Advertisement

Solar wind entry via flux tube into magnetosphere observed by Cluster measurements at dayside magnetopause during southward IMF

  • GuangQing YanEmail author
  • ZhenXing Liu
  • Chao Shen
  • M. Dunlop
  • A. Balogh
  • H. Rème
  • Y. V. Bogdanova
  • A. Fazakerley
Article

Abstract

By analyzing hot ion and electron parameters together with magnetic field measurements from Cluster, an event of magnetopause crossing of the spacecraft has been investigated. At the latitude of about 40° and magnetic local time (MLT) of 13:20 during the southward interplanetary magnetic field (IMF), a transition layer was observed, with the magnetospheric field configuration and cold dense plasma features of the magnetosheath. The particle energy-time spectrograms inside the layer were similar to but still a little different from those in the magnetosheath, obviously indicating the solar wind entry into the magnetosphere. The direction and magnitude of the accelerated ion flow implied that reconnection might possibly cause such a solar wind entry phenomenon. The bipolar signature of the normal magnetic component B N in magnetopause coordinates further supported happening of reconnection there. The solar wind plasma flowed toward the magnetopause and entered the magnetosphere along the reconnected flux tube. The magnetospheric branch of the reconnected flux tube was still inside the magnetosphere after reconnection and supplied the path for the solar wind entry into the dayside magnetosphere. The case analysis gives observational evidence and more details of how the reconnection process at the dayside low latitude magnetopause caused the solar wind entry into the magnetosphere.

Keywords

transport process magnetic reconnection solar wind-magnetosphere interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Johnstone A D, Burge S, Carter P J, et al. PEACE: a plasma electron and current experiment. Space Sci Rev, 1997, 79(1–2): 351CrossRefGoogle Scholar
  2. 2.
    Akasofu S I. Energy coupling between the solar wind and the magnetosphere. Space Sci Rev, 1981, 28(1): 121–190Google Scholar
  3. 3.
    Hasegawa H, Fujimoto M, Phan T D, et al. Transport of solar wind into magnetosphere through rolled-up Kelvin-Helmholtz vortices. Lett Nature, 2004, 430(6): 755–758CrossRefGoogle Scholar
  4. 4.
    Baumjohann W, Paschmann G. Solar wind magnetosphere coupling: Process and observations. Phys Scripta, 1987, 18(1): 61CrossRefGoogle Scholar
  5. 5.
    Burton R K, McPherron R L, Russell C T. An empirical relationship between interplanetary conditions and Dst. J Geophys Res, 1975, 80(31): 4204CrossRefGoogle Scholar
  6. 6.
    Fujomoto M, Terasawa T. Anomalous ion mixing within an MHD scale Kelvin-Helmholtz votex. J Geophys Res, 1995, 100(A7): 12025–12033CrossRefGoogle Scholar
  7. 7.
    Fujimoto M, Nishida A, Mukai T, et al. Plasma entry from the flanks of the near-Earth magnetotail: GEOTAIL observations in the dawn-side LLBL and the plasma sheet. J Geomag Geoelectr, 1996, 48(6): 711–727Google Scholar
  8. 8.
    Gonzalez W D. A unified view of solar wind-magnetospheric coupling functions. Planet Space Sci, 1990, 38(5): 627CrossRefGoogle Scholar
  9. 9.
    Perreault P, Akasofu S I. A study of geomagnetic storms. Geophys J R Astron Soc, 1978, 54(4): 547Google Scholar
  10. 10.
    Treumann R A, LaBelle J, Bauer T M. Diffussion processes: an observational perspective. In: Song P, Sonnerup B U O, Thomas M F, eds. Physics of the Magnetopause. Washington D C: American Geophysical Union, 1995. 331Google Scholar
  11. 11.
    Yeh T, Akasofu S I. A theoretic derived energy coupling function for the magnetosphere. Space Sci Rev, 1981, 29(4): 425–429CrossRefGoogle Scholar
  12. 12.
    Dungey J W. Interplanetary magnetic filed and auroral zones. Phys Rev Lett, 1961, 6(2): 47CrossRefGoogle Scholar
  13. 13.
    Hasegawa H, Fujimoto M, Saito Y, et al. Dense and stagnant ions in the low-latitude-boundary-region under northward interplanetary magnetic field. Geophys Res Lett, 2004, 31(6): L06802Google Scholar
  14. 14.
    Reiff P H, Hill T W, Burch J L. Solar wind plasma injection at the dayside magnetospheric cusp. J Geophys Res, 1977, 82(3): 479–491CrossRefGoogle Scholar
  15. 15.
    Song P, Russell C T. Model of the formation of the low-latitude boundary layer for strongly northward interplanetary magnetic field. J Geophys Res, 1992, 97(A2): 1411–1420CrossRefGoogle Scholar
  16. 16.
    Axford W I, Hines C O. A unifying theory of high-latitude geophysical phenomena and geomagnetic storms. Can J Phys, 1961, 39(10): 1433MathSciNetGoogle Scholar
  17. 17.
    Mishin V V. Velocity boundary layers in the distant geotail and the Kelvin-Helmholtz instability. Planet Space Sci, 2004, 53(1–3): 157–160Google Scholar
  18. 18.
    LaBelle J, Treumann R A. Plasma waves at the dayside magnetopause. Space Sci Rev, 1988, 47(1–2): 175Google Scholar
  19. 19.
    Manuel J R, Samson J C. The spatial development of the low-latitude boundary layer. J Geophys Res, 1993, 98(A10): 17367–17385CrossRefGoogle Scholar
  20. 20.
    Winske D, Thomas V A, Omidi N. Diffussion at the magnetopause: a theoretical perspective. In: Song P, Sonnerup B U O, Thomas M F, eds. Physics of the Magnetopause. Washington D C: American Geophysical Union, 1995. 321Google Scholar
  21. 21.
    Chandler M O, Avanov L A. Observations at low latitudes of magnetic merging signatures within a flux transfer event during a northward interplanetary magnetic field. J Geophys Res, 2003, 108(A10): 1358. doi:10.1029/2003JA009852CrossRefGoogle Scholar
  22. 22.
    Milan S E, Provan G, Hubert B. Magnetic flux transport in the Dungey cycle: A survey of dayside and nightside renconnction rates. J Geophys Res, 2007, 112(A1): A01209. doi: 10.1029/2006JA011642Google Scholar
  23. 23.
    Yan G Q, Shen C, Liu Z X, et al. Solar wind transport into magnetosphere caused by magnetic reconnection at high latitude magnetopause during northward IMF: Cluster-DSP conjunction observations. Sci China Ser E-Tech Sci, 2008, 51(10): 1677–1684CrossRefGoogle Scholar
  24. 24.
    Haerendel G, Paschmann G. Entry of solar wind plasma into the magnetosphere. In: Hultqvist B, Stenflo L, eds. Physics of the Hot Plasma in the Magnetosphere. New York: Plenum Press, 1975. 23Google Scholar
  25. 25.
    Paschmann G, Haerendel G, Sckopke N, et al. Plasma and magnetic field characteristics of the distant polar cusp near local noon: The entry layer. J Geophys Res, 1976, 81(16): 2883CrossRefGoogle Scholar
  26. 26.
    Escoubet C P. The Cluster mission. Ann Geophys, 2001, 19(10–12): 1197–1200Google Scholar
  27. 27.
    Rème H, Aoustin C, Bosqued J M, et al. First multispacecraft ion measurement in and near the Earth’s magnetosphere with the identical Cluster ion spectro-metry (CIS) experiment. Ann Geophys, 2001, 19(10–12): 1303–1354Google Scholar
  28. 28.
    Balogh A, Carr C M, Acuna M H, et al. The Cluster magnetic field investigation: overview of in-flight performance and initial results. Ann Geophys, 2001, 19(10–12): 1207–1217Google Scholar
  29. 29.
    Sonnerup B U O, Cahill L J. Magnetopause structure and attitude from Explorer 12 observations. J Geophys Res, 1967, 72(1): 171–183CrossRefGoogle Scholar
  30. 30.
    Sonnerup B U O, Cahill L J. Theory of the magnetopause current layer. J Geophys Res, 1968, 73(5): 1757–1770CrossRefGoogle Scholar
  31. 31.
    Phan T D, Paschmann G, Baumjohann W, et al. The magnetosheath region adjacent to the dayside magnetopause: AMPTE/IRM observations. J Geophys Res, 1994, 99(A1): 121–141CrossRefGoogle Scholar
  32. 32.
    Dunlop M W, Taylor M G G T, Davies J A, et al. Coordinated Cluster/Double Star observations of dayside reconnection signatures. Ann Geophys, 2005, 23(11): 2867–2875CrossRefGoogle Scholar
  33. 33.
    Lee L C, Fu Z F. A theory of magnetic flux transfer at the earth’s magnetopause. Geophys Res Lett, 1985, 12(2): 105–108CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  • GuangQing Yan
    • 1
    • 2
    Email author
  • ZhenXing Liu
    • 2
  • Chao Shen
    • 2
  • M. Dunlop
    • 3
  • A. Balogh
    • 4
  • H. Rème
    • 5
  • Y. V. Bogdanova
    • 6
    • 7
  • A. Fazakerley
    • 6
  1. 1.State Key Laboratory of Space Weather, Center for Space Science and Applied ResearchChinese Academy of SciencesBeijingChina
  2. 2.Graduate School of Chinese Academy of SciencesBeijingChina
  3. 3.Rutherford Appleton LaboratoryDidcotUK
  4. 4.Imperial College of ScienceTechnology and MedicineLondonUK
  5. 5.CESRToulouse Cedex 4France
  6. 6.Mullard Space Science LaboratoryDorkinkUK
  7. 7.Department of PhysicsLa Trobe UniversityVictoriaAustralia

Personalised recommendations