Advertisement

Science China Technological Sciences

, Volume 59, Issue 3, pp 364–370 | Cite as

Enhancement of pacemaker induced stochastic resonance by an autapse in a scale-free neuronal network

  • Ergin Yilmaz
  • Veli Baysal
  • Matjaž Perc
  • Mahmut Ozer
Article

Abstract

An autapse is an unusual synapse that occurs between the axon and the soma of the same neuron. Mathematically, it can be described as a self-delayed feedback loop that is defined by a specific time-delay and the so-called autaptic coupling strength. Recently, the role and function of autapses within the nervous system has been studied extensively. Here, we extend the scope of theoretical research by investigating the effects of an autapse on the transmission of a weak localized pacemaker activity in a scale-free neuronal network. Our results reveal that by mediating the spiking activity of the pacemaker neuron, an autapse increases the propagation of its rhythm across the whole network, if only the autaptic time delay and the autaptic coupling strength are properly adjusted. We show that the autapse-induced enhancement of the transmission of pacemaker activity occurs only when the autaptic time delay is close to an integer multiple of the intrinsic oscillation time of the neurons that form the network. In particular, we demonstrate the emergence of multiple resonances involving the weak signal, the intrinsic oscillations, and the time scale that is dictated by the autapse. Interestingly, we also show that the enhancement of the pacemaker rhythm across the network is the strongest if the degree of the pacemaker neuron is lowest. This is because the dissipation of the localized rhythm is contained to the few directly linked neurons, and only afterwards, through the secondary neurons, it propagates further. If the pacemaker neuron has a high degree, then its rhythm is simply too weak to excite all the neighboring neurons, and propagation therefore fails.

Keywords

autapse self-delayed feedback neuron channel noise scale-free network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gammaitoni L, Hänggi P, Jung P, et al. Stochastic resonance. Rev Modern Phys, 1998, 70: 223–287CrossRefGoogle Scholar
  2. 2.
    Hänggi P. Stochastic resonance in biology. ChemPhysChem, 2002, 3: 285–290CrossRefGoogle Scholar
  3. 3.
    Wiesenfeld K, Moss F. Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature, 1995, 373: 33–36CrossRefGoogle Scholar
  4. 4.
    Longtin A. Stochastic resonance in neuron models. J Stat Phys, 1993, 70: 309–327CrossRefzbMATHGoogle Scholar
  5. 5.
    McNamara B, Wiesenfeld K. Theory of stochastic resonance. Phys Rev A, 1989, 39: 4854–4869CrossRefGoogle Scholar
  6. 6.
    Pakdaman K, Tanabe S, Shimokawa T. Coherence resonance and discharge time reliability in neurons and neuronal model. Neural Netw, 2001, 14: 895–905CrossRefGoogle Scholar
  7. 7.
    Pikovsky A S, Kurths J. Coherence resonance in a noise-driven excitable system. Phys Rev Lett, 1997, 78: 775–778MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Longtin A. Autonomous stochastic resonance in bursting neurons. Phys Rev E, 1997, 55: 868–876CrossRefGoogle Scholar
  9. 9.
    Lindner B, Schimansky-Geier L. Analytical approach to the stochastic FitzHugh-Nagumo system and coherence resonance. Phys Rev E, 1999, 60: 7270–7276CrossRefGoogle Scholar
  10. 10.
    Brunel N, Hansel D. How noise affects the synchronization properties of recurrent networks of inhibitory neurons. Neural Comput, 2006, 18: 1066–1110MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Zhou C, Kurths J. Noise-induced synchronization and coherence resonance of a Hodgkin–Huxley model of thermally sensitive neurons. Chaos, 2003, 13: 401–409CrossRefGoogle Scholar
  12. 12.
    Rulkov N F, Suschik M M, Tsimring L S, et al. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys Rev E, 1995, 51: 980–994CrossRefGoogle Scholar
  13. 13.
    Rosenblum M G, Pikovsky A S, Kurths J. Phase synchronization of chaotic oscillators. Phys Rev Lett, 1996, 76: 1804–1807CrossRefzbMATHGoogle Scholar
  14. 14.
    Huang X Y, Xu W F, Liang J M, et al. Spiral wave dynamics in neocortex. Neuron, 2010, 68: 978–990CrossRefGoogle Scholar
  15. 15.
    Huang X Y, Troy W C, Yang Q, et al. Spiral waves in disinhibited mammalian neocortex. J Neurosci, 2004, 24: 9897–9902CrossRefGoogle Scholar
  16. 16.
    Ma J, Wu Y, Ying H P, et al. Channel noise-induced phase transition of spiral wave in networks of Hodgkin-Huxley neurons. Chin Sci Bull, 2011, 56: 151–157CrossRefGoogle Scholar
  17. 17.
    Ma J, Wang C N, Jin W Y, et al. Transition from spiral wave to target wave and other coherent structures in the networks of Hodgkin–Huxley neurons. Appl Math Comput, 2010, 217: 3844–3852MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hille B. Ionic channels in nerve membranes. Prog Biophys Mol Biol, 1970, 21: 1–32CrossRefGoogle Scholar
  19. 19.
    White J A, Rubinstein J T, Kay A R. Channel noise in neurons. Trends Neurosci, 2000, 23: 131–137CrossRefGoogle Scholar
  20. 20.
    Schneidman E, Freedman B, Segev I. Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural Comput, 1998, 10: 1679–1703CrossRefGoogle Scholar
  21. 21.
    Hänggi P, Schmid G, Goychuk I. Excitable membranes: Channel noise, synchronization and stochastic resonance. Adv Solid State Phys, 2002, 42: 359–370CrossRefzbMATHGoogle Scholar
  22. 22.
    Ozer M, Perc M, Uzuntarla M. Stochastic resonance on Newman–Watts networks of Hodgkin–Huxley neurons with local periodic driving. Phys Lett A, 2009, 373: 964–968CrossRefzbMATHGoogle Scholar
  23. 23.
    Ozer M, Perc M, Uzuntarla M, et al. Weak signal propagation through noisy feedforward neuronal Networks. Neuroreport, 2010, 21: 338–343CrossRefGoogle Scholar
  24. 24.
    Ozer M, Perc M, Uzuntarla M. Controlling The spontaneous spiking regularity via channel blocking on newman-watts networks of hodgkin-huxley neurons. Euro Phys Lett, 2009, 86: 40008CrossRefzbMATHGoogle Scholar
  25. 25.
    Ozer M, Uzuntarla M, Perc M, et al. Spike latency and jitter of neuronal membrane patches with stochastic hodgkin-huxley channels. J Theor Biol, 2009, 261:83–92CrossRefGoogle Scholar
  26. 26.
    Yilmaz E, Ozer M. Collective firing regularity of a scale-free Hodgkin–Huxley neuronal network in response to a subthreshold signal. Phys Lett A, 2013, 377: 1301–1307MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Yilmaz E, Baysal V, Ozer M. Enhancement of temporal coherence via time-periodic coupling strength in a scale-free network of stochastic Hodgkin-Huxley neuron. Phys Lett A, 2015, 379: 1594–1599CrossRefGoogle Scholar
  28. 28.
    Sun X J, Shi X. Effects of channel blocks on the spiking regularity in clustered neuronal networks. Sci China Tech Sci, 2014, 57: 879–884CrossRefGoogle Scholar
  29. 29.
    Van der Loos H, Glaser E M. Autapses in neocortex cerebri: synapses between a pyramidal cell’s axon and its own dendrites. Brain Res, 1972, 48: 355–360CrossRefGoogle Scholar
  30. 30.
    Herrmann C S, Klaus A. Autapse turns neuron into oscillator. Int J Bifurcat Chaos, 2004, 14: 623–633MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Park M R, Lighthall J W, Kitai S T. Recurrent inhibition in the rat neostriatum. Brain Res, 1980, 194: 359–369CrossRefGoogle Scholar
  32. 32.
    Preston R J, Bishop G A, Kitai S T. Medium spiny neuron projection from the rat striatum: An intracellular horseradish peroxidase study. Brain Res, 1980, 183: 253–263CrossRefGoogle Scholar
  33. 33.
    Karabelas A B, Purpura D P. Evidence for autapses in the substantia nigra. Brain Res, 1980, 200: 467–473CrossRefGoogle Scholar
  34. 34.
    Tamás G, Buhl E H, Somogyi P. Massive autaptic self-innervation of GABAergic neurons in cat visual cortex. J Neurosci, 1997, 17: 6352–6364Google Scholar
  35. 35.
    Lübke J, Markram H, Frotscher M, et al. Frequency and dendritic distribution of autapses established by layer 5 pyramidal neurons in the developing rat neocortex: Comparison with synaptic innervation of adjacent neurons of the same class. J Neurosci, 1996, 16: 3209–3218Google Scholar
  36. 36.
    Bacci A, Huguenard J R, Prince D A. Functional autaptic neurotransmission in fast-spiking interneurons: a novel form of feedback inhibition in the neocortex. J Neurosci, 2003, 23: 859–866Google Scholar
  37. 37.
    Süel G M, García-Ojalvo J, Liberman L M, et al. An excitable gene regulatory circuit induces transient cellular differentiation. Nature, 2006, 440: 545–550CrossRefGoogle Scholar
  38. 38.
    Cabrera J L, Milton J G. On-off intermittency in a human balancing task. Phys Rev Lett, 2002, 89: 158702CrossRefGoogle Scholar
  39. 39.
    Beta C, Bertram M, Mikhailov A S, et al. Controlling turbulence in a surface chemical reaction by time-delay autosynchronization. Phys Rev E, 2003, 67: 046224CrossRefGoogle Scholar
  40. 40.
    Sethia G C, Kurths J, Sen A. Coherence resonance in an excitable system with time delay. Phys Lett A, 2007, 364: 227–230CrossRefGoogle Scholar
  41. 41.
    Bacci A, Huguenard J R. Enhancement of spike-timing precision by autaptic transmission in neocortical inhibitory interneurons. Neuron, 2006, 49: 119–130CrossRefGoogle Scholar
  42. 42.
    Li Y, Schmid G, Hänggi P, et al. Spontaneous spiking in an autaptic Hodgkin-Huxley setup. Phys Rev E, 2010, 82: 061907MathSciNetCrossRefGoogle Scholar
  43. 43.
    Connelly W M. Autaptic connections and synaptic depression constrain and promote gamma oscillations. PLoS One, 2014, 9: e89995CrossRefGoogle Scholar
  44. 44.
    Wang H, Ma J, Chen Y, et al. Effect of an autapse on the firing pattern transition in a bursting neuron. Commun Nonlinear Sci Numer Simulat, 2014, 19: 3242–3254MathSciNetCrossRefGoogle Scholar
  45. 45.
    Wang H, Sun Y, Li Y, et al. Influence of autapse on mode-locking structure of a Hodgkin-Huxley neuron under sinusoidal stimulus. J Theor Biol, 2014, 358: 25–30MathSciNetCrossRefGoogle Scholar
  46. 46.
    Liu H, Chapman E R, Dean C. “Self” versus “non-self” connectivity dictates properties of synaptic transmission and plasticity. PLoS One, 2013, 8: e62414CrossRefGoogle Scholar
  47. 47.
    Qin H X, Ma J, Wang C N, et al. Autapse-induced target wave, spiral wave in regular network of neurons. Sci China-Phys Mech Astron, 2014, 57: 1918–1926CrossRefGoogle Scholar
  48. 48.
    Ma J, Song X, Tang J, et al. Wave emitting and propagation induced by autapse in a forward feedback neuronal network. Neurocomputing, 2015, 167: 378–389CrossRefGoogle Scholar
  49. 49.
    Ma J, Song X, Jin W, et al. Autapse-induced synchronization in a coupled neuronal Network. Chaos Soliton Fract, 2015, 80: 31–38MathSciNetCrossRefGoogle Scholar
  50. 50.
    Yilmaz E, Ozer M. Delayed feedback and detection of weak periodic signals in a stochastic Hodgkin–Huxley neuron. Physica A, 2015, 421: 455–462CrossRefGoogle Scholar
  51. 51.
    Katz A M. Physiology of the Heart. Philadelphia: Kluwer, 2000Google Scholar
  52. 52.
    Perc M. Stochastic resonance on excitable small-world networks via a pacemaker. Phys Rev E, 2007, 76: 066203CrossRefGoogle Scholar
  53. 53.
    Perc M, Marhl M. Pacemaker enhanced noise-induced synchrony in cellular arrays. Phys Lett A, 2006, 353: 372–377CrossRefGoogle Scholar
  54. 54.
    Gan C B, Perc M, Wang Q Y. Delay-aided stochastic multi resonances on scale-free FitzHugh–Nagumo neuronal networks. Chin Phys B, 2010, 19: 040508CrossRefGoogle Scholar
  55. 55.
    Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol, 1952, 117: 500–544CrossRefGoogle Scholar
  56. 56.
    Fox R F. Stochastic versions of the Hodgkin-Huxley equations. Biophys J, 1997, 72: 2068–2074CrossRefGoogle Scholar
  57. 57.
    Barabasi A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286: 509–512MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Yu H, Wang J, Sun J, et al. Effects of hybrid synapses on the vibrational resonance in small-world neuronal networks. Chaos, 2012, 22: 033105MathSciNetCrossRefGoogle Scholar
  59. 59.
    Yilmaz E, Uzuntarla M, Ozer M, et al. Stochastic resonance in hybrid scale-free neuronal networks. Physica A, 2013, 392: 5735–5741MathSciNetCrossRefGoogle Scholar
  60. 60.
    Yu Y, Wang W, Wang J F, et al. Resonance-enhanced signal detection and transduction in the Hodgkin-Huxley neuronal systems. Phys Rev E, 2001; 63: 021907CrossRefGoogle Scholar
  61. 61.
    Qin H X, Ma J, Jin W Y, et al. Dynamics of electric activities in neuron and neurons of network induced by autapses. Sci China Tech Sci, 2014, 57: 936–946.CrossRefGoogle Scholar
  62. 62.
    Song X L, Wang C N, Ma J, et al. Transition of electric activity of neurons induced by chemical and electric autapses. Sci China Tech Sci, 2015, 58: 1007–1014CrossRefGoogle Scholar
  63. 63.
    Yilmaz E, Baysal V, Ozer M, et al. Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks. Physica A, 2016, 444: 538–546MathSciNetCrossRefGoogle Scholar
  64. 64.
    Li X, Wang J, Hu W. Effects of chemical synapses on the enhancement of signal. Phys Rev E, 2007, 76: 041902MathSciNetCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ergin Yilmaz
    • 1
  • Veli Baysal
    • 1
  • Matjaž Perc
    • 2
    • 3
  • Mahmut Ozer
    • 4
  1. 1.Department of Biomedical Engineering, Engineering FacultyBülent Ecevit UniversityZonguldakTurkey
  2. 2.Department of Physics, Faculty of SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.Faculty of Natural Sciences and MathematicsUniversity of MariborMariborSlovenia
  4. 4.Department of Electrical and Electronics Engineering, Engineering FacultyBülent Ecevit UniversityZonguldakTurkey

Personalised recommendations