Advertisement

Science China Technological Sciences

, Volume 60, Issue 10, pp 1447–1457 | Cite as

Recent progress on mixed-anion type visible-light induced photocatalysts

  • ZhiHuan ZhaoEmail author
  • JiMin Fan
  • HongHong Chang
  • Yusuke Asakura
  • Shu YinEmail author
Review

Abstract

Environmentally friendly soft chemical processes, including solvothermal/hydrothermal process and mechanochemical process, for the synthesis of mixed anion type visible-light induced photocatalysts are introduced in this review paper. Titania and strontium titanate based anion doped photocatalysts can be effectively prepared at such low-temperature as below 200 °C. Especially, the mechanochemical process is a useful method for the synthesis of various mixed ions doping functional materials at low temperatures. The mixed anion type photocatalytic compounds consisted of N/O, N/F/O, S/O, N/C/O, show excellent visible light absorption ability and photocatalytic activities, indicating the potential applications in environmental purifications. Full-spectra active long wavelength light induced photocatalyst, full-time active photocatalyst system and infrared radiation (IR) shielding multifunctional photocatalysts will be introduced also.

Keywords

solvothermal hydrothermal mechanochemical mixed-anion visible light induced photocatalyst 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37–38CrossRefGoogle Scholar
  2. 2.
    Kubacka A, Fernández-García M, Colón G. Advanced nanoarchitectures for solar photocatalytic applications. Chem Rev, 2012, 112: 1555–1614CrossRefGoogle Scholar
  3. 3.
    Barbé C J, Arendse F, Comte P, et al. Nanocrystalline titanium oxide electrodes for photovoltaic applications. J Am Ceramic Soc, 2005, 80: 3157–3171CrossRefGoogle Scholar
  4. 4.
    Altın I, Sökmen M. Preparation of TiO2-polystyrene photocatalyst from waste material and its usability for removal of various pollutants. Appl Catal B-Environ, 2014, 144: 694–701CrossRefGoogle Scholar
  5. 5.
    Mills A, Le Hunte S. An overview of semiconductor photocatalysis. J Photochem Photobiol A-Chem, 1997, 108: 1–35CrossRefGoogle Scholar
  6. 6.
    Sato T, Zhang P, Yin S. High performance visible light responsive photocatalysts for environmental cleanup via solution processing. Prog Cryst Growth Ch, 2012, 58: 92–105CrossRefGoogle Scholar
  7. 7.
    Yin S. Creation of advanced optical responsive functionality of ceramics by green processes. J Ceram Soc Jpn, 2015, 123: 823–834CrossRefGoogle Scholar
  8. 8.
    Ong W J, Tan L L, Ng Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem Rev, 2016, 116: 7159–7329CrossRefGoogle Scholar
  9. 9.
    Low J, Cheng B, Yu J. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: A review. Appl Surface Sci, 2017, 392: 658–686CrossRefGoogle Scholar
  10. 10.
    Ni Z, Sun Y, Zhang Y, et al. Fabrication, modification and application of (BiO)2CO3-based photocatalysts: A review. Appl Surface Sci, 2016, 365: 314–335CrossRefGoogle Scholar
  11. 11.
    Gomathi Devi L, Kavitha R. A review on plasmonic metal TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system. Appl Surface Sci, 2016, 360: 601–622CrossRefGoogle Scholar
  12. 12.
    Li X, Yu J, Wageh S, et al. Graphene in photocatalysis: A review. Small, 2016, 12: 6640–6696CrossRefGoogle Scholar
  13. 13.
    Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293: 269–271CrossRefGoogle Scholar
  14. 14.
    Morikawa T, Asahi R, Ohwaki T, Aoki K, Taga Y. Band gap narrowing of titanium dioxide by nitrogen doping. Jpn J Appl Phys, 2001, 40: L561–L563CrossRefGoogle Scholar
  15. 15.
    Fu C, Gong Y, Wu Y, et al. Photocatalytic enhancement of TiO2 by B and Zr co-doping and modulation of microstructure. Appl Surface Sci, 2016, 379: 83–90CrossRefGoogle Scholar
  16. 16.
    Wang K, Li Q, Liu B, et al. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl Catal B-Environ, 2015, 176–177: 44–52CrossRefGoogle Scholar
  17. 17.
    Liu W X, Liu Q, Li X F, et al. Photocatalytic degradation of coking wastewater by nanocrystalline (Fe, N) co-doped TiO2 powders. Sci China Tech Sci, 2010, 53: 1477–1482CrossRefGoogle Scholar
  18. 18.
    Ong W J, Putri L K, Tan L L, et al. Heterostructured AgX/g-C3N4 (X=Cl and Br) nanocomposites via a sonication-assisted depositionprecipitation approach: Emerging role of halide ions in the synergistic photocatalytic reduction of carbon dioxide. Appl Catal B-Environ, 2016, 180: 530–543CrossRefGoogle Scholar
  19. 19.
    Li D, Chen F, Jiang D, et al. Enhanced photocatalytic activity of N-doped TiO2 nanocrystals with exposed {001} facets. Appl Surface Sci, 2016, 390: 689–695CrossRefGoogle Scholar
  20. 20.
    Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2−xNx powders. J Phys Chem B, 2003, 107: 5483–5486CrossRefGoogle Scholar
  21. 21.
    Irie H, Watanabe Y, Hashimoto K. Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chem Lett, 2003, 32: 772–773CrossRefGoogle Scholar
  22. 22.
    Khan S U M, Al-Shahry M, Ingler W B. Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 2002, 297: 2243–2245CrossRefGoogle Scholar
  23. 23.
    Umebayashi T, Yamaki T, Itoh H, et al. Band gap narrowing of titanium dioxide by sulfur doping. Appl Phys Lett, 2002, 81: 454–456CrossRefGoogle Scholar
  24. 24.
    Anpo M. Recent Developments on Visible Light Response Type Photocatalysts. Tokyo: NTS, 2002. 9Google Scholar
  25. 25.
    Yoshimura M. Soft solution processing: Concept and realization of direct fabrication of shaped ceramics (nano-crystals, whiskers, films, and/or patterns) in solutions without post-firing. J Mater Sci, 2006, 41: 1299–1306CrossRefGoogle Scholar
  26. 26.
    Byrappa K, Yoshimura M. Handbook of Hydrothermal Technology. New York: Noyes Publications, 2001Google Scholar
  27. 27.
    Yin S, Aita Y, Komatsu M, et al. Synthesis of excellent visible-light induced TiO2−xNy photocatalyst by homogeneous precipitation—solvothermal process. J Mater Chem, 2005, 15: 674–682CrossRefGoogle Scholar
  28. 28.
    Yin S, Aita Y, Komatsu M, et al. Visible-light-induced photocatalytic activity of TiO2−xNy prepared by solvothermal process in urea–alcohol system. J Eur Ceramic Soc, 2006, 26: 2735–2742CrossRefGoogle Scholar
  29. 29.
    Komatsu M, Aita Y, Yin S, et al. Solvothermal synthesis of visiblelight reactive titania nanocrystals. Trans Mater Res Soc Jpn, 2004, 29: 2297–2300Google Scholar
  30. 30.
    Wu X, Yin S, Dong Q, et al. Synthesis of high visible light active carbon doped TiO2 photocatalyst by a facile calcination assisted solvothermal method. Appl Catal B-Environ, 2013, 142–143: 450–457CrossRefGoogle Scholar
  31. 31.
    Wu X, Yin S, Dong Q, et al. Photocatalytic properties of Nd and C codoped TiO2 with the whole range of visible light absorption. J Phys Chem C, 2013, 117: 8345–8352CrossRefGoogle Scholar
  32. 32.
    Yin S, Liu B, Zhang P, et al. Photocatalytic oxidation of NOx under visible LED light irradiation over nitrogen-doped titania particles with iron or platinum loading. J Phys Chem C, 2008, 112: 12425–12431CrossRefGoogle Scholar
  33. 33.
    Wang J, Yin S, Zhang Q, et al. Mechanochemical synthesis of fluorine-doped SrTiO3 and Its photo-oxidation properties. Chem Lett, 2003, 32: 540–541CrossRefGoogle Scholar
  34. 34.
    Sulaeman U, Yin S, Sato T. Solvothermal synthesis and photocatalytic properties of nitrogen-doped SrTiO3 nanoparticles. J Nanomaterials, 2010, 2010: 1–6CrossRefGoogle Scholar
  35. 35.
    Sulaeman U, Yin S, Sato T. Visible light photocatalytic activity induced by the carboxyl group chemically bonded on the surface of Sr-TiO3. Appl Catal B-Environ, 2011, 102: 286–290CrossRefGoogle Scholar
  36. 36.
    Ikoma T, Zhang Q, Saito F, et al. Radicals in the mechanochemical dechlorination of hazardous organochlorine compounds using CaO nanoparticles. Bull Chem Soc Jpn, 2001, 74: 2303–2309CrossRefGoogle Scholar
  37. 37.
    Lee J, Zhang Q, Saito F. Mechanochemical synthesis of lanthanum oxyfluoride by grinding lanthanum oxide with poly(vinylidene fluoride). Ind Eng Chem Res, 2001, 40: 4785–4788CrossRefGoogle Scholar
  38. 38.
    Yin S, Zhang Q, Saito F, et al. Preparation of visible light-activated titania photocatalyst by mechanochemical method. Chem Lett, 2003, 32: 358–359CrossRefGoogle Scholar
  39. 39.
    Yin S, Yamaki H, Komatsu M, et al. Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine. J Mater Chem, 2003, 13: 2996CrossRefGoogle Scholar
  40. 40.
    Zhang Q, Wang J, Yin S, et al. Synthesis of a visible-light active TiO2−xSx photocatalyst by means of mechanochemical doping. J Am Ceramic Soc, 2004, 87: 1161–1163CrossRefGoogle Scholar
  41. 41.
    Yin S, Zhang Q, Saito F, Sato T. Synthesis of titanium dioxide-based, visible-light induced photocatalysts by mechanochemical doping. In: Sopicka-Lizer M, Eds. High Energy Ball Milling: Mechanochemical Processing of Nanopowders. Boca Raton: CRC Press, 2010. 304–330CrossRefGoogle Scholar
  42. 42.
    Kang I C, Zhang Q, Yin S, et al. Preparation of a visible sensitive carbon doped TiO2 photo-catalyst by grinding TiO2 with ethanol and heating treatment. Appl Catal B-Environ, 2008, 80: 81–87CrossRefGoogle Scholar
  43. 43.
    Yin S, Ihara K, Komatsu M, et al. Low temperature synthesis of TiO2−xNy powders and films with visible light responsive photocatalytic activity. Solid State Commun, 2006, 137: 132–137CrossRefGoogle Scholar
  44. 44.
    Pansila P, Witit-Anun N, Chaiyakun S. Influence of sputtering power on structure and photocatalyst properties of DC magnetron sputtered TiO2 thin film. Procedia Eng, 2012, 32: 862–867CrossRefGoogle Scholar
  45. 45.
    Yin S, Sato T. Synthesis and photocatalytic properties of fibrous titania prepared from protonic layered tetratitanate precursor in supercritical alcohols. Ind Eng Chem Res, 2000, 39: 4526–4530CrossRefGoogle Scholar
  46. 46.
    Li H, Yin S, Wang Y, et al. Current progress on persistent fluorescence- assisted composite photocatalysts. Funct Mater Lett, 2013, 06: 1330005CrossRefGoogle Scholar
  47. 47.
    Li H, Yin S, Sato T. Persistent deNOx ability of CaAl2O4:(Eu, Nd)/TiO2−xNy luminescent photocatalyst. Nanoscale Res Lett, 2011, 6:5Google Scholar
  48. 48.
    Li H, Yin S, Sato T. Novel luminescent photocatalytic deNOx activity of CaAl2O4:(Eu,Nd)/TiO2−xNy composite. Appl Catal B-Environ, 2011, 106: 586–591CrossRefGoogle Scholar
  49. 49.
    Li H, Yin S, Wang Y, et al. Effect of phase structures of TiO2−xNy on the photocatalytic activity of CaAl2O4:(Eu, Nd)-coupled TiO2−xNy. J Catal, 2012, 286: 273–278CrossRefGoogle Scholar
  50. 50.
    Li H, Yin S, Wang Y, et al. Persistent Fluorescence-assisted TiO2−xNybased photocatalyst for gaseous acetaldehyde degradation. Environ Sci Technol, 2012, 46: 7741–7745CrossRefGoogle Scholar
  51. 51.
    Li H, Yin S, Wang Y, et al. Green phosphorescence-assisted degradation of rhodamine Bdyes by Ag3PO4. J Mater Chem A, 2013, 1: 1123–1126CrossRefGoogle Scholar
  52. 52.
    Mai H X, Zhang Y W, Sun L D, et al. Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals. J Phys Chem C, 2007, 111: 13721–13729CrossRefGoogle Scholar
  53. 53.
    Li H, Yin S, Wang Y, et al. Blue fluorescence-assisted SrTi1−xCryO3 for efficient persistent photocatalysis. RSC Adv, 2012, 2: 3234–3236CrossRefGoogle Scholar
  54. 54.
    Wu X, Yin S, Dong Q, et al. UV, visible and near-infrared lights induced NOx destruction activity of (Yb,Er)-NaYF4/C-TiO2 composite. Sci Rep, 2013, 3: 2918CrossRefGoogle Scholar
  55. 55.
    Wu X, Yin S, Dong Q, et al. Blue/green/red colour emitting up-conversion phosphors coupled C-TiO2 composites with UV, visible and NIR responsive photocatalytic performance. Appl Catal B-Environ, 2014, 156–157: 257–264CrossRefGoogle Scholar
  56. 56.
    Haw C, Chiu W, Abdul Rahman S, et al. The design of new magnetic-photocatalyst nanocomposites (CoFe2O4–TiO2) as smart nanomaterials for recyclable-photocatalysis applications. New J Chem, 2016, 40: 1124–1136CrossRefGoogle Scholar
  57. 57.
    Guo C, Yin S, Zhang P, et al. Novel synthesis of homogenous CsxWO3 nanorods with excellent NIR shielding properties by a water controlled- release solvothermal process. J Mater Chem, 2010, 20: 8227CrossRefGoogle Scholar
  58. 58.
    Guo C, Yin S, Yan M, et al. Facile synthesis of homogeneous CsxWO3 nanorods with excellent low-emissivity and NIR shielding property by a water controlled-release process. J Mater Chem, 2011, 21: 5099–5105CrossRefGoogle Scholar
  59. 59.
    Guo C, Yin S, Yu H, et al. Photothermal ablation cancer therapy using homogeneous CsxWO3 nanorods with broad near-infra-red absorption. Nanoscale, 2013, 5: 6469–6478CrossRefGoogle Scholar
  60. 60.
    Guo C, Yin S, Yan M, et al. Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties. Inorg Chem, 2012, 51: 4763–4771CrossRefGoogle Scholar
  61. 61.
    Wu X, Yin S, Dong Q, et al. Photocatalytic performance and near infrared absorption property of tungsten and tungsten-carbon doped titania. Mater Tech, 2014, 29: A20–A27CrossRefGoogle Scholar
  62. 62.
    Wu X, Yin S, Xue D, et al. A CsxWO3/ZnO nanocomposite as a smart coating for photocatalytic environmental cleanup and heat insulation. Nanoscale, 2015, 7: 17048–17054CrossRefGoogle Scholar
  63. 63.
    Wu X, Wang J, Zhang G, et al. Series of MxWO3/ZnO (M=K, Rb, NH4) nanocomposites: Combination of energy saving and environmental decontamination functions. Appl Catal B-Environ, 2017, 201: 128–136CrossRefGoogle Scholar
  64. 64.
    Liu T, Liu B, Wang J, et al. Smart window coating based on F-TiO2-KxWO3 nanocomposites with heat shielding, ultraviolet isolating, hydrophilic and photocatalytic performance. Sci Rep, 2016, 6: 27373CrossRefGoogle Scholar
  65. 65.
    Takata T, Pan C, Domen K. Recent progress in oxynitride photocatalysts for visible-light-driven water splitting. Sci Tech Adv Mater, 2015, 16: 033506CrossRefGoogle Scholar
  66. 66.
    Chen S, Qi Y, Hisatomi T, et al. Efficient visible-light-driven z-scheme overall water splitting using a MgTa2O6−xNy/TaON heterostructure photocatalyst for H2 evolution. Angew Chem Int Ed, 2015, 54: 8498–8501CrossRefGoogle Scholar
  67. 67.
    Wang B, Kanhere P D, Chen Z, et al. Anion-doped NaTaO3 for visible light photocatalysis. J Phys Chem C, 2013, 117: 22518–22524CrossRefGoogle Scholar
  68. 68.
    Kato H, Ueda K, Kobayashi M, et al. Photocatalytic water oxidation under visible light by valence band controlled oxynitride solid solutions LaTaON2-SrTiO3. J Mater Chem A, 2015, 3: 11824–11829CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringTaiyuan University of TechnologyTaiyuanChina
  2. 2.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendaiJapan

Personalised recommendations