Science China Technological Sciences

, Volume 54, Issue 5, pp 1095–1106

On the optimization problem of model-based monitoring

  • L. Ginzinger
  • M. N. Sahinkaya
  • B. Heckmann
  • P. Keogh
  • H. Ulbrich
Article

Abstract

Today there is a big interest in reducing the maintenance costs and in increasing the reliability of machines in continuous operation. Therefore, maintenance on condition is used. State-of-the-art is a trend analysis and a fault prediction made only based on sensor signals and stochastic methods. The identification possibilities of this technique are limited. A new concept for model-based monitoring has been developed for more detailed fault identification. The developed concept determines the condition of a machine after the occurrence of a fault. The concept is based on a simulation including various faults and an optimization tool. The development of a cost function and the optimization is one of the challenges of such a concept. Using an AMB rotor system with an auxiliary bearing, the new concept of model-based monitoring is investigated using experiments and the optimization is discussed in this paper.

Keywords

model-based monitoring rotordynamics optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burrows C R, Keogh P S, Sahinkaya M N. Progress towards smart rotating machinery through the use of active bearings. J Mech Eng Sci, 2009, 223(12): 2849–2859Google Scholar
  2. 2.
    Abulrub A H G, Sahinkaya M N, Burrows C R, et al. Performance assessment of a multi-frequency controller applied to a flexible rotor magnetic bearing system-contact dynamics. In: Motion and Vibration Control: Selected Papers from Movic 2008, Springer, 2008Google Scholar
  3. 3.
    Abulrub A H G, Sahinkaya M N, Keogh P S, et al. Adaptive control of active magnetic bearings to prevent rotor-bearing contact. In: Proc. of ASME International Mechanical Engineering Congress and Exposition (IMECE2006), Chicago, 2006Google Scholar
  4. 4.
    Frank P M, Ding X. Frequency domain approach to optimally robust residual generation and evaluation for model-based fault diagnosis. Automatica, 1994, 30(5): 789–804CrossRefMATHGoogle Scholar
  5. 5.
    Cole M O T, Keogh P S, Sahinkaya M N, et al. Towards fault-tolerant active control of rotor-magnetic bearing systems. Control Eng Practice, 2004, 12(4): 491–501CrossRefGoogle Scholar
  6. 6.
    Cade I S, Keogh P S, Sahinkaya M N. Fault identification in rotor/magnetic bearing systems using discrete time wavelet coefficients. IEEE ASME T Mech, 2005, 10(6): 648–657CrossRefGoogle Scholar
  7. 7.
    Sahinkaya M N, Cole M O T, Burrows C R. Fault detection and tolerance in synchronous vibration control of rotor-magnetic bearing systems. J Mech Eng Sci, 2001, 215(C12): 1401–1416Google Scholar
  8. 8.
    Cade I S, Sahinkaya M N, Burrows C R, et al. An active auxiliary bearing control strategy to reduce the onset of asynchronous periodic contact modes in rotor/magnetic bearing systems. In: Proceedings of ASME Turbo Expo 2009: Power for Land, Sea and Air (GT2009), Orlando, 2009Google Scholar
  9. 9.
    Heckmann B, Ginzinger L, Ulbrich H. Model-based identification of unbalance and angular misalignment in a rotor system. In: Proc. of the Thirteenth International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-13), Honolulu, 2010Google Scholar
  10. 10.
    Förg M, Zander R, Ulbrich H. A framework for the efficient simulation of spatial contact problems. In: Proc. of the ECCOMAS Conference on Multi-Body Systems, Milano, Italy, 2007Google Scholar
  11. 11.
    Zander R, Schindler T, Friedrich M, et al. Non-smooth dynamics in academia and industry: recent work at tu münchen. Acta Mechanica, 2008, 195: 167–183CrossRefMATHGoogle Scholar
  12. 12.
    Brogliato B, TenDam A A, Paoli L, et al. Numerical simulation of finite dimensional multibody nonsmooth mechanical systems. ASME Appl Mech Rev, 2002, 55: 107–150CrossRefGoogle Scholar
  13. 13.
    Studer C. Augmented time-stepping integration of non-smooth dynamical systems. PhD Thesis. ETH E-Collection, 2008Google Scholar
  14. 14.
    Wasfy T, Noor A. Computational strategies for flexible multibody systems. Appl Mech Rev, 2003, 56: 553–613CrossRefGoogle Scholar
  15. 15.
    Zander R. Flexible multi-body systems with set-valued force laws. In: Fortschritt-Berichte VDI: Reihe 20, Rechnerunterstützte Verfahren, Düsseldorf, 2009Google Scholar
  16. 16.
    Shabana A, Bauchau O, Hulbert G. Integration of large deformation finite element and multibody system algorithms. J Comput Nonlinear Dynam, 2007, 2: 351–359CrossRefGoogle Scholar
  17. 17.
    Simo J C, Vu-Quoc L. A geometrically-exact rod model incorporating shear and torsion-warping deformation. Int J Solid Struct, 1991, 27: 371–393CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Schindler T, Friedrich M, Ulbrich H. Computing time reduction possibilities in multibody dynamics. In: Multibody Dynamics: Computational Methods and Applications, 2010Google Scholar
  19. 19.
    Förg M. Mehrkörpersysteme mit mengenwertigen kraftgesetzen—theorie und numerik. VDI-Verlag, Düsseldorf, 2007Google Scholar
  20. 20.
    Ehehalt U, Markert R. Rotor motion during stator contact. In: Proc. of the 6th IFToMM Conf. on Rotor Dynamics, Sydney, 2002Google Scholar
  21. 21.
    Kelley C T. Iterative methods for optimization. Front Appl Mathe, 1999, 18: 1–10MathSciNetGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • L. Ginzinger
    • 1
  • M. N. Sahinkaya
    • 1
  • B. Heckmann
    • 2
  • P. Keogh
    • 1
  • H. Ulbrich
    • 2
  1. 1.Department of Mechanical Engineering, Faculty of Engineering and DesignUniversity of BathBathUK
  2. 2.Institute of Applied MechanicsTechnische Universität MünchenGarchingGermany

Personalised recommendations