Science China Technological Sciences

, Volume 57, Issue 4, pp 652–662 | Cite as

Cold-temperature deformation of nano-sized tungsten and niobium as revealed by in-situ nano-mechanical experiments

  • Seok-Woo Lee
  • YinTong Cheng
  • Ill Ryu
  • Julia R. Greer
Article Special Topic: Mechanical Behaviour of Micro- and Nano-Scale Materials

Abstract

We constructed and developed an in-situ cryogenic nanomechanical system to study small-scale mechanical behavior of materials at low temperatures. Uniaxial compression of two body-centered-cubic (bcc) metals, Nb and W, with diameters between 400 and 1300 nm, was studied at room temperature and at 165 K. Experiments were conducted inside of a Scanning Electron Microscope (SEM) equipped with a nanomechanical module, with simultaneous cooling of sample and diamond tip. Stress-strain data at 165 K exhibited higher yield strengths and more extensive strain bursts on average, as compared to those at 298 K. We discuss these differences in the framework of nano-sized plasticity and intrinsic lattice resistance. Dislocation dynamics simulations with surface-controlled dislocation multiplication were used to gain insight into size and temperature effects on deformation of nano-sized bcc metals.

Keywords

dislocation plasticity metal nanopillar cryogenics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nix W D, Greer J R, Feng G, et al. Deformation at the nanometer and micrometer length scales: Effects of strain gradients and dislocation starvation. Thin Solid Films, 2007, 515: 3152–3157CrossRefGoogle Scholar
  2. 2.
    Uchic M D, Shade P A, Dimiduk D M. Plasticity of micrometer-scale single crystals in compression. Annu Rev Mater Res, 2009, 39: 361–386CrossRefGoogle Scholar
  3. 3.
    Kraft O, Gruber P A, Mönig R, et al. Plasticity in confined dimensions. Annu Rev Mater Res, 2010, 40: 293–317CrossRefGoogle Scholar
  4. 4.
    Zhu T, Li J. Ultra-strength materials. Prog Mater Sci, 2010, 55: 710–757CrossRefGoogle Scholar
  5. 5.
    Greer J R, De Hossen J T M. Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog Mater Sci, 2011, 56: 654–724CrossRefGoogle Scholar
  6. 6.
    Uchic M D, Dimiduk M D, Florando J N, et al. Sample dimensions influence strength and crystal plasticity. Science, 2004, 305: 986–989CrossRefGoogle Scholar
  7. 7.
    Greer J R, Oliver W C, Nix W D. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater, 2005, 53: 1821–1830CrossRefGoogle Scholar
  8. 8.
    Volkert C A, Lilleodden E T. Size effects in the deformation of sub-micron Au columns. Phil Mag, 2006, 86: 5567–5579CrossRefGoogle Scholar
  9. 9.
    Kim J Y, Jang D, Greer J R. Insight into the deformation behavior of niobium single crystals under uniaxial compression and tension at the nanoscale. Scripta Mater, 2009, 61: 300–303CrossRefGoogle Scholar
  10. 10.
    Jang D, Greer J R. Transition from a strong-yet-brittle to a stronger- and-ductile state by size reduction of metallic glasses. Nature Mater, 2010, 9: 215–219Google Scholar
  11. 11.
    Jang D, Li X, Gao H, et al. Deformation mechanisms nanotwinned metal nanopillars. Nature Nanotech, 2012, 7: 594–601CrossRefGoogle Scholar
  12. 12.
    Richter G, Hillerich K, Gianola D S, et al. Ultra high strength single crystalline nanowhisker grown by physical vapor deposition. Nano Lett, 2009, 9: 3048–3052CrossRefGoogle Scholar
  13. 13.
    Mompiou F, Legros M, Sedlmayr A, et al. Source based strengthening of sub-micrometer Al fibers. Acta Mater, 2012, 60: 977–983CrossRefGoogle Scholar
  14. 14.
    Chisholm C, Bei H, Lowry M B, et al. Dislocation starvation and exhaustion hardening in Mo alloy nanofibers. Acta Materialia, 2012, 60: 2258–2264CrossRefGoogle Scholar
  15. 15.
    Kumar S, Li X, Haque A, et al. Is stress concentration relevant for nanocrystalline metals? Nano Lett, 2011, 11: 2510–2516CrossRefGoogle Scholar
  16. 16.
    Kang W, Saif M T A. In situ study of size and temperature dependent brittle-to-ductile transition in single crystal silicon. Adv Func Mater, 2013, 23: 713–719CrossRefGoogle Scholar
  17. 17.
    Yilmaz M, Kysar J W. Monolithic integration of nanoscale tensile specimens and MEMS structures. Nanotechnology, 2013, 24: 165502CrossRefGoogle Scholar
  18. 18.
    Azevedo R G, Jones D G, Jog A V, et al. A SiC MEMS resonant strain sensor for harsh environment applications. IEEE Sensors J, 2007, 7: 568–576CrossRefGoogle Scholar
  19. 19.
    Myers D R, Chen L, Wijesundara M B J, et al. Silicon carbide resonant tuning fork for microsensing applications in high-temperature and high G-shock environments. J Micro/Nanolith MEMS MOEMS, 2009, 8: 021116CrossRefGoogle Scholar
  20. 20.
    Zamkotsizn F, Grassi E, Waldis S, et al. Interferometric characterization of MOEMS devices in cryogenic environment for astromonical instrumentation. In: Proc SPIE 6884, Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS VII, 68840D, San Jose, 2008, http://dx.doi,org/10.1117/12.768410 Google Scholar
  21. 21.
    Trenkel, J C, Packard C E, Schuh C A. Hot nanoindentation in inert environments. Rev Sci Instrum, 2010, 81: 073901CrossRefGoogle Scholar
  22. 22.
    Juan S J, Nó M L, Schuh C A. Themomechanical behavior at the nanoscale and size effects in shape memory alloys. J Mater Res, 2011, 26: 2461–2469CrossRefGoogle Scholar
  23. 23.
    Schuh C A, Mason J K, Lund A C. Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nature Mater, 2005, 4: 617–621CrossRefGoogle Scholar
  24. 24.
    Franke O, Trenkle J, Schuh C A. Temperature dependence of the indentation size effect. J Mater Res, 2010, 25: 1225–1229CrossRefGoogle Scholar
  25. 25.
    Namazu T, Isono Y. High-cycle fatigue test of nanoscale Si and SiO2 wires based on AFM technique. In: Micro Electro Mechanical Systems IEEE, Kyoto, 2003. 662–665, http://dx.doi.org/10.1109/MEMSYS.2003.1189836 Google Scholar
  26. 26.
    Greer J R, Kim K Y, Burek M J. In-situe mechanical testing of nano-scale single crystalline nano-pillars. Jom, 2009, 61: 19–25CrossRefGoogle Scholar
  27. 27.
    Lee S W, Meza L R, Greer J R. Cryogenic nanoindentation size effect in [0 0 1]-oriented face-centered cubic and body-centered cubic single crystals. App Phy Lett, 2013, 103: 101906CrossRefGoogle Scholar
  28. 28.
    Lowry M B, Kiener D, LeBlanc M M, et al. Achieving the ideal strength in annealed molybdenum nanopillars. Acta Mater, 2010, 58: 5160–5167CrossRefGoogle Scholar
  29. 29.
    Hirth J P, Lothe J. Theory of Dislocations. 2nd ed. New York: McGraw-Hill, 1982. 559–569Google Scholar
  30. 30.
    Lee S W, Han S M, Nix W D. Uniaxial compression of fcc Au nanopillars on an MgO substrate: The effects of prestraining and annealing. Acta Mater, 2009, 57: 4404–4415CrossRefGoogle Scholar
  31. 31.
    Kim J Y, Jang D, Greer J R. Tensile and compressive behavior of tungsten, molybdenum, tantalum, and niobium at the nanoscale. Acta Mater, 2010, 58: 2355–2363CrossRefGoogle Scholar
  32. 32.
    Nemat-Nasser S, Guo W. Flow stress of commercially pure niobium over a broad range of temperatures and strain rates. Mater Sci Eng A, 2000, 294: 202–210CrossRefGoogle Scholar
  33. 33.
    Schneider A S, Kaufmann D, Clark B G, et al. Correlation between critical temperature and strength of small-scale bcc pillars. Phys Rev Lett, 2009, 103: 105501CrossRefGoogle Scholar
  34. 34.
    Schneider A S, Frick C P, Arzt E, et al. Influence of test temperature on the size effect in molybdenum small-scale compression pillars. Phil Mag Lett, 2013, 93: 331–338CrossRefGoogle Scholar
  35. 35.
    Lee S W, Nix W D. Size dependence of the yield strength of fcc and bcc metallic micropillars with diameters of a few micrometers. Phil Mag, 2012, 92: 1238–1260CrossRefGoogle Scholar
  36. 36.
    Parthasarathy T A, Rao S I, Dimiduk D M, et al. Contribution to size effect of yield strength from the stochastic of dislocation source lengths in finite samples. Scripta Mater, 2007, 56: 313–316CrossRefGoogle Scholar
  37. 37.
    Ng K S, Ngan A H N. Breakdown in Schmid’s law in micropillars. Scripta Mater, 2008, 59: 796–799CrossRefGoogle Scholar
  38. 38.
    Suzuki T, Koizuiv H, Kirchner H K. Plastic flow stress of b.c.c. transition metals and the Peierls potential. Acta Metall Mater, 1995, 43: 177–2187CrossRefGoogle Scholar
  39. 39.
    Raffo P L. Yielding and fracture of tungsten and tungsten-rhenium alloys. J Less Comm Met, 1969, 17: 133–149CrossRefGoogle Scholar
  40. 40.
    Cheng G M, Jian W W, Xu W Z, et al. Grain size effect on deformation mechanism of nanocrystalline BCC metals. Mater Res Lett, 2013, 1: 26–31CrossRefGoogle Scholar
  41. 41.
    Weinberger C R, Cai W. Surface-controlled dislocation multiplication in metal micropillars. PNAS, 2008, 105: 14304–14307CrossRefGoogle Scholar
  42. 42.
    Greer J R, Weinberger C R, Cai W. Comparing the strength of f.c.c. and b.c.c. sub-micrometer pillars: Compression experiments and dislocation dynamics simulations. Mater Sci Eng A, 2008, 493: 21–25CrossRefGoogle Scholar
  43. 43.
    Ryu I, Nix W D, Cai W. Plasticity of bcc micropillars controlled by competition between dislocation multiplication and depletion. Acta Mater, 2013, 61: 3233–3241CrossRefGoogle Scholar
  44. 44.
    Cai W, Arsenlis A, Weinberger C R, et al. A non-singular continuum theory of dislocation. J Mech Phys Solids, 2006, 54: 561–587CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Seok-Woo Lee
    • 1
  • YinTong Cheng
    • 1
  • Ill Ryu
    • 2
  • Julia R. Greer
    • 1
  1. 1.Division of Engineering and Applied ScienceCalifornia Institute of TechnologyPasadenaUSA
  2. 2.School of EngineeringBrown UniversityProvidenceUSA

Personalised recommendations