Advertisement

Solvability identification and feasibility restoring of divergent optimal power flow problems

  • QuanYuan Jiang
  • ZhenXiang Han
Article

Abstract

Optimal power flow (OPF) has been considered as an important problem in power systems. Although several excellent algorithms, such as Newton method and interior point method, have been developed to solve the OPF problem, divergences still often occur. Till now, few works have focused on the solvability identification and feasibility restoring of divergent OPF problems. In this paper, we propose a systematic approach to identify the solvability of divergent OPF problems, and restore a feasible solution for unsolvable OPF cases. The proposed approach consists of two phases: solvability identification phase (SIP) and feasibility restoring phase (FRP). In SIP, a novel methodology based on problem transformation and active set is adopted to identify the solvability of divergent OPF problem. If a feasible solution can be obtained in SIP, then this divergent OPF problem is solvable, otherwise, FRP is used to restore a feasible or optimal solution by relaxing soft constraints and load shedding. In FRP, a feasibility restoring model is presented, and a priority-listing strategy of restoring actions is proposed to restore the unsolvable OPF problems. Numerical studies indicate that the proposed SIP and FRP are reliable to diagnose the solvability of the divergent OPF problems, give an index to measure the unsolvability, and restore an unsolvable OPF case.

Keywords

optimal power flow solvability identification phase feasibility restoring phase active set pseudo transient continuation method priority listing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carpentier J. Contribution to the economic dispatch problem. Bull Soc France Elect, 1962, 8(1): 431–437Google Scholar
  2. 2.
    Dommel H W, Tinney T F. Optimal power flow solutions. IEEE Trans Power Appar Syst, 1968, 87(5): 1866–1876CrossRefGoogle Scholar
  3. 3.
    Stott B, Marinho J L. Linear programming for power system network security applications. IEEE Trans Power Appar Syst, 1979, 98(3): 837–848CrossRefGoogle Scholar
  4. 4.
    Alsac O, Bright J, Prais M, et al. Further developments in LP-based optimal power flow. IEEE Trans Power Syst, 1990, 5(3): 697–711CrossRefGoogle Scholar
  5. 5.
    Sun D I, Ashley B, Brewer B, et al. Optimal power flow by Newton approach. IEEE Trans Power Appar Syst, 1984, 103(10): 2864–2880CrossRefGoogle Scholar
  6. 6.
    Monticelli A, Liu W H. Adaptive movement penalty method for the Newton optimal power flow. IEEE Trans Power Syst, 1992, 7(1): 334–342CrossRefGoogle Scholar
  7. 7.
    Burchett R C, Happ H H, Veirath D R. Quadratically convergent optimal power flow. IEEE Trans Power Appar Syst, 1984, 103(11): 3267–3275CrossRefGoogle Scholar
  8. 8.
    Momoh J, ElHawary M, Adapa R. A review of selected optimal power flow literature to 1993. IEEE Trans Power Syst, 1999, 14(1): 96–111CrossRefGoogle Scholar
  9. 9.
    Wu Y C, Debs A S, Marsten R E. A direct nonlinear predictor-corrector primal-dual interior point algorithm for optimal power flows. IEEE Trans Power Syst, 1994, 9(2): 876–883CrossRefGoogle Scholar
  10. 10.
    Torres G L, Quintana V H. On a nonlinear multiple-centrality corrections interior-point method for optimal power flow. IEEE Trans Power Syst, 2001, 16(2): 222–228CrossRefGoogle Scholar
  11. 11.
    Wei H, Sasaki H, Kubakawa J, et al. An interior point nonlinear programming for optimal power flow problems with a novel data structure. IEEE Trans Power Syst, 1998, 13(3): 870–877CrossRefGoogle Scholar
  12. 12.
    Zhang X P, Petoussis S G, Godfrey K R. Nonlinear interior-point optimal power flow method based on a current mismatch formulation. IEE Proc-Gener Transm Distrib, 2005, 152(6): 795–805CrossRefGoogle Scholar
  13. 13.
    Overbye T J. A power flow measure for unsolvable cases. IEEE Trans Power Syst, 1994, 9(3): 1359–1365CrossRefGoogle Scholar
  14. 14.
    Overbye T J. Computation of a practical method to restore power flow solvability. IEEE Trans Power Syst, 1995, 10(1): 280–287CrossRefGoogle Scholar
  15. 15.
    Van C T. An approach to corrective control of voltage instability using simulation and sensitivity. IEEE Trans Power Syst, 1995, 10(2): 616–622CrossRefGoogle Scholar
  16. 16.
    Granville S, Mello J, Melo A. Application of interior point methods to power flow unsolvability. IEEE Trans Power Syst, 1996, 11(2): 1096–1103CrossRefGoogle Scholar
  17. 17.
    Song H, Baik S D, Lee B. Determination of load shedding for power-flow solvability using outage-continuation power flow (OCPF). IEE Proc-Gener Transm Distrib, 2006, 153(3): 321–325CrossRefGoogle Scholar
  18. 18.
    Echavarren F M, Lobato E, Rouco L. A power flow solvability identification and calculation algorithm. Electr Power Syst Res, 2006, 76(4): 242–250CrossRefGoogle Scholar
  19. 19.
    Thelma S P, Fernandes J R, Miguel A. Load shedding strategies using optimal load flow with relaxation of restrictions. IEEE Trans Power Syst, 2008, 23(2): 712–718CrossRefGoogle Scholar
  20. 20.
    Han Z X, Jiang Q Y, Cao Y J. Sequential feasible optimal power flow in power systems. Sci China Ser E-Tech Sci, 2009, 52(2): 1–7CrossRefGoogle Scholar
  21. 21.
    Kelley C T, Keyes D E. Convergence analysis of pseudo-transient continuation. SIAM J Numer Anal, 1998, 35(2): 508–523MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Kelley C T, Liao L Z, Qi L Q, et al. Projected pseudo-transient continuation. SIAM J Numer Anal, 2007, 44(1): 1–19Google Scholar
  23. 23.
    Deuflhard P. Newton methods for nonlinear problems-affine invariance and adaptive algorithms. Berlin: Springer-Verlag Press, 2004. 298–314MATHGoogle Scholar
  24. 24.
    Lee J, Chiang H D. A dynamical trajectory-based methodology for systematically computing multiple optimal solutions of nonlinear programming problems. IEEE Trans Autom Contr, 2004, 49(6): 888–899CrossRefMathSciNetGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.College of Electrical EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations