Advertisement

Science China Technological Sciences

, Volume 54, Issue 8, pp 2107–2118 | Cite as

Review on cellular automata simulations of microstructure evolution during metal forming process: Grain coarsening, recrystallization and phase transformation

  • He YangEmail author
  • Chuan Wu
  • HongWei Li
  • XiaoGuang Fan
Article

Abstract

Cellular automata (CA) algorithm has become an effective tool to simulate microstructure evolution. This paper presents a review on CA modeling of microstructural evolution, such as grain coarsening, recrystallization and phase transformation during metal forming process which significantly affects mechanical properties of final products. CA modeling of grain boundary motion is illustrated and several aspects of recrystallization are described, e.g. nucleation and growth, the development of static and dynamic recrystallization. For phase transformation, attention is paid to such key factors as solute element diffusion and change of systemic chemical free energy. In view of the reviewed works, several open questions in the field of further development of CA simulation are put forward and recommendations to them are given.

Keywords

cellular automata algorithm grain coarsening recrystallization phase transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fan X G, Yang H, Sun Z C. Effect of deformation inhomogeneity on the microstructure and mechanical properties of large-scale rib-web component of titanium alloy under local loading forming. Mater Sci Eng A, 2010, 527: 5391–5399CrossRefGoogle Scholar
  2. 2.
    Sun Z C, Yang H, Han G J, et al. A numerical model based on internal-state-variable method for the microstructure evolution during hot-working process of TA15 titanium alloy. Mater Sci Eng A, 2010, 527: 3464–3471CrossRefGoogle Scholar
  3. 3.
    Mecking H, Kocks U F. Kinetics of flow and strain-hardening. Acta Metall, 1981, 29: 1865–1875CrossRefGoogle Scholar
  4. 4.
    Nes E. Modelling of work hardening and stress saturation in FCC metals. Prog Mater Sci, 1998, 41: 129–194CrossRefGoogle Scholar
  5. 5.
    Luo J, Li M Q, Li X L, et al. Constitutive model for high temperature deformation of titanium alloys using internal state variables. Mech Mater, 2010, 42: 157–165CrossRefMathSciNetGoogle Scholar
  6. 6.
    Avrami M. Kinetics of phase change I general theory. J Chem Phys, 1939, 7: 1103–1112CrossRefGoogle Scholar
  7. 7.
    Avrami M. Kinetics of phase change II transformation-time relations for random distribution of nuclei. J Chem Phys, 1940, 8: 212–224CrossRefGoogle Scholar
  8. 8.
    Avrami M. Kinetics of phase change III granulation phase change and microstructure. J Chem Phys, 1941, 9: 177–184CrossRefGoogle Scholar
  9. 9.
    Kawasaki K, Nagai T, Nakashima K. Vertex models for two-dimensional grain growth. Phil Mag B-Phys Condens Matter Electron Opt Magn Prop, 1981, 60: 339–421Google Scholar
  10. 10.
    Humphreys F J. Network model for recovery and recrystallization. Scr Metall Mater, 1992, 27: 1557–1562CrossRefGoogle Scholar
  11. 11.
    Cocks A C F, Gill S P A. A variational approach to two dimensional grain growth-I, theory. Acta Mater, 1996, 44: 4765–4775CrossRefGoogle Scholar
  12. 12.
    Weygand D, Brechet J, Lepinoux J. Zener pinning and grain growth: A two-dimensional vertex computer simulation. Acta Mater, 1999, 47: 961–970CrossRefGoogle Scholar
  13. 13.
    Tong M M, Li D Z, Li Y Y, et al. Modeling the austenite-ferrite isothermal transformation in an Fe-C binary system and experimental verification. Metall Trans A, 2002, 33: 3111–3115CrossRefGoogle Scholar
  14. 14.
    Tong M M, Li D Z, Li Y Y. Modeling the austenite-ferrite diffusive transformation during continuous cooling on a mesoscale using Monte Carlo method. Acta Mater, 2004, 52: 1155–1162CrossRefGoogle Scholar
  15. 15.
    Tong M M, Ni J, Zhang Y, et al. Temporal oscillatory behavior in deformation induced ferrite transformation in an Fe-C binary system. Scr Mater, 2004, 50: 909–913CrossRefGoogle Scholar
  16. 16.
    Chun Y B, Semiatin S L, Hwang S K. Monte Carlo modeling of microstructure evolution during the static recrystallization of cold-rolled, commercial-purity titanium. Acta Mater, 2006, 54: 3673–3689CrossRefGoogle Scholar
  17. 17.
    Chen L Q. Phase-field models for microstructure evolution. Annu Rev Mater Res, 2002, 32: 113–140CrossRefGoogle Scholar
  18. 18.
    Loginova I, Odqvist J, Amberg G, et al. The phase-field approach and solute drag modeling of the transition to massive gamma to alpha transformation in binary Fe-C alloys. Acta Mater, 2003, 51: 1327–1339CrossRefGoogle Scholar
  19. 19.
    Ho W L, Yong T I. Numerical modeling of dynamic recrystallization during nonisothermal hot compression by cellular automata and finite element analysis. Inter Mech Sci, 2010, 52: 1277–1289CrossRefGoogle Scholar
  20. 20.
    Sumitesh D. Modeling mixed microstructures using a multi-level cellular automata finite element framework. Comput Mater Sci, 2010, 47: 705–711CrossRefGoogle Scholar
  21. 21.
    Hån H, Mathias W. Simulation of discontinuous dynamic recrystallization in pure Cu using a probabilistic cellular automaton. Comput Mater Sci, 2010, 49: 25–34CrossRefGoogle Scholar
  22. 22.
    Sudipto G. Modeling of recrystallization in cold rolled copper using inverse cellular automata and genetic algorithms. Comput Mater Sci, 2009, 45: 96–103CrossRefGoogle Scholar
  23. 23.
    von Neumann J. Papers of John von Neumann on Computing and Computer Theory in Reprint Series on the History of Computing. Boston: MIT Press, 1963Google Scholar
  24. 24.
    Wolfram S. Theory and Applications of Cellular Automata in: Advanced Series on Complex Systems. Singapore: World Science, 1986. 1983–1986Google Scholar
  25. 25.
    Janssens K G F. An introductory review of cellular automata modeling of moving grain boundaries in polycrystalline materials. Math Comput Simul, 2010, 80: 1361–1381zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Raabe D. Mesoscale simulation of spherulite growth during polymer crystallization by use of a cellular automaton. Acta Mater, 2004, 52: 2653–2664CrossRefGoogle Scholar
  27. 27.
    Mitchell M. Computation in Cellular Automata: A Selected Review. Weinheim: Nonstandard Computation, VCH Verlagsgesellschaft, 1998. 95–140Google Scholar
  28. 28.
    Raabe D, Rollett A D. A hybrid model for mesoscopic simulation of recrystallization. Comput Mater Sci, 2001, 21: 69–78CrossRefGoogle Scholar
  29. 29.
    Grewal G, Ankem S. Modeling matrix grain growth in the presence of growing second phase particle in two phase alloys. Acta Metall Mater, 1990, 38: 1607–1617CrossRefGoogle Scholar
  30. 30.
    Hesselbarth H G, Göbel I R. Simulation of re-crystallization by cellular automata. Acta Metal Mater, 1991, 39: 2135–2143CrossRefGoogle Scholar
  31. 31.
    Hesselbarth H G, Kaps L. Two dimensional simulation of the recrystallization kinetics in the case of inhomogeneously stored energy. Mater Sci Forum, 1993, 317: 113–115Google Scholar
  32. 32.
    Liu Y, Baudin T, Penelle R. Simulation of normal grain growth by cellular automata. Scr Mater, 1996, 34: 1679–1683CrossRefGoogle Scholar
  33. 33.
    Geiger J, Roósz A, Barkóczyb P. Simulation of grain coarsening in two dimensions by cellular-automaton. Acta Mater, 2001, 49: 623–629CrossRefGoogle Scholar
  34. 34.
    Raghavan S, Satyam S S. Modeling the grain growth kinetics by cellular automaton. Mater Sci Eng A, 2007, 445–446: 203–209Google Scholar
  35. 35.
    Raghavan S, Satyam S S. Modeling the topological features during grain growth by cellular automaton. Comput Mater Sci, 2009, 46: 92–99CrossRefGoogle Scholar
  36. 36.
    Chen F, Cui Z S, Liu J, et al. Mesoscale simulation of the high-temperature austenitizing and dynamic recrystallization by coupling a cellular automaton with a topology deformation technique. Mater Sci Eng A, 2010, 527: 5539–5549CrossRefGoogle Scholar
  37. 37.
    Shen Y G, Lu Y H, Liu Z J. Microstructure evolution and grain growth of nanocomposite TiN-TiB2 films: Experiment and simulation. Surf Coat Technol, 2006, 200: 6474–6478CrossRefGoogle Scholar
  38. 38.
    Yang B J, Hattiangadi A. Simulation of steel microstructure evolution during induction heating. Mater Sci Eng A, 2010, 527: 2978–2984CrossRefGoogle Scholar
  39. 39.
    Yu X F, Chen S H, Wang L. Simulation of recrystallization in cold worked stainless steel and its effect on chromium depletion by cellular automaton. Comput Mater Sci, 2009, 46: 66–72CrossRefGoogle Scholar
  40. 40.
    Sahay S S, Malhotra C P, Kolkhede A M. Accelerated grain growth behavior during cyclic annealing. Acta Mater, 2003, 51: 339–346CrossRefGoogle Scholar
  41. 41.
    Li D Z, Xiao N M, Lan Y J, et al. Growth modes of individual ferrite grains in the austenite to ferrite transformation of low carbon steels. Acta Mater, 2007, 55: 6234–6249CrossRefGoogle Scholar
  42. 42.
    Sasikumar R, Sreenivisan R. Two dimensional simulation of dendrite morphology. Acta Metall, 1994, 42: 2381–2386CrossRefGoogle Scholar
  43. 43.
    Nastac L. Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys. Acta Metall, 1999, 47: 4253–4262Google Scholar
  44. 44.
    Jacot A, Rappaz M. A pseudo-front tracking technique for the modelling of solidification microstructures in multi-component alloys. Acta Mater, 2002, 50: 1909–1926CrossRefGoogle Scholar
  45. 45.
    Kremeyer J. Cellular cutomata investigations of binary solidification. J Comput Phys, 1998, 142: 243–262zbMATHCrossRefGoogle Scholar
  46. 46.
    Lan Y J, Li D Z, Li Y Y, et al. A mesoscale cellular automaton model for curvature-driven grain growth. Metall Mater Trans B, 2006, 37: 119–129CrossRefGoogle Scholar
  47. 47.
    Zheng C W, Xiao N M, Li D Z, et al. Mesoscopic modeling of austenite static recrystallization in a low carbon steel using a coupled simulation method. Comput Mater Sci, 2009, 45: 568–575CrossRefGoogle Scholar
  48. 48.
    Janssens K G F, Holm E A, Foiles S M. Introducing solute drag in irregular cellular automata modeling of grain growth. Mater Sci Forum, 2004, 467–470: 1045–1050CrossRefGoogle Scholar
  49. 49.
    Zheng C W, Xiao N M, Li D Z, et al. Microstructure prediction of the austenite recrystallization during multi-pass steel strip hot rolling: A cellular automaton modeling. Comput Mater Sci, 2008, 44: 507–514CrossRefGoogle Scholar
  50. 50.
    Cummins S J, Francois M M, Kothe D B. Estimating curvature from volume fractions. Comput Struct, 2005, 83: 425–434CrossRefGoogle Scholar
  51. 51.
    Derby B, Ashby M F. On dynamic recrystallisation. Scr Metall, 1987, 21: 879–884CrossRefGoogle Scholar
  52. 52.
    Nes E, Ryum N, Hunderi O. On the zener drag. Acta Metall, 1985, 33: 11–22CrossRefGoogle Scholar
  53. 53.
    Doherty R, Hughes D A, Humphreys F J, et al. Current issues in re-crystallization: A review. Mater Sci Eng A, 1997, 238: 219–274CrossRefGoogle Scholar
  54. 54.
    Rollett A D. Overview of modeling and simulation of re-crystallization. Progr Mater Sci, 1997, 42: 79–99CrossRefGoogle Scholar
  55. 55.
    Fan X G, Yang H, Sun Z C. Quantitative analysis of dynamic recrystallization behavior using a grain boundary evolution based kinetic model. Mater Sci Eng A, 2010, 527: 5368–5377CrossRefGoogle Scholar
  56. 56.
    Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena. Oxford: Pergamon Press, 1995Google Scholar
  57. 57.
    Doherty R D. Recrystallization of Metallic Materials. Berlin: Springer, 1978. 23Google Scholar
  58. 58.
    Mark A M. A review of microstructural computer models used to simulate grain growth and recrystallisation in aluminum alloys. J Light Metals, 2002, 2: 125–135CrossRefGoogle Scholar
  59. 59.
    Peczak P, Luton M J. A Monte Carlo study of the influence of dynamic recovery on dynamic recrystallization. Acta Metal Mater, 1993, 41: 59–71CrossRefGoogle Scholar
  60. 60.
    Peczak P. A Monte Carlo study of influence of deformation temperature on dynamic recrystallization. Acta Metall Mater, 1995, 43: 1279–1291CrossRefGoogle Scholar
  61. 61.
    Ding R, Guo Z X. Coupled quantitative simulation of microstructure evolution and plastic flow during dynamic re-crystallization. Acta Mater, 2001, 49: 3163–3175CrossRefGoogle Scholar
  62. 62.
    Ding R, Guo Z X. Microstructural modeling of dynamic re-crystallization using an extended cellular automaton approach. Comput Mater Sci, 2002, 23: 209–218CrossRefGoogle Scholar
  63. 63.
    Ding R, Guo Z X. Microstructural evolution of a Ti-6Al-4V alloy during phase processing: Exprimental and simulative investigations. Mater Sci Tech, 2004, 365: 172–179Google Scholar
  64. 64.
    Lan Y J, Xiao N M, Li D Z, et al. Mesoscale simulation of deformed austenite decomposition into ferrite by coupling a cellular automaton method with a crystal plasticity finite element model. Acta Mater, 2005, 53: 991–1003CrossRefGoogle Scholar
  65. 65.
    Rollett A D, Luton M J, Srolovitz D J. Microstructural simulation of dynamic recrystallization. Acta Metal Mater, 1992, 40: 43–55CrossRefGoogle Scholar
  66. 66.
    Grong Ø, Shercliff H R. Microstructural modeling in metals processing. Prog Mater Sci, 2002, 47: 163–287CrossRefGoogle Scholar
  67. 67.
    Yazdipour N, Davies C H J, Hodgson P D. Microstructural modeling of dynamic recrystallization using irregular cellular automata. Comput Mater Sci, 2008, 44: 566–576CrossRefGoogle Scholar
  68. 68.
    Chen F, Liu J, Cui Z S, et al. Modeling and simulation on dynamic recrystallization of 30Cr2Ni4MoV rotor steel using the cellular automaton method. Model Simul Mater Sci Eng, 2009, 17: 1–19CrossRefGoogle Scholar
  69. 69.
    Ding H L, He Y Z. Cellular automata simulation of grain growth in three dimensions based on the lowest-energy principle. J Crystal Growth, 2006, 293: 489–497CrossRefGoogle Scholar
  70. 70.
    McLean D. Grain Boundaries in Metals. Oxford: Oxford University Press, 1957Google Scholar
  71. 71.
    Zhao Y J, Cui Z S. Investigation on strain dependence of dynamic recrystallization behavior using an inverse analysis method. Mater Sci Eng A, 2010, 527: 3111–3119CrossRefGoogle Scholar
  72. 72.
    Bos C, Mecozzi M G, Sietsma J. A microstructure model for recrystallisation and phase transformation during the dual-phase steel annealing cycle. Comput Mater Sci, 2010, 48: 692–699CrossRefGoogle Scholar
  73. 73.
    Voorhees P W. Solution to the multi-particle diffusion problem with applications to ostwald ripening-II. Computer simulations. Acta Metall, 1984, 32: 2013–2030CrossRefGoogle Scholar
  74. 74.
    Pham T T, Hawbolt E B, Brimacombe J K. Predicting the onset of transformation under noncontinuous cooling conditions: Part I. Theory. Metall Mater Trans A, 1995, 26: 1987–1992CrossRefGoogle Scholar
  75. 75.
    Christian J. The Theory of Phase Transformations in Metals and Alloys. Oxford: Pergamon Press, 1981Google Scholar
  76. 76.
    Jilt S, Sybrand V D Z. A concise model for mixed-mode phase transformations in the solid state. Acta Mater, 2004, 52: 4143–4152CrossRefGoogle Scholar
  77. 77.
    Saurabh K, Monojit D, Suvankar G, et al. Prediction of phase transformation and microstructure in steel using cellular automaton technique. Scr Mater, 2004, 50: 891–895CrossRefGoogle Scholar
  78. 78.
    Zhang L, Zhang C B, Wang Y M, et al. A cellular automaton investigation of the transformation from austenite to ferrite during continuous cooling. Acta Mater, 2003, 51: 5519–5527CrossRefGoogle Scholar
  79. 79.
    Cahn J W. Phase transformation theory. Acta Mater, 1956, 4: 449–459CrossRefGoogle Scholar
  80. 80.
    Xiao N M, Tong M M, Lan Y J, et al. Coupled simulation of the influence of austenite deformation on the subsequent isothermal austenite-ferrite transformation. Acta Mater, 2006, 54: 1265–1278CrossRefGoogle Scholar
  81. 81.
    Svoboda J, Fischer F D, Fratzl P, et al. Kinetics of interfaces during diffusional transformations. Acta Mater, 2001, 49: 1249–1259CrossRefGoogle Scholar
  82. 82.
    Gamsjager E, Antretter T, Schmaranzer C, et al. Diffusional phase transformation and deformation in steels. Comput Mater Sci, 2002, 25: 92–99CrossRefGoogle Scholar
  83. 83.
    Pezzee C F P, Dunand D C. The impingement effect of an inert immobile second phase on the recrystallization of a matrix. Acta Metall Mater, 1994, 42: 1509–1524CrossRefGoogle Scholar
  84. 84.
    Davies C. The effect of neighborhood on the kinetics of a cellular automaton recrystallization model. Scr Metall Mater, 1995, 33: 1139–1143CrossRefGoogle Scholar
  85. 85.
    Davies C. Growth of nuclei in a cellular automaton simulation of re-crystallization. Scr Mater, 1997, 36: 35–40CrossRefGoogle Scholar
  86. 86.
    Goetz R L, Seetharaman V. Modeling dynamic recrystallization using cellular automata. Scr Mater, 1998, 38: 405–413CrossRefGoogle Scholar
  87. 87.
    Davies C, Hong L. The cellular automaton simulation of static re-crystallization in cold rolled AA1050. Scr Mater, 1999, 40: 1145–1150CrossRefGoogle Scholar
  88. 88.
    Marx V, Reher F R, Gottstein G. Simulation of primary recrystallization using a modified three-dimensional cellular automaton. Acta Mater, 1999, 47: 1219–1230CrossRefGoogle Scholar
  89. 89.
    Raabe D, Becker R C. Coupling of a crystal plasticity finite-element model with a probabilistic cellular automaton for simulating primary static recrystallization in aluminum. Model Simul Mater Sci Eng, 2000, 8: 445–462CrossRefGoogle Scholar
  90. 90.
    Raabe D. Introduction of a scalable three-dimensional cellular automaton with a probabilistic switching rule for the discrete mesoscale simulation of recrystallization phenomena. Phil Mag A, 1999, 79: 2339–2358CrossRefGoogle Scholar
  91. 91.
    Lan Y J, Li D Z, Li Y Y, et al. A cellular automaton model for austenite to ferrite transformation in carbon steel under non-equilibrium interface conditions. Modell Simul Mater Sci Eng, 2004, 12: 719–729CrossRefGoogle Scholar
  92. 92.
    Janssens K G F, Vanini F, Reissner J N. Thermodynamic and kinetic coupling of a random grid cellular automaton for the simulation of grain growth. Adv Eng Mater, 2002, 4: 200–202CrossRefGoogle Scholar
  93. 93.
    Leyens C, Peters M. Titanium and Titanium Alloys. Weinheim: Wiley-VCH, 2003CrossRefGoogle Scholar
  94. 94.
    Semiatin S L, Kirby B C, Salishchev G A. Coarsening behavior of an alpha-beta titanium alloy. Metall Mater Trans A, 2004, 35: 2809–2819CrossRefGoogle Scholar
  95. 95.
    Semiatin S L, Corbett M W, Fagin P N, et al. Dynamic-coarsening behavior of an alpha-beta titanium alloy. Metall Mater Trans A, 2006, 37: 1125–1136CrossRefGoogle Scholar
  96. 96.
    Tong M M, Li D Z, Li Y Y. A q-state Potts model-based Monte Carlo method used to model the isothermal austenite-ferrite transformation under non-equilibrium interface condition. Acta Mater, 2005, 53: 1485–1497CrossRefGoogle Scholar
  97. 97.
    Spittle J A, Brown S G R. 3D cellular automaton model of coupled growth in 2-component systems. Acta Metall Mater, 1994, 42: 1811–1815CrossRefGoogle Scholar
  98. 98.
    Janssens K G F. Three dimensional, space-time coupled cellular automata for the simulation of recrystallization and grain growth, Modell. Simul Mater Sci, 2003, 11: 157–171CrossRefGoogle Scholar
  99. 99.
    Das S, Abbod M F, Zhu Q, et al. A combined neuro fuzzy-cellular automata based material model for finite element simulation of plane strain compression. Comput Mater Sci, 2007, 40: 366–375CrossRefGoogle Scholar
  100. 100.
    Dewri R, Chakraborti N. Simulating recrystallization through cellular automata and genetic algorithms. Modell Simul Mater Sci Eng, 2005, 13: 173–183CrossRefGoogle Scholar
  101. 101.
    Kugler G, Turk R. Study of the influence of initial microstructure topology on the kinetics of static recrystallization using a cellular automata model. Comput Mater Sci, 2006, 37: 284–291CrossRefGoogle Scholar
  102. 102.
    Brown S, Wlassich J. Application of invariant set theory. Metall Trans A, 1992, 23: 2091–2103CrossRefGoogle Scholar
  103. 103.
    Mukhopadhyay P, Loeck M, Gottstein. A cellular operator model for the simulation of static recrystallization. Acta Mater, 2007, 55: 551–564CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.State Key Laboratory of Solidification Processing, School of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations