Science China Technological Sciences

, Volume 53, Issue 6, pp 1717–1724 | Cite as

Effects of Martian crustal magnetic field on its ionosphere

  • Hong Zou
  • HongFei Chen
  • Ning Yu
  • WeiHong Shi
  • XiangQian Yu
  • JiQing Zou
  • WeiYing Zhong


The effect of the Martian crustal magnetic field is one of the hot topics of the study of Martian ionosphere. The studies on this topic are summarized in this paper. Main data of the Martian ionosphere were resulted from radio occultation experiments. According to the observations, the electron density scale height and the peak electron density of the Martian ionosphere are influenced by its crustal magnetic field. The strong horizontal magnetic field prevents the vertical diffusion of the plasma and makes the electron density scale height in the topside ionosphere close to that in the photo equilibrium region. In the cusp-like regions with strong vertical magnetic field, the enhanced vertical diffusion leads to a larger electron density scale height in the diffusion equilibrium region. The observation of radio occultation experiment onboard Mars Global Surveyor (MGS) showed that the averaged peak electron density observed in the southern hemisphere with strong crustal magnetic field was slightly larger than that in the northern hemisphere with weak crustal magnetic field. The Mars advanced radar for subsurface and ionosphere sounding (MARSIS) onboard Mars Express (MEX) was the first topside sounder to be used to observe Martian ionosphere. The MARSIS results confirmed that the enhancement of the peak electron density occurred in cusp-like regions with open field lines, and the amount of the enhancement was much larger than that observed by the radio occultation experiment. There are two possible mechanisms for the peak electron density enhancement in the cusp-like crustal magnetic field regions: One is the precipitation of the energetic particles and the other is the heating by the waves excited by plasma instabilities. It’s difficult to determine which one is the key mechanism for the peak electron density enhancement. Based on these studies, several interesting problems on the Martian ionosphere and plasma environment are presented.


Mars exploration Martian crustal megnetic field Martian ionosphere energetic particles detection plasma wave detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rishbeth H, Garriott O K. Introduction to Ionospheric Physics. New York: Academic Press, 1969Google Scholar
  2. 2.
    Eshleman V R. The Radio Occultation Method for the Study of Planetary Atmospheres, Planet. Space Sci, 1973, 21: 1521–1531CrossRefGoogle Scholar
  3. 3.
    Bougher S W, Engel S, Hinson D, et al. Mars Global Surveyor radio science electron density profiles: Neutral atmosphere implications. Geophys Res Lett, 2001, 28: 3091–3094CrossRefGoogle Scholar
  4. 4.
    Bauer S J, Hantsch M H. Solar cycle variation of the upper atmosphere temperature of Mars. Geophys Res Lett, 1989, 16: 373–376CrossRefGoogle Scholar
  5. 5.
    Zhang M H G, Luhmann J G, Kliore A J, et al. A post-pioneer Venus reassessment of the Martian dayside ionosphere as observed by radio occultation methods. J Geophys Res, 1990, 95: 14829–14839CrossRefGoogle Scholar
  6. 6.
    Zou H, Wang J S, Nielsen E. Reevaluating the relationship between the Martian ionospheric peak density and the solar radiation. J Geophys Res, 2006, 111: A07305CrossRefGoogle Scholar
  7. 7.
    Hantsch M H, Bauer S J. Solar control of the Mars ionosphere. Planet Space Sci, 1990, 38: 539–542CrossRefGoogle Scholar
  8. 8.
    Wang J S, Nielsen E. Solar wind modulation of the Martian ionosphere observed by Mars Global Surveyor. Ann Geophys, 2004, 22: 2277–2281Google Scholar
  9. 9.
    Zou H, Wang J S, Nielsen E. Effect of the seasonal variations in the lower atmosphere on the altitude of the ionospheric main peak at Mars. J Geophys Res, 2005, 110: A09311CrossRefGoogle Scholar
  10. 10.
    Wang J S, Nielsen E. Behavior of the Martian dayside electron density peak during global dust storms. Planet Space Sci, 2003, 51: 329–338CrossRefGoogle Scholar
  11. 11.
    Wang J S, Nielsen E. Evidence for topographic effects on the Martian ionosphere. Planet Space Sci, 2004, 51: 881–886CrossRefGoogle Scholar
  12. 12.
    Ness N F, Acuña M H, Connerney J E P, et al. Effects of magnetic anomalies discovered at Mars on the structure of the Martian ionosphere and solar wind interaction as follows from radio occultation experiments. J Geophys Res, 2000, 105: 15991–16004CrossRefGoogle Scholar
  13. 13.
    Krymskii A M, Breus T K, Ness N F, et al. Structure of the magnetic field fluxes connected with crustal magnetization and topside ionosphere at Mars. J Geophys Res, 2002, 107: 1245CrossRefGoogle Scholar
  14. 14.
    Shinagawa H. The ionospheres of Venus and Mars. Adv Space Res, 2004, 33: 1924–1931CrossRefGoogle Scholar
  15. 15.
    Acuña M H, Connereney J E P, Wasilewski P, et al. Magnetic field of Mars: Summary of results from aerobraking and mapping orbits. J Geophys Res, 2001, 106: 23403–23417CrossRefGoogle Scholar
  16. 16.
    Connereney J E P, Acuña M H, Wasilewski P, et al. The global magnetic field of Mars and implications for crustal evolution. Geophys Res Lett, 2001, 28: 4015–4018CrossRefGoogle Scholar
  17. 17.
    Krymskii A M, Breus T K, Nielsen E. On possible observational evidence in electron density profiles of a magnetic field in the Martian ionosphere. J Geophys Res, 1995, 100: 3721–3730CrossRefGoogle Scholar
  18. 18.
    Krymskii A M, Breus T K, Ness N F, et al. Effect of crustal magnetic fields on the near terminator ionosphere at Mars: Comparison of in situ magnetic field measurements with the data of radio science experiments on board Mars Global Surveyor. J Geophys Res, 2003, 108(A12): 1431CrossRefGoogle Scholar
  19. 19.
    Krymskii A M, Ness N F, Crider D H, et al. Solar wind interaction with the ionosphere/atmosphere and crustal magnetic fields at Mars: Mars Global Surveyor Magnetometer/Electron Reflectometer, radio science, and accelerometer data. J Geophys Res, 2004, 109: A11306CrossRefGoogle Scholar
  20. 20.
    Breus T K, Krymskii A M, Crider D H, et al. The effect of the solar radiation in the topside atmosphere/ionosphere of Mars: Mars Global Surveyor observations. J Geophys Res, 2004, 109: A09310CrossRefGoogle Scholar
  21. 21.
    Kliore A J. Radio occultation observations of ionospheres of Mars and Venus, in Venus and Mars: Atmosphere, Ionospheres, and Solar Wind Interactions. Geophys Monogr Ser, 1992, 66: 265–277Google Scholar
  22. 22.
    Breus T K, Pimenov K Y, Izakov M N, et al. Conditions in the Martian ionosphere/atmosphere from a comparison of a thermospheric model with radio occultation data. Planet Space Sci, 1998, 46: 367–376CrossRefGoogle Scholar
  23. 23.
    Luhmann J G, Russell C T, Scarf F L, et al. Characteristics of the Mars-like limit of the Venus-solar wind interaction. J Geophys Res, 1987, 92: 8545–8558CrossRefGoogle Scholar
  24. 24.
    Axford W I. A commentary on our present understanding of the Martian magnetosphere. Planet Space Sci, 1991, 39: 167–175CrossRefGoogle Scholar
  25. 25.
    Breus T K. Solar wind interaction with Venus and Mars over the solar cycle, in Venus and Mars: Atmosphere, Ionosphere, and Solar Wind Interaction. Geophys Monogr Ser, 1992, 66: 387–403Google Scholar
  26. 26.
    Axford W I, Breus T K. Scenario of solar wind interaction with Venus and Mars. COSPAR Colloquia, 1994, 4: 207–216Google Scholar
  27. 27.
    Zhang M H, Luhmann J G. Comparison of peak ionosphere pressure at Mars and Venus with incident solar wind dynamic pressure. J Geophys Res, 1992, 97: 1017–1025CrossRefGoogle Scholar
  28. 28.
    Cravens T E, Kliore A J, Kozyra J U. The ionospheric peak on the Venus dayside. J Geophys Res, 1981, 86: 11323–11329CrossRefGoogle Scholar
  29. 29.
    Biondi M A. Charged-particle recombination processes, in Reaction Rate Handbook. Report DNA 1948H, 1981. 1–16Google Scholar
  30. 30.
    Gurnett D A, Kirchner D L, Huff R L, et al. Radar soundings of the ionosphere of mars. Science, 2005, 310: 1929–1933CrossRefGoogle Scholar
  31. 31.
    Nielsen E. Mars express and MARSIS. Space Sci Rev, 2004, 111: 245–262CrossRefGoogle Scholar
  32. 32.
    Nielsen E, Fraenz M, Zou H, et al. Local plasma processes and enhanced electron densities in the lower ionosphere in magnetic cusp regions on Mars. Planet Space Sci, 2006, 55: 2164–2172CrossRefGoogle Scholar
  33. 33.
    Lundin R, Winningham D, Barabash S, et al. Plasma acceleration above martian magnetic anomalies. Science, 2006, 311: 980–983CrossRefGoogle Scholar
  34. 34.
    Maurice J P, Kofman W, Kluzek E. Electron heating by plasma waves in the high latitude E-region and related effects: Observations. Adv Space Res, 1990, 10: 225–237CrossRefGoogle Scholar
  35. 35.
    Dimant Y S, Milikh G M. Model of anomalous electron heating in the E region: 1. Basic theory. J Geophys Res, 2003, 108(A9): 1350CrossRefGoogle Scholar
  36. 36.
    Fejer B G, Kelly M C. Ionosphere irregularities. Rev Geophys, 1981, 18: 401–454CrossRefGoogle Scholar
  37. 37.
    Bertaux J L, Leblanc F, Perrieret S, et al. Discovery of an aurora on Mars. Nature, 2005, 435: 790–794CrossRefGoogle Scholar
  38. 38.
    Bailey D K. Polar cap absorption. Planet Space Sci, 1964, 12: 495–541CrossRefGoogle Scholar
  39. 39.
    Lastovicka J. Monitoring and forecasting of ionospheric space weather-effects of geomagnetic storms. J Atmos Solar-Terr Phys, 2002, 64: 697–705CrossRefGoogle Scholar
  40. 40.
    Nielsen E, Schlegel K. Coherent radar Doppler measurements and their relationship to the ionospheric electron drift velocity. J Geophys Res, 1985, 90: 3498–3504CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hong Zou
    • 1
  • HongFei Chen
    • 1
  • Ning Yu
    • 1
  • WeiHong Shi
    • 1
  • XiangQian Yu
    • 1
  • JiQing Zou
    • 1
  • WeiYing Zhong
    • 1
  1. 1.Institute of Space Physics and Applied TechnologyPeking UniversityBeijingChina

Personalised recommendations