Science China Technological Sciences

, Volume 59, Issue 9, pp 1340–1345 | Cite as

Cold plasma redistribution throughout geospace

Article

Abstract

The redistribution of the electrically charged cold plasma of ionospheric origin involves the equatorial, low, mid, auroral, and polar-latitude regions in a multi-step, system-wide process linking the regions of geospace. Observations with ground and space-based instruments characterize the geospace plume-regularly occurring channels of enhanced plasma density flowing at both ionospheric and magnetospheric altitudes. Convection in the SAPS channel transports the eroded material to the noontime cusp in the ionosphere and to the dayside magnetopause at high altitudes. As the fluxes of cold plume plasma traverse the cusp and enter the polar cap, they form the polar tongue of ionization. At the cusp the plume plasma provides a rich source of heavy ions for the magnetospheric injection and acceleration via the mechanisms operative on those field lines.

Keywords

plasmasphere ionosphere geospace GPS TEC ionospheric electric field plume 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Freeman J W. Heavy ion circulation in the Earth’s magnetosphere. Geophys Res Lett, 1977, 4: 195CrossRefGoogle Scholar
  2. 2.
    Elphic R C. The fate of the outer plasmasphere. Geophys Res Lett, 1997 24, 365CrossRefGoogle Scholar
  3. 3.
    Sandel, B R, King R A, Forrester W T, et al. Initial results from the IMAGE extreme ultraviolet imager. Geophys Res Lett, 2001, 28: 1439CrossRefGoogle Scholar
  4. 4.
    Chen A J, Grebowsky J M. Plasma tail interpretations of pronounced detached plasma regions measured by OGO 5. J Geophys Res, 1974, 79: 3851–3855CrossRefGoogle Scholar
  5. 5.
    Mendillo M. A study of the relationship between geomagnetic storms and ionospheric disturbance at mid-latitudes. Planet Space Sci, 1973, 21: 349CrossRefGoogle Scholar
  6. 6.
    Foster J C. Storm-time plasma transport at middle and high latitudes. J Geophys Res, 1993, 98: 1675–1689CrossRefGoogle Scholar
  7. 7.
    Su Y J, Thomsen M F, Borovsky J E, et al. A linkage between polar patches and plasmaspheric drainage plumes. Geophys Res Lett, 2001, 28: 111–113CrossRefGoogle Scholar
  8. 8.
    Carpenter D L, Lemaire J. The plasmasphere boundary layer. Ann Geophys, 2004, 22: 4291CrossRefGoogle Scholar
  9. 9.
    Mendillo M. Storms in the ionosphere: Patterns and processes for total electron content. Rev Geophys, 2006, 44: RG4001CrossRefGoogle Scholar
  10. 10.
    Vo H B, Foster J C. A quantitative study of ionospheric density gradients at mid-latitudes. J Geophys Res, 2001, 106: 21555–1563CrossRefGoogle Scholar
  11. 11.
    Foster J C, Coster A J, Erickson P J, et al. Redistribution of the stormtime ionosphere and the formation of the plasmaspheric bulge. In: Burch J, Schultz M, eds. New Perspectives From Imaging. Washington DC: AGU Press, 2005. 277–289Google Scholar
  12. 12.
    Tsurutani B T. Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields. J Geophys Res, 2004, 109: A08302CrossRefGoogle Scholar
  13. 13.
    Chi P J, Russell C T, Foster J C, et al. Density enhancement in the plasmasphere-ionosphere plasma during the 2003 Halloween magnetic storm: Observations along the 265th meridian in North America. Geophys Res Lett, 2005, 32: L03S07CrossRefGoogle Scholar
  14. 14.
    Foster J C, Vo H B. Average characteristics and activity dependence of the subauroral polarization stream. J Geophys Res, 2002, 107, doi: 10.1029/2002JA009409Google Scholar
  15. 15.
    Goldstein J, Sandel B R. The global pattern of evolution of plasmaspheric drainage plumes. In: Burch J, Schultz M, eds. New Perspectives From Imaging. Washington DC: AGU Press, 2005. 1–22Google Scholar
  16. 16.
    Foster J C, Rich F J. Prompt midlatitude electric field effects during severe geomagnetic storms. J Geophys Res, 1978, 103: 26367CrossRefGoogle Scholar
  17. 17.
    Foster J C, Burke W J. SAPS: A new characterization for sub-auroral electric fields. EOS, 2002, 83: 393–394CrossRefGoogle Scholar
  18. 18.
    Foster J C, Erickson P J, Coster A J, et al. Ionospheric signatures of plasmaspheric tails. Geophys Res Lett, 2002, 29, doi: 10.1029/2002GL-015067Google Scholar
  19. 19.
    Foster J C, Coster A J, Erickson P J, et al. Stormtime observations of the flux of plasmaspheric ions to the dayside cusp/magnetopause. Geophys Res Lett, 2004, 31: L08809Google Scholar
  20. 20.
    Coster A J, Foster J, Erickson P. Monitoring the ionosphere with GPS: Space weather. GPS World, 2003, 14: 42–49Google Scholar
  21. 21.
    Tsyganenko N A. A model of the near magnetosphere with a dawn-dusk asymmetry: 1. Mathematical structure. J Geophys Res, 2002, 107, doi: 10.1029/2001JA00219Google Scholar
  22. 22.
    Foster J C, Rideout W. Storm enhanced density: Magnetic conjugacy effects. Ann Geophys, 2007, 25: 1791–1799CrossRefGoogle Scholar
  23. 23.
    Foster J C, Erickson P J, Coster A J, et al. Stormtime observations of plasmasphere erosion flux in the magnetosphere and ionosphere. Geophys Res Lett, 2014, 41: 762–768CrossRefGoogle Scholar
  24. 24.
    Foster J C, Coster A J, Erickson P J, et al. Multiradar observations of the polar tongue of ionization. J Geophy Res, 2005, 110: A09S31CrossRefGoogle Scholar
  25. 25.
    Walsh B M, Sibeck D G, Nishimura Y, e al. Statistical analysis of the plasmaspheric plume at the magnetopause. J Geophys Res Space Physics, 2013, 118, doi:10.1002/jgra.50458Google Scholar
  26. 26.
    Whitteker J H, Brace L H, Maier E J, et al. Snapshot of polar ionosphere. Planet Sp Sci, 1976, 24: 25–32CrossRefGoogle Scholar
  27. 27.
    Thomas E G, Baker J B H, Ruohoniemi J M, et al. Direct observations of the role of convection electric field in the formation of a polar tongue of ionization from storm enhanced density. J Geophys Res Space Physics, 2013, 118: 1180–1189CrossRefGoogle Scholar
  28. 28.
    Weber E J, Buchau J, Moore J G, et al. F layer ionization patches in the polar cap. J Geophys Res, 1984, 89: 1683CrossRefGoogle Scholar
  29. 29.
    Foster J C, Rideout W, Sandel B, et al. On the relationship of SAPS to storm enhanced density. J Atmos Space Terr Phys, 2007, 69: 303–313CrossRefGoogle Scholar
  30. 30.
    Walsh B M, Foster J C, Erickson P J, et al. Simultaneous ground and space-based observations of the plasmaspheric plume and magnetospheric reconnection. Science, 2014, 6175: 1122–1125CrossRefGoogle Scholar
  31. 31.
    Zhang Q H, Zhang B C, Lockwood M, et al. Direct observations of the evolution of polar cap ionization patches. Science, 2013, 339: 1597–1600CrossRefGoogle Scholar
  32. 32.
    Foster J C, Erickson P J, Baker D N, et al. Prompt energization of relativistic and highly relativistic electrons during substorm intervals: Van Allen Probes observations. Geophys Res Lett, 2013, 41: 20–25CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Massachusetts Institute of Technology, Haystack ObservatoryWestfordUSA

Personalised recommendations