Advertisement

Science China Technological Sciences

, Volume 53, Issue 12, pp 3175–3182 | Cite as

Ab initio molecular dynamics simulation of the atom packing and density of Al-Ni amorphous alloys

  • ChunYan Yu
  • XiDong HuiEmail author
  • XiaoHua Chen
  • XingJun Liu
  • DeYe Lin
  • ZiKui Liu
  • GuoLiang Chen
Article

Abstract

Al-Ni alloys have better glass forming ability (GFA) than other Al-based alloys. However, the relationship among the atomic arrangement, glass transition, packing density and composition hasn’t been systematically studied. In this paper the ab initio molecular dynamics simulation (AIMD) was performed on the atom packing and density of Al x Ni100−x (x=80, 83, 85, 86, 87 and 90) alloys. The pair correlation function and Voronoi tessellation indicated that there are obvious topological and chemical short-range orders in these alloys. The topological structure consists of Al-centered icosahedra like and Ni-centered tri-capped trigonal prism (TTP) like polyhedra. There is strong chemical short-range ordering between Al and Ni atoms indicated by the bond-length of Al-Ni pair shorter than the sum of the radii of Al and Ni atoms, which increases with the increasing of Ni content. It is shown that the densities of amorphous alloys don’t agree with the linear law with a peak at x=85. Based on the features of the structure and density, it is concluded that Al-Ni alloys at x=84–86 have high GFA, which can be extended to multi-component Al-based alloys.

Keywords

AIMD Al-Ni alloys density short-range order chemical short-range order 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Suzuki R O, Komatsu Y, Kobayashi K E, et al. Formation and crystallization of Al-Fe-Si amorphous alloys. J Mater Sci, 1983, 18(4): 1195–1201CrossRefGoogle Scholar
  2. 2.
    Inoue A, Bizen Y, Kimura H M, et al. Development of compositional short-range ordering in an Al50Ge40Mn10 amorphous alloy upon annealing. J Mater Sci Lett, 1987, 6(7): 811–814CrossRefGoogle Scholar
  3. 3.
    He Y, Poon S J, Shiflet G J. Synthesis and properties of metallic glasses that contain aluminum. Science, 1988, 241(2): 1640–1642CrossRefGoogle Scholar
  4. 4.
    Zhu A W, Shiflet G J, Miracle D B. Glass forming ranges of Al-rare earth metal alloys: Thermodynamic and kinetic analysis. Scripta Mater, 2004, 50(7): 987–991CrossRefGoogle Scholar
  5. 5.
    Zhu A W, Poon S J, Shiflet G J. On glass formability of Al-Gd-Ni(Fe). Scripta Mater, 2004, 50(12): 1451–1455CrossRefGoogle Scholar
  6. 6.
    Senkov O N, Miracle D B. Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys. Mater Res Bull, 2001, 36(12): 2183–2198CrossRefGoogle Scholar
  7. 7.
    Guo F Q, Enouf S, Poon S J. Formation of ductile Al based metallic glasses without rare-earth elements. Philos Mag Lett, 2001, 81(3): 203–211CrossRefGoogle Scholar
  8. 8.
    Sheng H W, Luo W K, Alamgir F M, et al. Atomic packing and short-to-mediumrange order in metallic glasses. Nature, 2006, 439(26): 419–425CrossRefGoogle Scholar
  9. 9.
    Inoue A, Masumoto T. X-ray diffraction study of amorphous Al77.5Mn22.5 and Al56Si30Mn14 alloys. J Mater Sci, 1988, 23(2): 753–756CrossRefGoogle Scholar
  10. 10.
    Zhang L, Wu Y S, Bian X F, et al. Short-range and medium-range order in liquid and amorphous Al90Fe5Ce5 alloys. J Non-Cryst Solids, 2000, 262(1–3): 169–176CrossRefGoogle Scholar
  11. 11.
    Qin J Y, Bian X F, Sliusarenko S I, et al. Pre-peak in the structure factor of liquid Al-Fe alloy. J Phys: Conden Matter, 1998, 10(6): 1211CrossRefGoogle Scholar
  12. 12.
    Inoue A. Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog in Mater Sci, 1998, 43(5): 365–520CrossRefGoogle Scholar
  13. 13.
    Rachek O P. X-ray diffraction study of amorphous alloys Al-Ni-Ce-Sc with using Ehrenfests formula. J Non-Cryst Solid, 2006, 352(36–37): 3781–3786CrossRefGoogle Scholar
  14. 14.
    Ahn K, Louca D, Poon S J, et al. Topological and chemical ordering induced by Ni and Nd in Al87Ni7Nd6 metallic glass. Phys Rev B, 2004, 70(22): 224103CrossRefGoogle Scholar
  15. 15.
    Jakse N, le Bacq O, Pasturel A. Chemical and icosahedral short-range orders in liquid and undercooled Al80Mn20 and Al80Ni20 alloys: A first-principles-based approach. J Chem Phys, 2005, 123(10): 104508CrossRefGoogle Scholar
  16. 16.
    Li R Y, Qin J Y, Gu T K, et al. Structure of liquid Al80Mn20 alloy by reverse Monte Carlo simulation. J Non-Cryst Solid, 2008, 354(15–16): 1736–1739CrossRefGoogle Scholar
  17. 17.
    Li H, Ding F, Wang J L, et al. Structural studies of clusters in melt of FeAl compound. J Chem Phys, 2001, 114(14): 6413CrossRefGoogle Scholar
  18. 18.
    Gu T K, Qin J Y, Bian X F. Correlation between local structure of melts and glass forming ability for Al-based alloys: A first-principles study. Appl Phys Lett, 2007, 91: 081907CrossRefGoogle Scholar
  19. 19.
    Inoue A, Matsumoto N, Masumoto T. Al-Ni-Y-Co amorphous alloys with high mechanical strengths, wide supercooled liquid region and large glass forming capacity, Mater Trans-JIM, 1990, 31: 493–500Google Scholar
  20. 20.
    Sanders W S, Warner J S, Miracle D B. Stability of Al-rich glasses in the Al-La-Ni system. Intermetallics, 2006, 14: 348CrossRefGoogle Scholar
  21. 21.
    Horbach J, Das S K, Griesche A, et al. Self-diffusion and interdiffusion in Al80Ni20 melts: Simulation and experiment. Phys Rev B, 2007, 75: 174304CrossRefGoogle Scholar
  22. 22.
    Wang L, Wang Y Q, Peng C X, et al. Medium-range structural order in liquid Ni20Al80 alloy: Experimental and molecular dynamics studies. Phys Lett A, 2006, 350(5–6): 405–409CrossRefGoogle Scholar
  23. 23.
    Miracle D B, Senkov O N. A geometric model for atomic configurations in amorphous Al alloys. J Non-Cryst Solid, 2003, 319: 174–191CrossRefGoogle Scholar
  24. 24.
    Sheng H W, Cheng Y Q, Lee P L, et al. Atomic packing in multicomponent aluminum-based metallic glasses. Acta Mater, 2008, 56: 6264–6272CrossRefGoogle Scholar
  25. 25.
    Li G Q, Borisenko K B, Chen Y X. Local structure variations in Al89La6Ni5 metallic glass. Acta Mater, 2009, 57(3): 804–811CrossRefGoogle Scholar
  26. 26.
    Bernal J D. A geometrical approach to the structure of liquids. Nature, 1959, 183(4655): 141–147CrossRefGoogle Scholar
  27. 27.
    Miracle B D. A structural model for metallic glasses. Nat Mater, 2004, 3(10): 697–702CrossRefGoogle Scholar
  28. 28.
    Sheng H W, Luo W K, Alamgir F M, et al. Atomic packing and short-to-medium-range order in metallic glasses. Nature, 2006, 439: 419–425CrossRefGoogle Scholar
  29. 29.
    Li Y, Guo Q, Kalb J. A, et al. Matching glass-forming ability with the density of the amorphous phase. Science, 2008, 322: 1816–1819CrossRefGoogle Scholar
  30. 30.
    Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett, 1985, 55(22): 2471–2474CrossRefGoogle Scholar
  31. 31.
    Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6(1): 15–50CrossRefGoogle Scholar
  32. 32.
    Kresse G, Furthmüller J. Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set. Phys Rev B, 1996, 54(16): 11169–11186CrossRefGoogle Scholar
  33. 33.
    Blöchl P E. Projector augmented-wave method. Phys Rev B, 1994, 50(24): 17953–17979CrossRefGoogle Scholar
  34. 34.
    Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59(3): 1758–1775CrossRefGoogle Scholar
  35. 35.
    Wang Y, Perdew J P. Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Phys Rev B, 1991, 44(24): 13298–13307CrossRefGoogle Scholar
  36. 36.
    Nose S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys, 1984, 81(1): 511–519CrossRefGoogle Scholar
  37. 37.
    Verlet L. Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev, 1967, 159(1): 98–103CrossRefGoogle Scholar
  38. 38.
    Shimoli M. Liquid Metals. Washington: Academic Press, 1977Google Scholar
  39. 39.
    Mattern N, Kühn U, Hermann H, et al. Short-range order of Zr62−xTixAl10Cu20Ni8 bulk metallic glasses. Acta Mater, 2002, 50: 305–314CrossRefGoogle Scholar
  40. 40.
    Allen M P, Tildesley D J. Computer Simulation of Liquids. Oxford: Oxford University Press, 1989Google Scholar
  41. 41.
    Maret M, Pomme T, Pasturel A. Structure of liquid Al80Ni20 alloy. Phys Rev B, 1990, 42(3): 1598–1604CrossRefGoogle Scholar
  42. 42.
    Finney J L. Random packings and the structure of simple liquids: The geometry of random close packing. Proc R Soc Lond A, 1970, 319(1539): 479–493CrossRefGoogle Scholar
  43. 43.
    Nelson D R. Order, frustration, and defects in liquids and glasses. Phys Rev B, 1983, 28: 5515–5535CrossRefMathSciNetGoogle Scholar
  44. 44.
    Bernal J D. Geometry of the structure of monatomic liquids. Nature, 1960, 185(4707): 68–70CrossRefGoogle Scholar
  45. 45.
    Zalewski W, Antonowicz J, Bacewicz R. Local atomic order in Al-based metallic glasses studied using XAFS method. J Alloy Compd, 2009, 468: 40–46CrossRefGoogle Scholar
  46. 46.
    Hsieh H Y, Toby B H, He Y. Atomic structure of amorphous Al90FexCe10−x. J Mater Res, 1990, 5(12): 2807–2812CrossRefGoogle Scholar
  47. 47.
    Cowley J M. An approximate theory of order in alloys. Phys Rev, 1950, 77(5): 669–675zbMATHCrossRefGoogle Scholar
  48. 48.
    Widom M, Lehyani A I, Moriarty J A. First-principles interatomic potentials for transition-metal aluminides. Phys Rev B, 2000, 62(6): 3648–3657CrossRefGoogle Scholar
  49. 49.
    Mukherjee S, Schroers J, Zhou Z. Viscosity and specific volume of bulk metallic glass-forming alloys and their correlation with glass forming ability. Acta Mater, 2004, 52(12): 3689–3695CrossRefGoogle Scholar
  50. 50.
    Yokoyama Y, Ishikawa T, Okada J T. Volume and viscosity of Zr-Cu-Al glass-forming liquid alloys. J Non-Cryst Solid, 2009, 355: 317–322CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • ChunYan Yu
    • 1
  • XiDong Hui
    • 1
    Email author
  • XiaoHua Chen
    • 1
  • XingJun Liu
    • 1
  • DeYe Lin
    • 1
  • ZiKui Liu
    • 2
  • GuoLiang Chen
    • 1
  1. 1.State Key Laboratory for Advanced Metals and MaterialsUniversity of Science and Technology BeijingBeijingChina
  2. 2.Department of Materials Science and EngineeringPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations