Science in China Series E: Technological Sciences

, Volume 52, Issue 10, pp 2895–2902 | Cite as

An asynchronous and parallel time-marching method: Application to three-dimensional MHD simulation of solar wind

Article

Abstract

An asynchronous and parallel time-marching method for three-dimensional (3D) time-dependent magnetohydrodynamic (MHD) simulation is used for large-scale solar wind simulation. It uses different local time steps in the corona and the heliosphere according to the local Courant-Friedrichs-Levy (CFL) conditions. The solar wind background with observed solar photospheric magnetic field as input is first presented. The simulation time for the background solar wind by using the asynchronous method is <1/6 of that by using the normal synchronous time-marching method with the same computation precision. Then, we choose the coronal mass ejection (CME) event of 13 November, 2003 as a test case. The time-dependent variations of the pressure and the velocity configured from a CME model at the inner boundary are applied to generate transient structures in order to study the dynamical interaction of a CME with the background solar wind flow between 1 and 230 Rs. This time-marching method is very effective in terms of computation time for large-scale 3D time-dependent numerical MHD problem. In this validation study, we find that this 3D MHD model, with the asynchronous and parallel time-marching method, provides a relatively satisfactory comparison with the ACE spacecraft observations at L1 point.

Keywords

asynchronous parallel MHD simulation CME 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gosling J T. Coronal mass ejections and magnetic flux ropes in interplanetary space. In: Priest E R, Lee L C, Russell C T, eds. Physics of Magnetic Flux Ropes. Geophys Monogr. Washington D. C.: AGU, 1990, 58: 343–364Google Scholar
  2. 2.
    Wu S T, Guo W P, Dryer M, et al. Dynamical evolution of a coronal streamer-flux rope system: II. A self-consistent non-planar magnetohydrodynamic solution. Sol Phys, 1997, 170(2): 265–282CrossRefGoogle Scholar
  3. 3.
    Wu S T, Guo W P, Michels D J, et al. MHD description of the dynamical relationships between a flux rope, streamer, coronal mass ejection, and magnetic cloud: An analysis of the January 1997 Sun- Earth connection event. J Geophys Res, 1999, 104(A7): 14789–14802CrossRefGoogle Scholar
  4. 4.
    Odstrcil D, Linker J A, Lionello R, et al. Merging of coronal and heliospheric numerical 2-D MHD models. J Geophys Res, 2002, 107(A12): SSH 14-1, 1493CrossRefGoogle Scholar
  5. 5.
    Usmanov A V, Goldstein M L, Besser B P, et al. A global MHD solar wind model with WKB Alfven waves: Comparison with Ulysses data. J Geophys Res, 2000, 105(A6): 12675–12696CrossRefGoogle Scholar
  6. 6.
    Feng X. A comparative study on 3-D solar wind structure observed by Ulysses and MHD simulation. Chin Sci Bull, 2005, 50(7): 672–678CrossRefGoogle Scholar
  7. 7.
    Shen F, Feng X, Wu S T, et al. Three-dimensional MHD simulation of CMEs in three-dimensional background solar wind with the self-consistent structure on the source surface as input: Numerical simulation of the January 1997 Sun-Earth connection event. J Geophys Res, 2007, 112(A6): A06109CrossRefGoogle Scholar
  8. 8.
    Karimabadi H, Driscoll J, Omelchenko Y A, et al. A new asynchronous methodology for modeling of physical systems: breaking the curse of Courant condition. J Comput Phys, 2005, 205(2): 755–775MATHCrossRefGoogle Scholar
  9. 9.
    Omelchenko Y A, Karimabadi H. Self-adaptive time integration of flux-conservativeequations with sources. J Comput Phys, 2006, 216(1): 179–194MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Omelchenko Y A, Karimabadi H. Event-driven hybrid particle-in-cell simulation: a new paradigm for multi-scale plasma modeling. J Comput Phys, 2006, 216(1): 153–178MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Omelchenko Y A, Karimabadi H. A time-accurate explicit multi-scale technique for gas dynamics. J Comput Phys, 2007, 226(1): 282–300MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Unfer T, Boeuf J P, Rogier F, et al. An asynchronous scheme with local time stepping for multi-scale transport problems: Application to gas discharges. J Comput Phys, 2007, 227(2): 898–918MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Feng X. A class of TVD type combined numerical scheme for MHD equations and its application to MHD numerical simulation (in Chinese). Chin J Space Sci, 2002, 22(4): 300–308Google Scholar
  14. 14.
    Tóth G. The ∇ · B =0 constraint in shock-capturing magnetohydrodynamics codes. J Comput Phys, 2000, 161(2): 605–652MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Parker E N. Interplanetary Dynamical Processes. New York: Wiley-Interscience, 1963MATHGoogle Scholar
  16. 16.
    Hu Y, Feng X, Wu S T, et al. Three-dimensional MHD modeling of the global corona throughout Solar Cycle 23. J Geophys Res, 2008, 113(A3): A03106CrossRefGoogle Scholar
  17. 17.
    Svalgaard L, Duvall T L, Scherrer P H. The strength of the suns polar fields. Sol Phys, 1978, 58(2): 225–239CrossRefGoogle Scholar
  18. 18.
    Svalgaard L. How good (or bad) are the inner boundary conditions for heliospheric solar wind modeling. SHINE 2006 Workshop. Utah: Rice University, 2006Google Scholar
  19. 19.
    Wang Y M, Sheeley Jr N R. On potential field models of the solar corona. Astrophys J, 1992, 392(1): 310–319CrossRefGoogle Scholar
  20. 20.
    Luhmann J G, Li Y, Arge C N, et al. Solar cycle changes in coronal holes and space weather cycles. J Geophys Res, 2002, 107(A8): 1154CrossRefGoogle Scholar
  21. 21.
    McComas D J, Barraclough B L, Funsten H O, et al. Solar wind observations over Ulysses’ first full polar orbit. J Geophys Res, 2000, 105(A5): 10419–10434CrossRefGoogle Scholar
  22. 22.
    McComas D J, Elliott H A, Schwadron N A, et al. The three-dimensional solar wind around solar maximum. Geophys Res Lett, 2003, 30(10): 24–1CrossRefGoogle Scholar
  23. 23.
    McComas D J, Elliott H A, Gosling J T, et al. Ulysses observations of very different heliosphere structure during the declining phase of solar activity cycle 23. Geophys Res Lett, 2006, 33(9): L09102CrossRefGoogle Scholar
  24. 24.
    Ogawa T, Den M, Tanaka T. Three-dimensional hydrodynamic code for interplanetary shock wave. In: Proceedings of ISSS-7. Kyoto: Kyoto University, 2005. 26–28Google Scholar
  25. 25.
    Dryer M. Multi-dimensional MHD simulation of solar-generated disturbances: Space weather forecasting of geomagnetic storms. AIAA J, 1998, 36(3): 365–370CrossRefGoogle Scholar
  26. 26.
    Fry C D, Sun W, Deehr C S, et al. Improvements to the HAF solar wind model for space weather predictions. J Geophys Res, 2001, 106(A10): 20985–21002CrossRefGoogle Scholar
  27. 27.
    Odstrcil D, Riley P, Zhao X P. Numerical simulation of the 12 May 1997 interplanetary CME event. J Geophys Res, 2004, 109(A2): A02116CrossRefGoogle Scholar
  28. 28.
    Zhou Y F, Feng X, Wu S T. Numerical simulation of the 12 May 1997 CME event. Chin Phys Lett, 2008, 25(2): 790–793CrossRefGoogle Scholar
  29. 29.
    Lepping R P, Jones J A, Burlaga L F. Magnetic field structure of interplanetary magnetic clouds at 1AU. J Geophys Res, 1990, 95(A8): 957–965CrossRefGoogle Scholar
  30. 30.
    Lynch B J, Zurbuchen T H, Fisk L A, et al. Internal structure of magnetic clouds: plasma and composition. J Geophys Res, 2003, 108(A6): SSH 6-1, 1239CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.SIGMA Weather Group, State Key Laboratory for Space Weather, Center for Space Science and Applied ResearchChinese Academy of SciencesBeijingChina

Personalised recommendations