Advertisement

Science in China Series E: Technological Sciences

, Volume 51, Issue 12, pp 2080–2088 | Cite as

A theoretical analysis of optical-to-THz conversion efficiency via optical rectification

  • DeHua LiEmail author
  • XiaoDong Qi
  • ShengGang Liu
Article

Abstract

A theoretical analysis of an ultra-short pulse converted to Terahertz radiation via optical rectification in nonlinear optical crystal is presented here; several factors that affect optical-to-THz conversion efficiencies are discussed; pulse durations affect the conversion efficiency effectively: when crystal length is equal to the optimal crystal length l c, optical-to-THz conversion efficiency is the highest, but for the periodically-inverted electro-optic crystals, conversion efficiency is almost proportional to the crystal length when absorption can be neglected. Taking account of the absorption of crystals, effective length of crystal is L eff=0.63/α, there is no apparent increase of conversion efficiency and the conversion efficiency approaches to a constant eventually when the crystal length is increased.

Keywords

optical rectification periodically inverted effective length conversion efficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bass M, Franken P A, Ward J F, et al. Optical rectification. Phys Rew Lett, 1962, 9: 446CrossRefGoogle Scholar
  2. 2.
    Shen Y R. Far-infrared generation by optical mixing. Prog Quantum Electron, 1976, 4: 207CrossRefGoogle Scholar
  3. 3.
    Bagasaryan D, Makaryan A, Pogosyan P. Cherenkov radiation from a propagating nonlinear polarization wave. JETP Lett, 1983, 37: 595Google Scholar
  4. 4.
    Kleinman D A, Auston D H. Theory of electrooptic shock radiation in nonlinear optical media. IEEE J Quantum Electron, 1984, 20: 964–970CrossRefGoogle Scholar
  5. 5.
    Auston D H, Cheung K P, Vaddmanis J A, et al. Cherenkov radiation from femtosecond optical pulses in electrooptic media. Phys Rew Lett, 1984, 53: 1555–1558CrossRefGoogle Scholar
  6. 6.
    Auston D H, Nuss M C. Electrooptic generation and detection of femetosecond electrical transients. IEEE J Quantum Electron, 1988, 24: 184CrossRefGoogle Scholar
  7. 7.
    Fattinger C, Grischkowsky D. A Cherenkov source for freely propagating terahertz beams. IEEE J Quantum Electron, 1989, 25: 2608CrossRefGoogle Scholar
  8. 8.
    Hu B B, Zhang X C, Auston D H, et al. Free-space radiation from electro-optic crystals. Appl Phys Lett, 1990, 56: 506CrossRefGoogle Scholar
  9. 9.
    Zhang X C, Ma X F, Jin Y, et al. Terahertz optical rectification from a nonlinear organic crystal. Appl Phys Lett, 1992, 61: 3080CrossRefGoogle Scholar
  10. 10.
    Zhang X C, Jin Y, Ware K, et al. Difference-Frequency generation and sum-frequency generation near the band gap of zincblende crystals. Appl Phys Lett, 1994, 64: 622CrossRefGoogle Scholar
  11. 11.
    Chuang S L, Schmitt-Rink S, Greene B I, et al. Optical rectification at semiconductor surface. Phys Rev Lett, 1992, 68: 102CrossRefGoogle Scholar
  12. 12.
    Peter H, Siegel P H. Terahertz technology. IEEE T Microw Theory, 2002, 50: 910–928CrossRefGoogle Scholar
  13. 13.
    Lee Y S, Meade T, Perlin V, et al. Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate. Appl Phys Lett, 2000, 76: 2505–2507CrossRefGoogle Scholar
  14. 14.
    Li D H, Zhou W. The principal and development of generation of Terahertz wave via optical rectification. J Shandong Normal University, 2006, 21(4): 47–49Google Scholar
  15. 15.
    Liu S G. Recent development of Terahertz science and technology. China Basic Sci, 2006, 1: 7–12CrossRefGoogle Scholar
  16. 16.
    Sun B, Yao J Q. Generation of Terahertz wave based on optical methods. Chin J Laser, 2006, 33(10): 1349–1358Google Scholar
  17. 17.
    Konstantin L. Optical generation of narrow-band terahertz packets in periodically-inverted electro-optic crystals: conversion efficiency and optimal laser pulse format. Opt Express, 2006, 14(6): 2263–2276CrossRefGoogle Scholar
  18. 18.
    Sutherland R L. Handbook of Nonlinear Optics. New York, Basel, Hong Kong: Marcel Dekker Inc., 1996. 87Google Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.Terahertz Institute of Shandong University of Science & TechnologyQingdaoChina
  2. 2.Changchun Institute of Optics, Fine Mechanics and PhysicsChinese Academy of SciencesChangchunChina
  3. 3.Terahertz research center, Physical Electronics CollegeUniversity of Electronics ScienceChengduChina

Personalised recommendations