Advertisement

Science China Technological Sciences

, Volume 60, Issue 9, pp 1281–1290 | Cite as

Drag reduction via turbulent boundary layer flow control

  • Adel Abbas
  • Gabriel BugedaEmail author
  • Esteban Ferrer
  • Song Fu
  • Jacques Periaux
  • Jordi Pons-Prats
  • Eusebio Valero
  • Yao Zheng
Review
  • 247 Downloads

Abstract

Turbulent boundary layer control (TBLC) for skin-friction drag reduction is a relatively new technology made possible through the advances in computational-simulation capabilities, which have improved the understanding of the flow structures of turbulence. Advances in micro-electronic technology have enabled the fabrication of active device systems able to manipulating these structures. The combination of simulation, understanding and micro-actuation technologies offers new opportunities to significantly decrease drag, and by doing so, to increase fuel efficiency of future aircraft. The literature review that follows shows that the application of active control turbulent skin-friction drag reduction is considered of prime importance by industry, even though it is still at a low technology readiness level (TRL). This review presents the state of the art of different technologies oriented to the active and passive control for turbulent skin-friction drag reduction and contributes to the improvement of these technologies.

Keywords

turbulent boundary layer flow control drag reduction skin-friction drag reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Quadrio M, Ricco P. Critical assessment of turbulent drag reduction through spanwise wall oscillations. J Fluid Mech, 1999, 521: 251–271CrossRefzbMATHGoogle Scholar
  2. 2.
    Spalart P R, McLean J D. Drag reduction: Enticing turbulence, and then an industry. Philos Trans R Soc A-Math Phys Eng Sci, 2011, 369: 1556–1569CrossRefGoogle Scholar
  3. 3.
    Skote M, Mishra M, Wu Y. Drag reduction of a turbulent boundary layer over an oscillating wall and its variation with Reynolds number. Int J Aerospace Eng, 2015, 2015: 1–9CrossRefGoogle Scholar
  4. 4.
    Gatti D, Quadrio M. Reynolds-number dependence of turbulent skinfriction drag reduction induced by spanwise forcing. J Fluid Mech, 2016, 802: 553–582MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bernard P S, Thomas J M, Handler R A. Vortex dynamics and the production of Reynolds stress. J Fluid Mech, 1993, 253: 385–419CrossRefzbMATHGoogle Scholar
  6. 6.
    Kravchenko A G, Choi H, Moin P. On the relation of near-wall streamwise vortices to wall skin friction in turbulent boundary layers. Phys Fluids A-Fluid Dyn, 1993, 5: 3307–3309CrossRefGoogle Scholar
  7. 7.
    Kasagi N, Suzuki Y, Fukagata K. Microelectromechanical systemsbased feedback control of turbulence for skin friction reduction. Annu Rev Fluid Mech, 2009, 41: 231–251CrossRefzbMATHGoogle Scholar
  8. 8.
    Viswanath P R. Aircraft viscous drag reduction using riblets. Prog Aerospace Sci, 2002, 38: 571–600CrossRefGoogle Scholar
  9. 9.
    Walsh M J, Weinstein L M. Drag and heat-transfer characteristics of small longitudinally ribbed surfaces. AIAA J, 1979, 17: 770–771CrossRefGoogle Scholar
  10. 10.
    Bechert D W, Bruse M, Hage W, et al. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J Fluid Mech, 1997, 338: 59–87CrossRefGoogle Scholar
  11. 11.
    Gallagher J, Thomas A S W. Turbulent boundary layer characteristics over streamwise grooves. In: 2nd Applied Aerodynamics Conference. Seattle: AIAA, 1984Google Scholar
  12. 12.
    Luchini P, Manzo F, Pozzi A. Resistance of a grooved surface to parallel flow and cross-flow. J Fluid Mech, 1991, 228: 87zbMATHGoogle Scholar
  13. 13.
    García-Mayoral R, Jiménez J. Hydrodynamic stability and breakdown of the viscous regime over riblets. J Fluid Mech, 2011, 678: 317–347CrossRefzbMATHGoogle Scholar
  14. 14.
    Sasamori M, Mamori H, Iwamoto K, et al. Experimental study on drag-reduction effect due to sinusoidal riblets in turbulent channel flow. Exp Fluids, 2014, 55: 1828CrossRefGoogle Scholar
  15. 15.
    Quadrio M, Ricco P, Viotti C. Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction. J Fluid Mech, 2009, 627: 161MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Agostini L, Touber E, Leschziner M A. Spanwise oscillatory wall motion in channel flow: Drag-reduction mechanisms inferred from DNSpredicted phase-wise property variations at. J Fluid Mech, 2014, 743: 606–635CrossRefGoogle Scholar
  17. 17.
    Touber E, Leschziner M A. Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms. J Fluid Mech, 2012, 693: 150–200CrossRefzbMATHGoogle Scholar
  18. 18.
    Agostini L, Touber E, Leschziner M A. The turbulence vorticity as a window to the physics of friction-drag reduction by oscillatory wall motion. Int J Heat Fluid Flow, 2015, 51: 3–15CrossRefGoogle Scholar
  19. 19.
    Hurst E, Yang Q, Chung Y M. The effect of Reynolds number on turbulent drag reduction by streamwise travelling waves. J Fluid Mech, 2014, 759: 28–55CrossRefGoogle Scholar
  20. 20.
    Marusic I, Mathis R, Hutchins N. Predictive model for wall-bounded turbulent flow. Science, 2010, 329: 193–196MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Yudhistira I, Skote M. Direct numerical simulation of a turbulent boundary layer over an oscillating wall. J Turbul, 2011, 12: N9CrossRefGoogle Scholar
  22. 22.
    Skote M. Turbulent boundary layer flow subject to streamwise oscillation of spanwise wall-velocity. Phys Fluids, 2011, 23: 081703CrossRefGoogle Scholar
  23. 23.
    Skote M. Comparison between spatial and temporal wall oscillations in turbulent boundary layer flows. J Fluid Mech, 2013, 730: 273–294MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Skote M. Temporal and spatial transients in turbulent boundary layer flow over an oscillating wall. Int J Heat Fluid Flow, 2012, 38: 1–12CrossRefGoogle Scholar
  25. 25.
    Skote M. Scaling of the velocity profile in strongly drag reduced turbulent flows over an oscillating wall. Int J Heat Fluid Flow, 2014, 50: 352–358CrossRefGoogle Scholar
  26. 26.
    Hack M J P, Zaki T A. The influence of harmonic wall motion on transitional boundary layers. J Fluid Mech, 2014, 760: 63–94CrossRefGoogle Scholar
  27. 27.
    Negi P S, Mishra M, Skote M. DNS of a single low-speed streak subject to spanwise wall oscillations. Flow Turbul Combust, 2015, 94: 795–816CrossRefGoogle Scholar
  28. 28.
    Diez F J, Dahm W J A. Design and fabrication of unsteady electrokinetic microactuator arrays for turbulent boundary layer control. J Micromech Microeng, 2004, 14: 1307–1320CrossRefGoogle Scholar
  29. 29.
    Diez F J, Dahm W J A. Micro Electro Kinetic Actuator (MEKA) Arrays for active sublayer control of turbulent boundary layers. In: 40th AIAA Aerospace Sciences Meeting & Exhibit. Reno: AIAA, 2002Google Scholar
  30. 30.
    Rathnasingham R, Breuer K S. Active control of turbulent boundary layers. J Fluid Mech, 2003, 495: 209–233CrossRefzbMATHGoogle Scholar
  31. 31.
    Cannata M, Iuso G. Spanwise directed synthetic jets for wall turbulence control. In: 4th Flow Control Conference. Seattle, Washington: AIAA, 2008Google Scholar
  32. 32.
    Pimpin A, Suzuki Y, Kasagi N. Microelectrostrictive actuator with metal compliant electrodes for flow control applications. In: 17th IEEE Int. Conf. MEMS. Maastricht, 2004Google Scholar
  33. 33.
    Pimpin A, Suzuki Y, Kasagi N. Microelectrostrictive actuator with large out-of-plane deformation for flow-control application. J Microelectromech Syst, 2007, 16: 753–764CrossRefGoogle Scholar
  34. 34.
    Dubois P, Rosset S, Niklaus M, et al. Metal ion implanted compliant electrodes in dielectric electroactive polymer (EAP) membranes. Adv Sci Tech, 2008, 61: 18–25CrossRefGoogle Scholar
  35. 35.
    Merlen A, Brunet P, Zoueshtiagh F, et al. Microsystems for flow control and transfer: a challenge for CFD. In: Proceedings of 6th ICCHMT. Guangzhou, 2009Google Scholar
  36. 36.
    Pernod P, Preobrazhensky V, Merlen A, et al. MEMS magneto-mechanical microvalves (MMMS) for aerodynamic active flow control. J Magn Magn Mater, 2010, 322: 1642–1646CrossRefGoogle Scholar
  37. 37.
    Mane P, Mossi K, Bryant R. Pressure loading of piezo composite unimorphs. MRS Proc, 2005, 888: 0888-V01-06Google Scholar
  38. 38.
    Liang Y, Kuga Y, Taya M. Design of membrane actuator based on ferromagnetic shape memory alloy composite for synthetic jet applications. Sensor Actuat A-Phys, 2006, 125: 512–518CrossRefGoogle Scholar
  39. 39.
    Tesar V. Mechanism of pressure recovery in jet-type actuators. Sensors Actuators A-Phys, 2009, 152: 182–191CrossRefGoogle Scholar
  40. 40.
    Tesar V, Trávnícek Z, Kordík J, et al. Experimental investigation of a fluidic actuator generating hybrid-synthetic jets. Sensor Actuat A-Phys, 2007, 138: 213–220CrossRefGoogle Scholar
  41. 41.
    Lin S C, Resler E L, Kantrowitz A. Electrical conductivity of highly ionized argon produced by shock waves. J Appl Phys, 1955, 26: 95–109CrossRefGoogle Scholar
  42. 42.
    Malik M R, Weinstein L M, Hussaini M Y. Ion wind drag reduction. In: 21st Aerospace Sciences Meeting. Reno: AIAA, 1983Google Scholar
  43. 43.
    Léger L, Moreau E, Touchard G. Electrohydrodynamic airflow control along a flat plate by a DC surface corona discharge—Velocity profile and wall pressure measurements. In: 1st Flow Control Conference. St. Louis: AIAA, 2002Google Scholar
  44. 44.
    Roth J R, Sherman D M. Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma. In: 36th AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 1998Google Scholar
  45. 45.
    Benard N, Moreau E. Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control. Exp Fluids, 2014, 55: 1846CrossRefGoogle Scholar
  46. 46.
    Jukes T, Choi K S. Turbulent drag reduction by surface plasma through spanwise flow oscillation. In: 3rd AIAA Flow Control Conference. San Francisco, 2006Google Scholar
  47. 47.
    Grundmann S, Tropea C. Experimental transition delay using glowdischarge plasma actuators. Exp Fluids, 2007, 42: 653–657CrossRefGoogle Scholar
  48. 48.
    Grundmann S, Tropea C. Active cancellation of artificially introduced Tollmien-Schlichting waves using plasma actuators. Exp Fluids, 2008, 44: 795–806CrossRefGoogle Scholar
  49. 49.
    Duchmann A, Simon B, Tropea C, et al. Dielectric barrier discharge plasma actuators for in-flight transition delay. AIAA J, 2014, 52: 358–367CrossRefGoogle Scholar
  50. 50.
    Hanson R E, Bade K M, Belson B A, et al. Feedback control of slowly-varying transient growth by an array of plasma actuators. Phys Fluids, 2014, 26: 024102CrossRefGoogle Scholar
  51. 51.
    Benard N, Jolibois J, Moreau E, et al. Aerodynamic plasma actuators: A directional micro-jet device. Thin Solid Films, 2008, 516: 6660–6667CrossRefGoogle Scholar
  52. 52.
    Santhanakrishnan A, Jacob J D. Flow control with plasma synthetic jet actuators. J Phys D-Appl Phys, 2007, 40: 637–651CrossRefGoogle Scholar
  53. 53.
    Ibrahim I H, Skote M. Simulations of the linear plasma synthetic jet actuator utilizing a modified Suzen-Huang model. Phys Fluids, 2012, 24: 113602CrossRefGoogle Scholar
  54. 54.
    Ibrahim I H, Skote M. Simulating plasma actuators in a channel flow configuration by utilizing the modified Suzen-Huang model. Comput Fluids, 2014, 99: 144–155CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Adel Abbas
    • 1
  • Gabriel Bugeda
    • 2
    • 3
    Email author
  • Esteban Ferrer
    • 1
    • 4
  • Song Fu
    • 5
  • Jacques Periaux
    • 2
  • Jordi Pons-Prats
    • 2
  • Eusebio Valero
    • 1
    • 4
  • Yao Zheng
    • 6
  1. 1.School of Aeronautics, Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio de la Universidad Politécnica de Madrid (ETSIAE-UPM)Universidad Politécnica de MadridMadridSpain
  2. 2.International Center for Numerical Methods in Engineering (CIMNE)BarcelonaSpain
  3. 3.Civil and Environmental DepartmentUniversitat Politècnica de Catalunya. BarcelonaTechBarcelonaSpain
  4. 4.Centre for Computational Simulation-UPM, Scientific and Technological Park (Campus Montegancedo)Pozuelo de AlarcónSpain
  5. 5.School of Aerospace EngineeringTsinghua UniversityBeijingChina
  6. 6.School of Aeronautics and AstronauticsZhejiang UniversityHangzhouChina

Personalised recommendations