Advertisement

Science China Technological Sciences

, Volume 57, Issue 3, pp 560–567 | Cite as

Design of single-axis flexure hinges using continuum topology optimization method

  • BenLiang Zhu
  • XianMin Zhang
  • Sergej Fatikow
Article

Abstract

The design of compliant hinges has been extensively studied in the size and shape level in the literature. This paper presents a method for designing the single-axis flexure hinges in the topology level. Two kinds of hinges, that is, the translational hinge and the revolute hinge, are studied. The basic optimization models are developed for topology optimization of the translational hinge and the revolute hinge, respectively. The objective for topology optimization of flexure hinges is to maximize the compliance in the desired direction meanwhile minimizing the compliances in the other directions. The constraints for accomplishing the translational and revolute requirements are developed. The popular Solid Isotropic Material with Penalization method is used to find the optimal flexure hinge topology within a given design domain. Numerical results are performed to illustrate the validity of the proposed method.

Keywords

topology optimization translational hinge SIMP compliant mechanisms revolute hinge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Howell L L. Compliant Mechanisms. New York: John Wiley & Sons, 2001Google Scholar
  2. 2.
    Wang H, Zhang X. Input coupling analysis and optimal design of a 3-dof compliant micro-positioning stage. Mech Mach Theroy, 2008, 43: 400–410CrossRefMATHGoogle Scholar
  3. 3.
    Fatikow S. Automated Nanohandling by Microrobots. 1st ed. London: Springer, 2007Google Scholar
  4. 4.
    Bendsøe M P, Sigmund O. Topology Optimization: Theory, Methods and Applications. Berlin: Springer, 2003Google Scholar
  5. 5.
    Zhu B L, Zhang X M. A new level set method for topology optimization of distributed compliant mechanisms. Int J Numer Meth Eng, 2012, 91: 843–871CrossRefGoogle Scholar
  6. 6.
    Zhu B L, Zhang X M, Wang N F. Topology optimization of hinge-free compliant mechanisms with multiple outputs using level set method. Struct Multidisc Optim, 2013, 47: 659–672CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Lobontiu N. Compliant mechanisms: Design of flexure hinges. CRC Press, 2003Google Scholar
  8. 8.
    Tian Y, Shirinzadeh B, Zhang D, et al. Three flexure hinges for compliant mechanism designs based on dimensionless graph analysis. Precis Eng, 2010, 34: 92–100CrossRefGoogle Scholar
  9. 9.
    Paros J M, Weisbord L. How to design flexure hinges. Mach Des, 1965, 37: 151–156Google Scholar
  10. 10.
    Smith S T, Badami V G, Dale J S, et al. Elliptical flexure hinges. Rev Sci Instrum, 1997, 68: 1474–1483CrossRefGoogle Scholar
  11. 11.
    Lobontiu N, Paine J S N, Garcia E, et al. Corner-filleted flexure hinges. J Mech Design, 2001, 123: 346–352CrossRefGoogle Scholar
  12. 12.
    Lobontiu N, Paine J S, Garcia E, et al. Design of symmetric conic-section flexure hinges based on closed-form compliance equations. Mech Mach Theory, 2002, 37: 477–498CrossRefMATHGoogle Scholar
  13. 13.
    Lobontiu N, Paine J S, O’Malley E, et al. Parabolic and hyperbolic flexure hinges: Flexibility, motion precision and stress characterization based on compliance closed-form equations. Precis Eng, 2002, 26: 183–192CrossRefGoogle Scholar
  14. 14.
    Lobontiu N, Garcia E, Hardau M, et al. Stiffness characterization of corner-filleted flexure hinges. Rev Sci Instrum, 2002, 75: 4896–4905CrossRefGoogle Scholar
  15. 15.
    Tseytlin Y M. Notch flexure hinges: An effective theory. Rev Sci Instrum, 2002, 73: 3363–3368CrossRefGoogle Scholar
  16. 16.
    Awtar S, Slocum A H, Sevincer E. Characteristics of beam-based flexure modules. J Mech Design, 2007, 129: 625–639CrossRefGoogle Scholar
  17. 17.
    Smith S T. Flexures: Elements of Elastic Mechanisms. New York: Gordon and Breach, 2000Google Scholar
  18. 18.
    Schotborgh W O, Kokkeler F G, Tragter H, et al. Dimensionless design graphs for flexure elements and a comparison between three flexure elements. Precis Eng, 2005, 29: 41–47CrossRefGoogle Scholar
  19. 19.
    Bona F D, Munteanu M G. Optimized flexural hinges for compliant micromechanisms. Analog Integr Circ S, 2005, 44: 163–174CrossRefGoogle Scholar
  20. 20.
    Zelenika S, Munteanu M G, Bona F D. Optimized flexural hinge shapes for microsystems and high-precision applications. Mech Mach Theory, 2009, 44: 1826–1839CrossRefMATHGoogle Scholar
  21. 21.
    Trease B P, Moon Y M, Kota S. Design of large-displacement compliant joints. J Mech Design, 2005, 127: 788–798CrossRefGoogle Scholar
  22. 22.
    Yu J J, Li S Z, Su H J, et al. Screw theory based methodology for the deterministic type synthesis of flexure mechanisms. J Mech Robot, 2011, 3: 03100801–03100813CrossRefGoogle Scholar
  23. 23.
    Su H J, Denis V, Dorozhkin et al. A screw theory approach for the conceptual design of flexible joints for compliant mechanisms. J Mech Robot, 2009, 1: 04100901–04100907Google Scholar
  24. 24.
    Hopkins J B, Culpepper M L. Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT)-part I: Principles. Precis Eng, 2010, 34: 259–270CrossRefGoogle Scholar
  25. 25.
    Frecker M I, Ananthasuresh G K, Nishiwaki S, et al. Topological synthesis of compliant mechanisms using multi-criteria optimization. J Mech Design, 1997, 119: 238–245CrossRefGoogle Scholar
  26. 26.
    Sigmund O. On the desgn of compliant mechanisms using topology optimization. Mech Based Struct Mach, 1997, 25: 493–524CrossRefGoogle Scholar
  27. 27.
    Nishiwaki S, Min S, Yoo J, et al. Optimal structural design considering flexibility. Comput Methods Appl Mech Eng, 2001, 190: 4457–4504CrossRefMathSciNetGoogle Scholar
  28. 28.
    Wang M, Wang X M, Guo D M. A level set method for structural topology optimization. Comput Methods Appl Mech Eng, 2003, 192: 227–246CrossRefMATHGoogle Scholar
  29. 29.
    Allaire G, Jouve F, Toader A M. Structural optimization using sensitivity analysis and a level set method. J Comput Phys, 2004, 194: 363–393CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Rozvany G I N. A critical review of established methods of structural topology optimization. Struct Multidisc Optim, 2009, 37: 217–237CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Yu J J, Li S Z, Su H J, et al. Screw theory based methodology for the deterministic type synthesis of flexure mechanisms. J Mech Robot, 2011, 3: 031008CrossRefGoogle Scholar
  32. 32.
    Choi K K, Kim N H. Structural sensitivity analysis and optimization 1: Linear system. New York: Springer-Verlag, 2005Google Scholar
  33. 33.
    Yong Y K, Lu T F, Handley D C. Review of circular flexure hinge design equations and derivation of empirical formulations. Precis Eng, 2008, 32: 63–70CrossRefGoogle Scholar
  34. 34.
    Svanberg K. The method of moving asymptotes-a new method for structural optimization. Int J Numer Methods Eng, 1987, 24: 359–373CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Barthelemy J F M, Haftka R T. Approximation concepts for optimum structural design-a review. Struct Multidisc Optim, 1993, 5: 129–144CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Key laboratory of Precision Equipment and Manufacturing Technology of Guangdong ProvinceSouth China University of TechnologyGuangzhouChina
  2. 2.Division Microrobotics Department of Computing ScienceOldenburgGermany

Personalised recommendations