Advertisement

Science China Technological Sciences

, Volume 56, Issue 3, pp 683–692 | Cite as

Analysis on the hourly spatiotemporal complementarities between China’s solar and wind energy resources spreading in a wide area

  • Yi LiuEmail author
  • LiYe Xiao
  • HaiFeng Wang
  • ShaoTao Dai
  • ZhiPing Qi
Article

Abstract

China is rich in solar and wind energy resources, of which the proportion of China’s power sources has been rapidly increasing. Such fluctuating and intermittent energy sources will bring significant challenges to the safe and stable operation power system. However, making use of the spatiotemporal complementarities between different renewable energy resources is a feasible way to level fluctuating power especially when they have a widely geographical dispersion. Based on the data provided by China Meteorological Administration (CMA), this research explores the spatiotemporal complementarities between wind and solar energy resources. This paper nondimensionalizes hourly wind speed and global solar radiation data and employs several indexes to compare the smoothing effect with various combining scenarios. The results show that combining wind and solar powers within a certain area can cause a fall of zero-power or very-full power hours. Besides, combining different resources improves ‘smoothness’ in power output when compared with that from each individual resource. However, under hourly time scale, when the dispersion of sites is large enough, the smoothing effect of combining the dispersed wind power is very close to the combination of those two different resources. Nevertheless, this complementary effect is much better than that of just combining solar energy resources.

Keywords

wind energy solar energy complementarities renewable energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sarkar S, Ajjarapu V. MW resource assessment model for a hybrid energy conversion system with wind and solar resources. Sustain Energy, IEEE T, 2011, 2(4): 383–391CrossRefGoogle Scholar
  2. 2.
    Li J, Cai F, Tang W, et al. China Wind Power Outlook 2011. Beijing: China Environmental Science Press, 2010Google Scholar
  3. 3.
    Guo L, Zhao L, Jing D, et al. Solar hydrogen production and its development in China. Energy, 2009, 34(9): 1073–1090CrossRefGoogle Scholar
  4. 4.
    Wang S, Hao J. Air quality management in China: Issues, challenges, and options. J Environ Sci, 2012, 24(1): 2–13MathSciNetCrossRefGoogle Scholar
  5. 5.
    Liu J, Liu Y, Zeng D, et al. Optimal short-term load dispatch strategy in wind farm. Sci China Tech Sci, 2012, 55(4): 1140–1145CrossRefGoogle Scholar
  6. 6.
    Gao Y, Pan J, Yang Z, et al. Optimization based accurate scheduling for generation and reserve of power system. Sci China Tech Sc, 2012, 55(1): 223–232CrossRefGoogle Scholar
  7. 7.
    Dahal S, Mithulananthan N, Saha T K. Assessment and enhancement of small signal stability of a renewable-energy-based electricity distribution system. Sustainable Energy, IEEE T, 2012, 3(3): 407–415CrossRefGoogle Scholar
  8. 8.
    Kahn E. The reliability of distributed wind generators. Electric Power Systems Research, 1979, 2(1): 1–14MathSciNetCrossRefGoogle Scholar
  9. 9.
    Simonsen T K, Stevens B G. Regional wind energy analysis for the central United States. Proc Global Wind Power 2004, American Wind Energy Association, Chicago, 2004Google Scholar
  10. 10.
    DeCarolis J F, Keith D W. The economics of large-scale wind power in a carbon constrained world. Energy Policy, 2006, 34(4): 395–410CrossRefGoogle Scholar
  11. 11.
    Oswald J, Raine M, Ashraf-Ball H. Will British weather provide reliable electricity? Energy Policy, 2008, 36(8): 3212–3225CrossRefGoogle Scholar
  12. 12.
    Kempton W, Pimenta FM, Veron D E, et al. Electric power from offshore wind via synoptic-scale interconnection. PNAS USA, 2010, 107(16): 7240–7245CrossRefGoogle Scholar
  13. 13.
    Katzenstein W, Fertig E, Apt J. The variability of interconnected wind plants. Energy Policy, 2010, 38(8): 4400–4410CrossRefGoogle Scholar
  14. 14.
    Liu Y, Xiao L Y, Wang H F, et al. Investigation on the spatiotem-poral complementarity of wind energy resources in China. Sci China Tech Sci, 2012, 55(3): 725–734CrossRefGoogle Scholar
  15. 15.
    Burton T, Sharpe D, Jenkins N, et al. Wind Energy Handbook. New York: Wiley, 2002. 173–207Google Scholar
  16. 16.
    Mills A, Ahlstrom M, Brower M, et al. Understanding variability and uncertainty of photovoltaics for integration with the electric power system. IEEE Power Energ Mag, 2011, 9(3): 33–41CrossRefGoogle Scholar
  17. 17.
    Murata A, Yamaguchi H, Otani K. A method of estimating the output fluctuation of many photovoltaic power generation systems dispersed in a wide area. Elec Eng Jpn, 2009, 166(4): 9–19CrossRefGoogle Scholar
  18. 18.
    Jacobson M Z, Delucchi M A. Providing all global energy with wind, water, and solar power, part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy, 2011, 39(3): 1154–1169CrossRefGoogle Scholar
  19. 19.
    Markvart T. Sizing of hybrid photovoltaic-wind energy systems. Solar Energy, 1996, 57(4): 277–281CrossRefGoogle Scholar
  20. 20.
    Ai B, Yang H, Shen H, et al. Computer-aided design of PV/wind hybrid system. Renew Energy, 2003, 28(10): 1491–1512CrossRefGoogle Scholar
  21. 21.
    Diaf S, Diaf D, Belhamel M, et al. A methodology for optimal sizing of autonomous hybrid PV/wind system. Energy Policy, 2007, 35(11): 5708–5718CrossRefGoogle Scholar
  22. 22.
    Dihrab S S, Sopian K. Electricity generation of hybrid PV/wind systems in Iraq. Renew Energy, 2010, 35(6): 1303–1307CrossRefGoogle Scholar
  23. 23.
    Zhou W, Lou C, Li Z, et al. Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems. Appl Energy, 2010, 87(2): 380–389CrossRefGoogle Scholar
  24. 24.
    Liu L, Wang Z. The development and application practice of wind-solar energy hybrid generation systems in China. Renew Sustain Energy Rev, 2009, 13(6–7): 1504–1512CrossRefGoogle Scholar
  25. 25.
    Weigel R, Klimas A, Vassiliadis D. Solar wind coupling to and predictability of ground magnetic fields and their time derivatives. J Geophys Res, 2003, 108(A7): 16–11CrossRefGoogle Scholar
  26. 26.
    Gipe P. Wind Energy Comes of Age. New York: John Wiley, 1995Google Scholar
  27. 27.
    McQueen D, Watson S. Validation of wind speed prediction methods at offshore sites. Wind Energy, 2006, 9(1–2): 75–85CrossRefGoogle Scholar
  28. 28.
    Dunn R, Lovegrove K, Burgess G. A review of ammonia-based thermochemical energy storage for concentrating solar power. Proc IEEE, 2012, 100(2): 391–400CrossRefGoogle Scholar
  29. 29.
    Hoicka CE, Rowlands IH. Solar and wind resource complementarity: Advancing options for renewable electricity integration in Ontario, Canada. Renew Energy, 2011, 36(1): 97–107CrossRefGoogle Scholar
  30. 30.
    Widén J. Correlations between large-scale solar and wind power in a future scenario for Sweden. Sustain Energy, IEEE T, 2011, 2(2): 177–184CrossRefGoogle Scholar
  31. 31.
    Kempton W, Archer CL, Dhanju A, et al. Large CO2 reductions via offshore wind power matched to inherent storage in energy end-uses. Geophys Res Lett, 2007, 34(2): LO2817CrossRefGoogle Scholar
  32. 32.
    Rowlands I H, Jernigan C. Wind power in Ontario. Bulletin of Science, Technol Soc, 2008, 28(6): 436–453CrossRefGoogle Scholar
  33. 33.
    Sinden G. Characteristics of the UK wind resource: Long-term patterns and relationship to electricity demand. Energy Policy, 2007, 35(1): 112–127CrossRefGoogle Scholar
  34. 34.
    Yu D, Zhang B, Liang J, et al. The influence of generation mix on the wind integrating capability of north china power grids: A modeling interpretation and potential solutions. Energy Policy, 2011, 39(11): 7455–7463CrossRefGoogle Scholar
  35. 35.
    Xiao L, Dai S, Lin L, et al. Future power grid-Multi-level DC loop grid and “Cloud Powering”. Adv Technol Elec Eng Energy, 2011, 30(4): 64–69Google Scholar
  36. 36.
    Xiao L, Dai S, Lin L, et al. Development of the world’s first HTS power substation. Appl Supercond, IEEE T, 2012, 22(3): 5000104CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yi Liu
    • 1
    • 2
    Email author
  • LiYe Xiao
    • 1
    • 2
  • HaiFeng Wang
    • 2
    • 3
  • ShaoTao Dai
    • 1
    • 2
  • ZhiPing Qi
    • 2
  1. 1.Key Laboratory of Applied SuperconductivityChinese Academy of SciencesBeijingChina
  2. 2.Institute of Electrical EngineeringChinese Academy of SciencesBeijingChina
  3. 3.The Queen’s University of BelfastBelfastUK

Personalised recommendations