Advertisement

Science China Technological Sciences

, Volume 56, Issue 6, pp 1387–1394 | Cite as

Optical analysis of a hybrid solar concentrating Photovoltaic/Thermal (CPV/T) system with beam splitting technique

  • Peng HuEmail author
  • Qian Zhang
  • Yang Liu
  • ChunChen Sheng
  • XiaoFang Cheng
  • ZeShao Chen
Article

Abstract

A novel hybrid solar concentrating Photovoltaic/Thermal (CPV/T) system with beam splitting technique is presented. In this system, a beam splitter is used to separate the concentrated solar radiation into two parts: one for the PV power generation and the other for thermal utility. The solar concentrator is a flat Fresnel-type concentrator with glass mirror reflectors. It can concentrate solar radiation onto solar cells with high uniformity, which is beneficial to improving the efficiency of solar cells. The thermal receiver is separated to the solar cells, and therefore, the thermal fluid can be heated to a relatively high temperature and does not affect the performance of solar cells. A dimensionless model was developed for the performance analysis of the concentrating system. The effects of the main parameters on the performance of the concentrator were analyzed. The beam splitter with coating materials Nb2O3/SiO2 was designed by using the needle optimization technique, which can reflect about 71% of the undesired radiation for silicon cell(1.1 μm < λ ⩽ 3 μm) to the thermal receiver for thermal utility. The performance of this CPV/T system was also theoretically analyzed.

Keywords

solar energy hybrid concentrating Photovoltaic/Thermal (CPV/T) system flat Fresnel-type concentrator beam splitting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Othman M Y, Yatim B, Sopian K, et al. Performance analysis of a double-pass photovoltaic/thermal (PV/T) solar collector with CPC and fins. Renew Energ, 2005, 30: 2005–2017CrossRefGoogle Scholar
  2. 2.
    Charalambous P G, Maidment G G, Kalogirou S A, et al. Photovoltaic thermal (PV/T) collectors: A review. Appl Therm Eng, 2007, 27: 275–286CrossRefGoogle Scholar
  3. 3.
    Joshi A S, Tiwari A. Energy and exergy efficiencies of a hybrid photovoltaic-thermal (PV/T) air collector. Renew Energ, 2007, 32: 2223–2241.CrossRefGoogle Scholar
  4. 4.
    Zondag H A. Flat-plate PV-Thermal collectors and systems: A review. Renew Sust Energ Rev, 2008, 12: 891–959CrossRefGoogle Scholar
  5. 5.
    Chow T T. A review on photovoltaic/thermal hybrid solar technology. Appl Energ, 2010, 87: 365–379CrossRefGoogle Scholar
  6. 6.
    Kumar R, Rosen M. A critical review of photovoltaic-thermal solar collectors for air heating. Appl Energ, 2011, 88: 3603–3614CrossRefGoogle Scholar
  7. 7.
    Garg H P, Adhikari R S. Performance analysis of a hybrid photovoltaic/thermal (PV/T) collector with integrated CPC troughs. Int J Energ Res, 1999, 23(15): 1295–1304CrossRefGoogle Scholar
  8. 8.
    Tiwari G N, Nayak S, Dubey S, et al. Performance analysis of a conventional PV/T mixed mode dryer under no load condition. Int J Energ Res, 2009, 33: 919–930CrossRefGoogle Scholar
  9. 9.
    Chemisana D. Building Integrated Concentrating Photovoltaics: A review. Renew Sust Energ Rev, 2011, 15: 603–611CrossRefGoogle Scholar
  10. 10.
    Sun J, Shi M H. Numerical study on optical and electric-thermal performance for solar concentrating PV/T air system. Sci China Ser E-Tech Sci, 2009, 52(12): 3514–3520MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Imenes A G, Mills D R. Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: A review. Sol Energ Mat Sol C, 2004, 84: 19–69CrossRefGoogle Scholar
  12. 12.
    Jiang S, Hu P, Mo S, et al. Optical modeling for a two-stage parabolic trough concentrating photovoltaic/thermal system using spectral beam splitting technology. Sol Energ Mat Sol C, 2010, 94: 1686–1696CrossRefGoogle Scholar
  13. 13.
    Hu P, Zhang Q, Liu Y, et al. Experimental investigation on flat-type solar concentrator PV system with glass mirror reflectors. J Eng Thermophys, 2011, 32(5): 729–732Google Scholar
  14. 14.
    Coventry J S. Performance of a concentrating photovoltaic/thermal solar collector. Sol Energ, 2005, 78: 211–222CrossRefGoogle Scholar
  15. 15.
    Rosell J I, Vallverdu X, Lechon M A, et al. Design and simulation of a low concentrating photovoltaic/thermal system. Energ Convers Manage, 2005, 46: 3034–3046CrossRefGoogle Scholar
  16. 16.
    Luque A, Sala G, Arboiro J C. Electric and thermal model for non-uniformly illuminated concentration cells. Sol Energ Mat Sol C, 1998, 51: 269–290CrossRefGoogle Scholar
  17. 17.
    Sun J, Israeli T, Reddy T A, et al. Modeling and experimental evaluation of passive heat sinks for miniature high-flux photovoltaic concentrators. J Sol Energ-T ASME, 2005, 127: 138–145CrossRefGoogle Scholar
  18. 18.
    Buie D, Monger A G, Dey C J. Sunshape distributions for terrestrial solar simulations. Sol Energ, 2003, 74(2): 113–122CrossRefGoogle Scholar
  19. 19.
    Tikhonravov A V, Trubetskov M K, Debell G W. Application of the needle optimization technique to the design of optical coatings. Appl Opt, 1996, 35: 5493–5508CrossRefGoogle Scholar
  20. 20.
    Tikhonravov A V, Trubetskov M K, Debell G W. Optical coating design approaches based on the needle optimization technique. Appl Opt, 2007, 46: 704–710CrossRefGoogle Scholar
  21. 21.
    ASTM G 173-03. Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface, 2003Google Scholar
  22. 22.
    Ju X, Wang Z, Flamant G, et al. Numerical analysis and optimization of a spectrum splitting concentration photovoltaic-thermoelectric hybrid system. Sol Energ, 2012, 86(6): 1941–1954CrossRefGoogle Scholar
  23. 23.
    Fisher B, Biddle J. Luminescent spectral splitting: Efficient spatial division of solar spectrum at low concentration. Sol Energ Mat Sol C, 2011, 95(7): 1741–1755CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Peng Hu
    • 1
    Email author
  • Qian Zhang
    • 1
  • Yang Liu
    • 1
  • ChunChen Sheng
    • 1
  • XiaoFang Cheng
    • 1
  • ZeShao Chen
    • 1
  1. 1.Department of Thermal Science and Energy EngineeringUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations