Science China Technological Sciences

, Volume 56, Issue 11, pp 2636–2641 | Cite as

Investigation and characterization of an arc-shaped piezoelectric generator

  • MengDi Han
  • Wen Liu
  • XiaoSheng Zhang
  • Bo Meng
  • HaiXia ZhangEmail author


novel arc-shaped piezoelectric generator based on flexible PVDF thin film is presented and systemically studied. With a periodical external force, the generator can produce peak voltage of 45.6 V and peak power of 30.7 μW. The maximum power density reaches 38.4 μW/cm3 with a 4 cm × 2 cm × 100 μm device, at the optimum load resistance of 33.33 MOhm. The influence of frequency, size dimension and load resistance are investigated through experimental measurements. With this high output arc-shaped generator, capacitors can be effectively charged and three commercial LEDs have been directly lighted without any energy storage unit.


piezoelectric generator arc-shaped PVDF high output self-powered system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

Supplementary material, approximately 317 KB.


  1. 1.
    Wang Z L. Self-powered nanosensors and nanosystems. Adv Mater, 2012, 24: 280–285CrossRefGoogle Scholar
  2. 2.
    Lewis N S. Toward cost-effective solar energy use. Science, 2007, 315: 798–801CrossRefGoogle Scholar
  3. 3.
    Cuadras A, Gasulla M, Ferrari V. Thermal energy harvesting through pyroelectricity. Sens Actuators A, Phys, 2010, 158: 132–139CrossRefGoogle Scholar
  4. 4.
    Yang Y, Guo W, Pradel K C, et al. Pyroelectric nanogenerators for harvesting Thermoelectric Energy. Nano Lett, 2012, 12: 2833–2838CrossRefGoogle Scholar
  5. 5.
    Himmel M E, Ding S Y, Johnson D K, et al. Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 2007, 315: 804–807CrossRefGoogle Scholar
  6. 6.
    Hwang J H, Hyoung C H, Park K H, et al. Energy harvesting from ambient electromagnetic wave using human body as antenna. Electron Lett, 2013, 49: 149–151CrossRefGoogle Scholar
  7. 7.
    Roundy S, Wright P K, Rabaey J. A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun, 2003, 26: 1131–1144CrossRefGoogle Scholar
  8. 8.
    Sari I, Balkan T, Külah H. An Electromagnetic micro power generator for low-frequency environmental vibrations based on the frequency up conversion technique. J Microelectromech Syst, 2010, 19: 14–27CrossRefGoogle Scholar
  9. 9.
    Wang P, Tanaka K, Sugiyama S, et al. A micro electromagnetic low level vibration energy harvester based on MEMS technology. Microsyst Technol, 2009, 15: 941–951CrossRefGoogle Scholar
  10. 10.
    Han M, Yuan Q, Sun X, et al. Design and fabrication of integrated magnetic MEMS energy harvester for low frequency applications. J Microelectomech Syst, 2013, DOI: 10.1109/JMEMS.2013.2267773Google Scholar
  11. 11.
    Peano F, Tambosso T. Design and optimization of a MEMS electret-based capacitive energy scavenger. J Microelectromech Syst, 2005, 14: 429–435CrossRefGoogle Scholar
  12. 12.
    Fan F R, Tian Z Q, Wang Z L. Nano Energy, 2012, 1: 328–334CrossRefGoogle Scholar
  13. 13.
    Zhang X S, Han M D, Wang R X, et al. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett, 2013, 13: 1168–1172CrossRefGoogle Scholar
  14. 14.
    Wang Z L, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312: 242–246CrossRefGoogle Scholar
  15. 15.
    Elfrink R, Kamel T M, Goedbloed M, et al. Vibration energy harvesting with aluminum nitride-based piezoelectric devices. J Micromech Microeng, 2009, 19: 094005-1–094005-8CrossRefGoogle Scholar
  16. 16.
    Liu H, Tay C J, Quan C, et al. Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power. J Microelectomech Syst, 2011, 20: 1131–1142CrossRefGoogle Scholar
  17. 17.
    Han M D, Zhang X S, Liu W, et al. Low-frequency wide-band hybrid energy harvester based on piezoelectric and triboelectric mechanism. Sci China Tech Sci, 2013, 56: 1835–1841CrossRefGoogle Scholar
  18. 18.
    Choi W J, Jeon Y, Jeong J H, et al. Energy harvesting MEMS device based on thin film thin film piezoelectric cantilevers. J Electroceram, 2006, 17: 543–548CrossRefGoogle Scholar
  19. 19.
    Jeon Y B, Sood R, Jeong J H, et al. MEMS power generator with transvers mode thin film PZT. Sens Actuators A, Phys, 2005, 122: 16–22CrossRefGoogle Scholar
  20. 20.
    Wang X, Song J, Liu J, et al. Direct-current nanogenerator driven by ultrasonic waves. Science, 2007, 316: 102–105CrossRefGoogle Scholar
  21. 21.
    Lee S, Bae S H, Lin L, et al. Super-flexible nanogenerator for energy harvesting from gentle wind and as an active deformation sensor. Adv Funct Mater, 2013, 23: 2445–2449CrossRefGoogle Scholar
  22. 22.
    Zhu G, Wang A C, Liu Y, et al. Functional electrical stimulation by nanogenerator with 58 V output voltage. Nano lett, 2012, 12: 3086–3090CrossRefGoogle Scholar
  23. 23.
    Gu L, Cui N, Li C, et al. Flexible fiber nanogenerator with 209 V output voltage directly powers a light-emitting diode. Nano Lett, 2013, 13: 91–94CrossRefGoogle Scholar
  24. 24.
    Lu F, Lee H P, Lim S P. Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications. Smart Mater Struct 2004, 13: 57–63CrossRefGoogle Scholar
  25. 25.
    Shenck N S, Paradiso J A. Energy scavenging with shoe-mounted piezoeleectrics. Micro IEEE, 2001, 20: 30–42CrossRefGoogle Scholar
  26. 26.
    Meng B, Tang W, Too Z H, et al. A transparent single-frictionsurface triboelectric generator and self-powered touch sensor. Energy Environ Sci, 2013, doi: 10.1039/c3ee42311eGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • MengDi Han
    • 1
  • Wen Liu
    • 1
    • 2
  • XiaoSheng Zhang
    • 1
  • Bo Meng
    • 1
  • HaiXia Zhang
    • 1
    Email author
  1. 1.Institute of MicroelectronicsPeking UniversityBeijingChina
  2. 2.Peking University Shenzhen Graduate SchoolShenzhenChina

Personalised recommendations