Science China Technological Sciences

, Volume 56, Issue 1, pp 98–102 | Cite as

Investigation of GaN-based light-emitting diodes using a p-GaN/i-InGaN short-period superlattice structure as last quantum barrier

  • XiaoPing Liu
  • GuangHan Fan
  • ShuWen Zheng
  • ChangChun Gong
  • TaiPing Lu
  • YunYan Zhang
  • YiQin Xu
  • Tao Zhang
Article

Abstract

In this work, GaN-based light-emitting diodes (LEDs) with a p-GaN/i-InGaN short-period superlattice (SPSL) structure, p-GaN and undoped GaN last quantum barrier (LQB) have been numerically investigated by using the APSYS simulation software. It has been found that the efficiency droop is significantly improved when the undoped GaN LQB in a typical blue LED is replaced by a p-GaN/i-InGaN SPSL structure. According to the simulation analysis, using the p-GaN/i-InGaN SPSL structure as LQB is beneficial to increasing the hole injection efficiency and decreasing the electron current leakage. Therefore, the radiative recombination and optical power are enhanced.

Keywords

GaN-based light-emitting diodes hole injection efficiency droop superlattice (SL) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang J X, Wang L, Zhao W, et al. Study on internal quantum efficiency of blue InGaN multiple-quantum-well with an InGaN underneath layer. Sci China Tech Sci, 2010, 53: 306–308CrossRefGoogle Scholar
  2. 2.
    Kim M H, Schubert M F, Dai Q, et al. Origin of efficiency droop in GaN-based light-emitting diodes. Appl Phys Lett, 2007, 91: 183507CrossRefGoogle Scholar
  3. 3.
    Schubert M F, Xu J, Kim J K, et al. Polarization-matched GaInN/ AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop. Appl Phys Lett, 2008, 93: 041102CrossRefGoogle Scholar
  4. 4.
    Shen Y C, Mueller G O, Watanabe S, et al. Auger recombination in InGaN measured by photoluminescence. Appl Phys Lett, 2007, 91: 141101CrossRefGoogle Scholar
  5. 5.
    Kim A Y, Götz W, Steigerwald D A, et al. Performance of high-power AlInGaN light emitting diodes. Phys Status Solidi (a), 2001, 188(1): 15–21CrossRefGoogle Scholar
  6. 6.
    Chen Y X, Shen G D, Guo W L, et al. Internal quantum efficiency drop induced by the heat generation inside of light emitting diodes (LEDs). Chinese Phys B, 2011, 20(1): 017204CrossRefGoogle Scholar
  7. 7.
    Rozhansky I V, Zakheim D A. Analysis of processes limiting quantum efficiency of AlGaInN LEDs at high pumping. Phys Status Solidi (a), 2007, 204(1): 227–230CrossRefGoogle Scholar
  8. 8.
    David A, Grundmann M J, Kaeding J F, et al. Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes. Appl Phys Lett, 2008, 92: 053502CrossRefGoogle Scholar
  9. 9.
    Schubert M F, Chhajed S, Kim J K, et al. Effect of dislocation density on efficiency droop in GaInN/GaN light-emitting diodes. Appl Phys Lett, 2007, 91: 231114CrossRefGoogle Scholar
  10. 10.
    Pei X J, Guo L W, Wang X H, et al. Enhanced photoluminescence of InGaN/GaN green light-emitting diodes grown on patterned sapphire substrate. Chinese Phys Lett, 2009, 26(2): 028101CrossRefGoogle Scholar
  11. 11.
    Chen J R, Lu T C, Kuo H C, et al. Study of InGaN-GaN light-emitting diodes with different last barrier thicknesses. IEEE Photon Technol Lett, 2010, 22(12): 860–862CrossRefGoogle Scholar
  12. 12.
    Yen S H, Tsai M L, Tsai M C, et al. Investigation of optical performance of InGaN MQW LED with thin last barrier. IEEE Photon Technol Lett, 2010, 22(24): 1787–1789CrossRefGoogle Scholar
  13. 13.
    Kuo Y K, Tsai M C, Yen S H, et al. Effect of P-type last barrier on efficiency droop of blue InGaN light-emitting diodes. IEEE J Quantum Electron, 2010, 46(8): 1214–1220CrossRefGoogle Scholar
  14. 14.
    Kumakura K, Makimoto T, Kobayashi N. Efficient hole generation above 1019 cm−3 in Mg-doped InGaN/GaN superlattices at room temperature. Jpn J Appl Phys, 2000, 39: L195–L196CrossRefGoogle Scholar
  15. 15.
    Sheu J K, Chi G C, Jou M J. Low-operation voltage of InGaN-GaN light-emitting diodes with Si-doped In0.3Ga0.7N/GaN short-period superlattice tunneling contact layer. IEEE Electron Device Lett, 2001, 22(10): 460–462CrossRefGoogle Scholar
  16. 16.
    Jang J S, Kim D, Seong T Y. Low turn-on voltage and series resistance of polarization-induced InGaN-GaN LEDs by using p-InGaN/p-GaN superlattice. IEEE Photon Technol Lett, 2006, 18(14): 1536–1538CrossRefGoogle Scholar
  17. 17.
    Jang J S. High output power GaN-based light-emitting diodes using an electrically reverse-connected p-Schottky diode and p-InGaN-GaN superlattice. Appl Phys Lett, 2008, 93: 081118CrossRefGoogle Scholar
  18. 18.
    Liu J P, Limb J B, Ryou J H, et al. Characteristics of green light-emitting diodes using an InGaN:Mg/GaN:Mg superlattice as p-type hole injection and contact layers. Electron Mater, 2007, 37(5): 558–563CrossRefGoogle Scholar
  19. 19.
    APSYS by Crosslight Software Inc., Burnaby, Canada (http://www.crosslight.com)
  20. 20.
    Chuang S L, Chang C S. k·p method for strained wurtzite semiconductors. Phys Rev B, 1996, 54(4): 2491–2504CrossRefGoogle Scholar
  21. 21.
    Chuang S L, Chang C S. A band-structure model of strained quantum-well wurtzite semiconductors. Semicond Sci Technol, 1997, 12(3): 252–263CrossRefGoogle Scholar
  22. 22.
    Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for III–V compound semiconductors and their alloys. J Appl Phys, 2001, 89(11): 5815–5875CrossRefGoogle Scholar
  23. 23.
    Matsuoka T, Okamoto H, Nakao M, et al. Optical bandgap energy of wurtzite InN. Appl Phys Lett, 2002, 81(7): 1246–1248CrossRefGoogle Scholar
  24. 24.
    Piprek J, Nakamura S. Physics of high-power InGaN/GaN lasers. IEE Proc Optoelectron, 2002, 149(4): 145–151CrossRefGoogle Scholar
  25. 25.
    Su Y K, Wang H C, Lin C L, et al. AlGaInP light emitting diode with a modulation-doped superlattice. Jpn J Appl Phys, 2003, 42(2): L751–L753CrossRefGoogle Scholar
  26. 26.
    Chen N C, Lin C M, Yang Y K, et al. Measurement of junction temperature in a nitride light-emitting diode. Jpn J Appl Phys, 2008, 47: 8779–8782MathSciNetCrossRefGoogle Scholar
  27. 27.
    Vurgaftman I, Meyer J R. Band parameters for nitrogen-containing semiconductors. J Appl Phys, 2003, 94(6): 3675–3696CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • XiaoPing Liu
    • 1
  • GuangHan Fan
    • 1
  • ShuWen Zheng
    • 1
  • ChangChun Gong
    • 1
  • TaiPing Lu
    • 1
  • YunYan Zhang
    • 1
  • YiQin Xu
    • 1
  • Tao Zhang
    • 1
  1. 1.Institute of Opto-electronic Materials and TechnologySouth China Normal UniversityGuangzhouChina

Personalised recommendations