Advertisement

Science in China Series E: Technological Sciences

, Volume 52, Issue 10, pp 2877–2885 | Cite as

Prediction of SYM-H index by NARX neural network from IMF and solar wind data

  • Lei Cai
  • ShuYing MaEmail author
  • HongTao Cai
  • YunLiang Zhou
  • RuoSi Liu
Article

Abstract

SYM-H is one of the important indices for space weather. It indicates the intensity of magnetic storm, similarly to Dst index but with much higher time-resolution. In this paper an artificial neural network (ANN) of Nonlinear Auto Regressive with eXogenous inputs (NARX) has been developed to predict SYM-H index from solar wind and IMF data. In comparison with usual BP and Elman network, the new NRAX model shows much better prediction capability. For 15 testing great storms including 5 super-storms of Min. SYM-H < −200 nT, the cross-correlation of SYM-H indices between NARX network predicted and really observed is 0.91 as a whole. For the 5 individual super-storms, the lowest coefficients is 0.91 relating to the super-storm of March 2001 with Min. SYM-H of −434 nT; while for the two super-storms with Min. SYM-H ranging from −300 nT to −400 nT, the correlations reach as high as 0.93 and 0.96 respectively. The remarkable improvement of the model performance can be attributed to such a key feedback from the network output of SYM-H with a suitable length (about 120 min) to the input, which implies that some information on the quasi real-time ring currents with a proper length of history does its work in the prediction. It tells us that, in addition to the direct driving by solar wind and IMF, the own status of the ring current plays an important role in its evolution especially for recovery phase and must properly be considered in storm-time SYM-H prediction by ANN. The neural network model of NARX developed in this paper provides an effective way to achieve it.

Keywords

magnetic storm SYM-H index space weather prediction artificial neural network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    von Humboldt A. Die vollstaendigste aller bisherigen Beobachtungen ueber den Einfluss des Nordlichts auf die Magnetnadel. Ann Phys, 1808, 29: 425–429CrossRefGoogle Scholar
  2. 2.
    Chapman S, Ferraro V C A. A new theory of magnetic storm, Part 1: the initial phase. Terr Mag Atmos Elec, 1931, 36(2): 77–97CrossRefGoogle Scholar
  3. 3.
    Gosling T J. The flare myth. J Geophys Res, 1993, 98: 18937–18949CrossRefGoogle Scholar
  4. 4.
    Kamide Y, McPherron R L, Gonzalez W D, et al. Magnetic storms: Current understanding and outatanding questions. In: Tsurutani B T, Gonzalez W D, eds. Magnetic Storm. Geophys Monogr, Ser 98. Washington: AGU, 1997. 1–19. 12Google Scholar
  5. 5.
    Gonzalez W D, Joselyn J A, Kamide Y, et al. What is a geomagnetic storm? J Geophys Res, 1994, 99: 5771–5792CrossRefGoogle Scholar
  6. 6.
    Tsurutani B T, Gonzalez W D. The interplanetary causes of magnetic storms: A review. In: Tsurutani B T, Gonzalez W D, eds. Magnetic Storm. Geophys Monogr, Ser 98. Washington: AGU, 1997. 77–89Google Scholar
  7. 7.
    Daglis I A. The role of magnetosphere-ionosphere coupling in magnetic storm dynamics. In: Tsurutani B T, Gonzalez W D, eds. Magnetic Storm. Geophys Monogr, Ser 98. Washington: AGU, 1997. 107–116Google Scholar
  8. 8.
    Daglis I A. Ring current dynamics. Space Sci Rev, 2006, 124: 183–202CrossRefGoogle Scholar
  9. 9.
    Sugiura M, Poros D J. Hourly values of equatorial Dst for the IGY. Ann Int Geophys Year, 1964, 35: 9–45Google Scholar
  10. 10.
    Mayaud P N. Derivation, Meaning, and Use of Geomagnetic Indices. Geophysical Monograph 22. Washington D.C.: American Geophysical Union, 1980Google Scholar
  11. 11.
    Wanliss J A, Showalter K M. High-resolution global storm index: Dst versus SYM-H. J Geophys Res, 2006, 111: A02202CrossRefGoogle Scholar
  12. 12.
    Amata E, Pallocchia G, Consolini G, et al. Comparison between three algorithms for Dst predictions over the 2003–2005 period. J Atmos Sol-Terr Phys, 2008, 70: 496–502CrossRefGoogle Scholar
  13. 13.
    Burton R.K, McPherron R L, Russell C T. An empirical relationship between interplanetary conditions and Dst. J Geophys Res, 1975, 80: 4204–4214CrossRefGoogle Scholar
  14. 14.
    Wang C B, Chao J K, Lin C H. Influence of the solar wind dynamic pressure on the decay and injection of the ring current. J Geophys Res, 2003, 108(A9), 1341, doi: 10.1029/2003JA009851CrossRefGoogle Scholar
  15. 15.
    Baker D N. Statistical analyses in the study of solar wind/magnetosphere coupling. In: Kamide Y, Slavin J A, eds. Solar Wind-Magnetosphere Coupling, vol 17. Dordrecht: D Reidel Publishing Company, 1986Google Scholar
  16. 16.
    Wu J, Lundstedt H. Prediction of geomagnetic storms from solar wind data using Elman recurrent neural network. Geophys Res Lett, 1996, 23(4): 319–322CrossRefGoogle Scholar
  17. 17.
    Wu J, Lundstedt H. Geomagnetic storm predictions from solar wind data with the use of dynamic neural networks. J Geophys Res, 1997, 102: 14255–14268CrossRefGoogle Scholar
  18. 18.
    Lundstedt H, Gleisner H, Wintoft P. Operational forecasts of the geomagnetic Dst index. Geophys Res Lett, 2002, 29(24), 2181, doi: 10.1029/2002GL016151CrossRefGoogle Scholar
  19. 19.
    Pallocchia G, Amata E, Consolini G, et al. Geomagnetic Dst index forecast based on IMF data only. Ann Geophys, 2006, 24: 989–999CrossRefGoogle Scholar
  20. 20.
    Zhou Y L, Ma S Y, Luehr H, et al. An empirical relation to correct storm-time thermospheric mass density modeled by NRLMSISE-00 with CHAMP satellite air drag data. J Adv Space Res, 2008, doi: 10.1016/j.asr.2008.06.016Google Scholar
  21. 21.
    Elman J L. Finding structure in time. Cogn Sci, 1990, 14: 179–211CrossRefGoogle Scholar
  22. 22.
    Haykin S. Neural Networks: A Comprehensive Foundation, 2nd ed. New Jersey: Prentice-Hall Inc, 1999zbMATHGoogle Scholar

Copyright information

© Science in China Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Lei Cai
    • 1
  • ShuYing Ma
    • 1
    Email author
  • HongTao Cai
    • 1
  • YunLiang Zhou
    • 1
  • RuoSi Liu
    • 1
  1. 1.Department of Space Physics, College of Electronic InformationWuhan UniversityWuhanChina

Personalised recommendations