Science China Technological Sciences

, Volume 57, Issue 5, pp 998–1009 | Cite as

Climatology of global gravity wave activity and dissipation revealed by SABER/TIMED temperature observations

  • Jing Shuai
  • ShaoDong ZhangEmail author
  • ChunMing Huang
  • Fan YI
  • KaiMing Huang
  • Quan Gan
  • Yun Gong


Gravity wave activity and dissipation in the height range from the low stratosphere to the low thermosphere (25–115 km) covering latitudes between 50°S and 50°N are statistically studied by using 9-year (January 22, 2002–December 31, 2010) SABER/TIMED temperature data. We propose a method to extract realistic gravity wave fluctuations from the temperature profiles and treat square temperature fluctuations as GW activity. Overall, the gravity wave activity generally increases with height. Near the equator (0°–10°), the gravity wave activity shows a quasi-biennial variation in the stratosphere (below 40 km) while from 20° to 30°, it exhibits an annual variation below 40 km; in low latitudes (0°–30°) between the upper stratosphere and the low thermosphere (40–115 km), the gravity wave activity shows a semi-annual variation. In middle latitudes (40°–50°), the gravity wave activity has a clear annual variation below 85 km. In addition, we observe a four-monthly variation with peaks occurring usually in April, August, December in the northern hemisphere and in February, June, October in the southern hemisphere, respectively, above 85 km in middle latitudes, which has been seldom reported in gravity wave activity. In order to study the dissipation of gravity wave propagation, we calculate the gravity wave dissipation ratio, which is defined as the ratio of the gravity wave growth scale height to the atmosphere density scale height. The height variation of the dissipation ratio indicates that strong gravity wave dissipation mainly concentrates in the three height regions: the stratosphere (30–60 km), the mesopause (around 85 km) and the low thermosphere (above 100 km). Besides, gravity wave energy enhancement can be also observed in the background atmosphere.


gravity wave dissipation climatology middle and high atmosphere TIMED/SABER 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fritts D C, Alexander M J. Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys, 2003, 41: 1003–1063CrossRefGoogle Scholar
  2. 2.
    Nicolls M J, Varney R H, Vadas S L, et al. Influence of an inertia-gravity wave on mesospheric dynamics: A case study with the Poker Flat Incoherent Scatter Radar. J Geophys Res, 2010, 115: D00N02Google Scholar
  3. 3.
    Holton J R. The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere. J Atmos Sci, 1982, 39: 791–799CrossRefGoogle Scholar
  4. 4.
    Holton J R. The influence of gravity wave breaking on the general circulation of the middle atmosphere. J Atmos Sci, 1983, 40: 2497–2507CrossRefGoogle Scholar
  5. 5.
    Garcia R R, Solomon S. The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere. J Geophys Res, 1985, 90: 3850–3868CrossRefGoogle Scholar
  6. 6.
    Alexander M J. Interpretations of observed climatological patterns in stratospheric gravity wave variation. J Geophys Res, 1998, 103: 8627–8640CrossRefGoogle Scholar
  7. 7.
    Wu S P, Yi F. A numerical simulation of nonlinear propagation of gravity wave packet in three-dimension compressible atmosphere. Sci ChinaTech Sci, 2002, 45: 306–313CrossRefGoogle Scholar
  8. 8.
    Yue X C, Yi F. Propagation of gravity wave packet near critical level. Sci China Ser E: Tech Sci, 2005, 48: 538–555CrossRefzbMATHGoogle Scholar
  9. 9.
    Liu X, Zhou Q H, Yuan W, et al. Influences of non-isothermal atmospheric backgrounds on variations of gravity wave parameters. Sci China Tech Sci, 2012, 55: 1251–1257CrossRefGoogle Scholar
  10. 10.
    Vincent R A, Alexander M J. Gravity waves in the tropical lower stratosphere: An observational study of seasonal and interannual variability. J Geophys Res, 2000, 105: 17971–17982CrossRefGoogle Scholar
  11. 11.
    Wu Y F, Xu J Y. Anisotropy of the horizontal velocity fluctuation field in the large wavenumber region. Sci China Earth Sci, 2003, 46: 210–216CrossRefzbMATHGoogle Scholar
  12. 12.
    Zhang S D, Yi F. A statistical study of gravity waves from radiosonde observations at Wuhan (30° N, 114° E) China. Ann Geophys, 2005, 23: 665–673CrossRefGoogle Scholar
  13. 13.
    Yamashita C, Chu X Z, Liu H L, et al. Stratospheric gravity wave characteristics and seasonal variations observed by lidar at the South Pole and Rothera, Antarctica. J Geophys Res, 2009, 114: D12101CrossRefGoogle Scholar
  14. 14.
    Yuan W, Xu J Y, W Y F, et al. Statistics of gravity wave spectra in the troposphere and lower stratosphere over Beijing. Sci China Earth Sci, 2010, 53: 141–149CrossRefGoogle Scholar
  15. 15.
    Dunkerton T J. The role of gravity waves in the quasi-biennial oscillations. J Geophys Res, 1997, 102: 26053–26076CrossRefGoogle Scholar
  16. 16.
    John S R, Kumar K K. TIMED/SABER observations of global gravity wave climatology and their interannual variability from stratosphere to mesosphere lower thermosphere. Clim Dyn, 2012, 39: 1489–1505CrossRefGoogle Scholar
  17. 17.
    Antonita T M, Ramkumar G, Kumar K K, et al. Meteor wind radar observations of gravity wave momentum fluxes and their forcing toward the Mesospheric Semiannual Oscillation. J Geophys Res, 2008, 113: D10115CrossRefGoogle Scholar
  18. 18.
    Li T, Leblanc T, McDermid I S, et al. Seasonal and interannual variability of gravity wave activity revealed by long-term lidar observations over Mauna Loa Observatory, Hawaii. J Geophys Res, 2010, 115: D13103CrossRefGoogle Scholar
  19. 19.
    Yang G T, Clemesha B, Batista P, et al. Seasonal variations of gravity wave activity and spectra derived from sodium temperature lidar. J Geophys Res, 2010, 115: D18104CrossRefGoogle Scholar
  20. 20.
    Gardner C S, Liu A Z. Seasonal variations of the vertical fluxes of heat and horizontal momentum in the mesopause region at Starfire Optical Range, New Mexico. J Geophys Res, 2007, 112: D09113Google Scholar
  21. 21.
    Fetzer E J, Gille J C. Gravity wave variation in LIMS temperatures. Part I: Variability and comparison with background winds. J Atmos Sci, 1994, 51: 2461–2483CrossRefGoogle Scholar
  22. 22.
    Fetzer E J, Gille J C. Gravity wave variation in LIMS temperatures. part II: Comparison with the zonal-mean momentum balance. J Atmos Sci, 1995, 53, 398–410CrossRefGoogle Scholar
  23. 23.
    Preusse P, Schaeler B, Bacmeister J T, et al. Evidence for gravity waves in CRISTA temperatures. Adv Space Res, 1999, 24: 1601–1604CrossRefGoogle Scholar
  24. 24.
    Preusse P, Dornbrack A, Eckermann S D, et al. Space-based measurements of stratospheric mountain waves by CRISTA 1. Sensitivity, analysis method, and a case study. J Geophys Res, 2002, 107: 8178–8201CrossRefGoogle Scholar
  25. 25.
    Alexander M J, Gille J, Cavanaugh C, et al. Global estimates of gravity wave momentum flux from High Resolution Dynamics Limb Sounder observations. J Geophys Res, 2008, 113: D15S18Google Scholar
  26. 26.
    Wang L, Alexander M J. Global estimates of gravity wave parameters from GPS radio occultation temperature data. J Geophys Res, 2010, 115: D21122CrossRefGoogle Scholar
  27. 27.
    Ern M, Preusse P, Gille J C, et al. Implications for atmospheric dynamics derived from global observations of gravity wave momentum flux in stratosphere and mesosphere. J Geophys Res, 2011, 116: D19107CrossRefGoogle Scholar
  28. 28.
    Eckermann S D, Preusse P. Global measurements of stratospheric mountain waves from space. Science, 1999, 286: 1534–1537CrossRefGoogle Scholar
  29. 29.
    Wu D L. Horizontal wavenumber spectra of MLS radiance fluctuations. J Atmos Sol Terr Phys, 2001, 63: 1465–1477CrossRefGoogle Scholar
  30. 30.
    Preusse P, Ern M, Eckermann S D, et al. Tropopause to mesopause gravity waves in August: Measurement and modeling. J Atmos Sol Terr Phys, 2006, 68: 1730–1751CrossRefGoogle Scholar
  31. 31.
    Russell III J M, Mlynczak M G, Gordley L L, et al. An overview of the SABER experiment and preliminary calibration results. Proc SPIE Int Soc Opt Eng, 1999, 3756: 277–288Google Scholar
  32. 32.
    García C M, López P M, Marshall B T, et al. Errors in Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) kinetic temperature caused by non-local-thermodynamic-equilibrium model parameters. J Geophys Res, 2008, 113: D24106CrossRefGoogle Scholar
  33. 33.
    Mertens C J, Schmidlin F J, Goldberg R A, et al. SABER observations of mesospheric temperatures and comparisons with falling sphere measurements taken during the 2002 summer MaCWAVE campaign. Geophys Res Lett, 2004, 31: L03105CrossRefGoogle Scholar
  34. 34.
    Preusse P, Eckermam S D, Oberheide J, et al. Modulation of gravity waves by tides as seen in CRISTA temperatures. Adv Space Res, 2001, 27: 1773–1778CrossRefGoogle Scholar
  35. 35.
    Eckermann S D, Hirota I, Hocking W K. Gravity wave and equatorial wave morphology of the stratosphere derived from long-term rocket soundings. Q J R Meteorol Soc, 1994, 121: 149–186CrossRefGoogle Scholar
  36. 36.
    Tsuda T, Nishida M. A Global Morphology of gravity wave Activity in the Stratosphere Revealed by the GPS Occultation Data (GPS/MET). J Geophys Res, 2000, 105: 7257–7273CrossRefGoogle Scholar
  37. 37.
    Deepa V, Ramkumar G, Murthy B V K. Gravity waves observed from the Equatorial Wave Studies (EWS) campaign during 1999 and 2000 and their role in the generation of stratospheric semiannual oscillations. Ann Geophys, 2006, 24: 2481–2491CrossRefGoogle Scholar
  38. 38.
    Zhang S D, Yi F. A numerical study of propagation characteristics of gravity wave packets propagating in a dissipative atmosphere. Ann Geophys, 2002, 107: 675–691Google Scholar
  39. 39.
    Vadas S L, Fritts D C. Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity. J Geophys Res, 2005, 110: D15103CrossRefGoogle Scholar
  40. 40.
    Choi H J, Chun H Y, Gong J, et al. Comparison of gravity wave temperature variations from ray-based spectral parameterization of convective gravity wave drag with AIRS observations. J Geophys Res, 2011, 117: D05115Google Scholar
  41. 41.
    Offermann D, Wintel J, Kalicinsky C, et al. Long-term development of short-period gravity waves in middle Europe. J Geophys Res, 2011, 116: D00P07Google Scholar
  42. 42.
    Naoe H, Shibata K. Equatorial quasi-biennial oscillation influence on northern winter extratropical circulation. J Geophys Res, 2010, 115: D19102CrossRefGoogle Scholar
  43. 43.
    Tegtmeier S, Fioletov V E, Shepherd T G. Seasonal persistence of ozone and zonal wind anomalies in the equatorial stratosphere. J Geophys Res, 2010, 115: D18118CrossRefGoogle Scholar
  44. 44.
    Rao N V, Tsuda T, Kawatani Y. A remarkable correlation between short period gravity waves and semiannual oscillation of the zonal wind in the equatorial mesopause region. Ann Geophys, 2012, 30: 703–710CrossRefGoogle Scholar
  45. 45.
    Krebsbach M, Preusse P. Spectral analysis of gravity wave activity in SABER temperature data. Geophys Res Lett, 2007, 34: L03814CrossRefGoogle Scholar
  46. 46.
    Swinbank R, O’Neill A. Quasi-biennial and semi-annual oscillations in equatorial wind fields constructed by data assimilation. Geophys Res Lett, 1994, 21: 2099–2102CrossRefGoogle Scholar
  47. 47.
    Burrage M D, Vincent R A, Mayr, H G, et al. Long-term variability in the equatorial middle atmosphere zonal wind. J Geophys Res, 1996, 101: 12847–12854CrossRefGoogle Scholar
  48. 48.
    Offermann D, Jarisch M, Schmidt H, et al. The “wave turbopause”. J Atmos Sol Terr Phys, 2007, 69: 2139–2158CrossRefGoogle Scholar
  49. 49.
    Fischer P, Tung K K. A reexamination of the QBO period modulation by the solar cycle. 2008, J Geophys Res, 113: D07114Google Scholar
  50. 50.
    Xue X H, Liu H L, Dou X K. Parameterization of the inertial gravity waves and generation of the quasi-biennial oscillation. J Geophys Res, 2012, 117: D06103Google Scholar
  51. 51.
    Nissen K M, Braesicke P, Langematz U. QBO, SAO, and tropical waves in the Berlin TSM GCM: Sensitivity to radiation, vertical resolution, and convection. J Geophys Res, 2000, 105: 24771–24790CrossRefGoogle Scholar
  52. 52.
    Li T, Liu A Z, Lu X, et al. Meteor-radar observed mesospheric semi-annual oscillation (SAO) and quasi-biennial oscillation (QBO) over Maui, Hawaii. J Geophys Res, 2012, 117: D05130Google Scholar
  53. 53.
    Battaner E, Molina A. Turbopause Internal gravity waves, 557.7 nm Airglow, and Eddy Diffusion Coefficient. J Geophys Res, 1980, 85: 6803–6810CrossRefGoogle Scholar
  54. 54.
    Hall C M, Meek C E, Manson A H, et al. Turbopause determination, climatology, and climatic trends using medium frequency radars at 52° N and 70° N. J Geophys Res, 2008, 113: D1310CrossRefGoogle Scholar
  55. 55.
    Vandepeer B G W, Hocking W K. A comparison of Doppler and spaced antenna radar techniques for the measurement of turbulent energy dissipation ratios. Geophys Res Lett, 1993, 20: 17–20CrossRefGoogle Scholar
  56. 56.
    Fukao S, Yamanaka M D, Ao N, et al. Seasonal variability of vertical eddy diffusivity in the middle atmosphere: 1. Three-year observations by the middle and upper atmosphere radar. J Geophys Res, 1994, 99: 18973–18987CrossRefGoogle Scholar
  57. 57.
    Danilov A D, Kalgin U A. Eddy diffusion studies in the lower thermosphere. Adv Space Res, 1996, 17: 17–24CrossRefGoogle Scholar
  58. 58.
    Liu H L, Roble R G, Taylor M J, et al. Mesospheric planetary waves at northern hemisphere fall equinox. Geophys Res Lett, 2001, 28: 1903–1906CrossRefGoogle Scholar
  59. 59.
    Forbes J M, Zhang X, Ward W, et al. Climatological features of mesosphere and lower thermosphere stationary planetary waves within ±40° latitude. J Geophys Res, 2002, 107: 4322–433CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jing Shuai
    • 1
    • 2
    • 3
  • ShaoDong Zhang
    • 1
    • 2
    • 3
    Email author
  • ChunMing Huang
    • 1
    • 2
    • 3
  • Fan YI
    • 1
    • 2
    • 3
  • KaiMing Huang
    • 1
    • 2
    • 3
  • Quan Gan
    • 1
    • 2
    • 3
  • Yun Gong
    • 1
    • 2
    • 3
  1. 1.Electronic Information SchoolWuhan UniversityWuhanChina
  2. 2.Key Laboratory of Geospace Environment and GeodesyMinistry of EducationWuhanChina
  3. 3.State Observatory for Atmospheric Remote SensingWuhanChina

Personalised recommendations