatalytic deNOx activity of CaAl2O4:(Eu,Nd)/TiO2−xNy composite. Appl Catal B-Environ, 2011, 106: 586–591CrossRefGoogle Scholar
  49. 49.
    Li H, Yin S, Wang Y, et al. Effect of phase structures of TiO2−xNy on the photocatalytic activity of CaAl2O4:(Eu, Nd)-coupled TiO2−xNy. J Catal, 2012, 286: 273–278CrossRefGoogle Scholar
  50. 50.
    Li H, Yin S, Wang Y, et al. Persistent Fluorescence-assisted TiO2−xNybased photocatalyst for gaseous acetaldehyde degradation. Environ Sci Technol, 2012, 46: 7741–7745CrossRefGoogle Scholar
  51. 51.
    Li H, Yin S, Wang Y, et al. Green phosphorescence-assisted degradation of rhodamine Bdyes by Ag3PO4. J Mater Chem A, 2013, 1: 1123–1126CrossRefGoogle Scholar
  52. 52.
    Mai H X, Zhang Y W, Sun L D, et al. Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals. J Phys Chem C, 2007, 111: 13721–13729CrossRefGoogle Scholar
  53. 53.
    Li H, Yin S, Wang Y, et al. Blue fluorescence-assisted SrTi1−xCryO3 for efficient persistent photocatalysis. RSC Adv, 2012, 2: 3234–3236CrossRefGoogle Scholar
  54. 54.
    Wu X, Yin S, Dong Q, et al. UV, visible and near-infrared lights induced NOx destruction activity of (Yb,Er)-NaYF4/C-TiO2 composite. Sci Rep, 2013, 3: 2918CrossRefGoogle Scholar
  55. 55.
    Wu X, Yin S, Dong Q, et al. Blue/green/red colour emitting up-conversion phosphors coupled C-TiO2 composites with UV, visible and NIR responsive photocatalytic performance. Appl Catal B-Environ, 2014, 156–157: 257–264CrossRefGoogle Scholar
  56. 56.
    Haw C, Chiu W, Abdul Rahman S, et al. The design of new magnetic-photocatalyst nanocomposites (CoFe2O4–TiO2) as smart nanomaterials for recyclable-photocatalysis applications. New J Chem, 2016, 40: 1124–1136CrossRefGoogle Scholar
  57. 57.
    Guo C, Yin S, Zhang P, et al. Novel synthesis of homogenous CsxWO3 nanorods with excellent NIR shielding properties by a water controlled- release solvothermal process. J Mater Chem, 2010, 20: 8227CrossRefGoogle Scholar
  58. 58.
    Guo C, Yin S, Yan M, et al. Facile synthesis of homogeneous CsxWO3 nanorods with excellent low-emissivity and NIR shielding property by a water controlled-release process. J Mater Chem, 2011, 21: 5099–5105CrossRefGoogle Scholar
  59. 59.
    Guo C, Yin S, Yu H, et al. Photothermal ablation cancer therapy using homogeneous CsxWO3 nanorods with broad near-infra-red absorption. Nanoscale, 2013, 5: 6469–6478CrossRefGoogle Scholar
  60. 60.
    Guo C, Yin S, Yan M, et al. Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties. Inorg Chem, 2012, 51: 4763–4771CrossRefGoogle Scholar
  61. 61.
    Wu X, Yin S, Dong Q, et al. Photocatalytic performance and near infrared absorption property of tungsten and tungsten-carbon doped titania. Mater Tech, 2014, 29: A20–A27CrossRefGoogle Scholar
  62. 62.
    Wu X, Yin S, Xue D, et al. A CsxWO3/ZnO nanocomposite as a smart coating for photocatalytic environmental cleanup and heat insulation. Nanoscale, 2015, 7: 17048–17054CrossRefGoogle Scholar
  63. 63.
    Wu X, Wang J, Zhang G, et al. Series of MxWO3/ZnO (M=K, Rb, NH4) nanocomposites: Combination of energy saving and environmental decontamination functions. Appl Catal B-Environ, 2017, 201: 128–136CrossRefGoogle Scholar
  64. 64.
    Liu T, Liu B, Wang J, et al. Smart window coating based on F-TiO2-KxWO3 nanocomposites with heat shielding, ultraviolet isolating, hydrophilic and photocatalytic performance. Sci Rep, 2016, 6: 27373CrossRefGoogle Scholar
  65. 65.
    Takata T, Pan C, Domen K. Recent progress in oxynitride photocatalysts for visible-light-driven water splitting. Sci Tech Adv Mater, 2015, 16: 033506CrossRefGoogle Scholar
  66. 66.
    Chen S, Qi Y, Hisatomi T, et al. Efficient visible-light-driven z-scheme overall water splitting using a MgTa2O6−xNy/TaON heterostructure photocatalyst for H2 evolution. Angew Chem Int Ed, 2015, 54: 8498–8501CrossRefGoogle Scholar
  67. 67.
    Wang B, Kanhere P D, Chen Z, et al. Anion-doped NaTaO3 for visible light photocatalysis. J Phys Chem C, 2013, 117: 22518–22524CrossRefGoogle Scholar
  68. 68.
    Kato H, Ueda K, Kobayashi M, et al. Photocatalytic water oxidation under visible light by valence band controlled oxynitride solid solutions LaTaON2-SrTiO3. J Mater Chem A, 2015, 3: 11824–11829CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringTaiyuan University of TechnologyTaiyuanChina
  2. 2.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendaiJapan

Personalised recommendations