Review of zero-net-mass-flux jet and its application in separation flow control

  • PanFeng Zhang
  • JinJun Wang
  • LiHao Feng


Since the zero-net-mass-flux (ZNMF) jet was first used as a laboratory flow control method in 1990’s, it has attracted much attention. The ZNMF jet has unique features such as compact actuator, no requirement for external air supply, complex piping, etc., and becomes a hot topic research subject in fluid mechanics. This review introduces the state of the art in the development of ZNMF jet in the quiescent fluid, the interaction of the ZNMF jet with the cross flow and its application in the separation flow control. The evolution of the vortex ring/pair and the spacial flow structure of the ZNMF in quicent fluid or cross flow are presented, as well as the key parameter effects. At last, the applications of ZNMF jet in the wake control of the circular cylinder, the separation control on the airfoil and the aerodynamic force or moment control on MAV/UAV are presented.


zero-net-mass-flux jet quiescent fluid cross flow separation control 


  1. 1.
    Ingard U, Labate S. Acoustic circulation effects and the nonlinear impedance of orifices. J Acoust Soc Am, 22(2): 211–218Google Scholar
  2. 2.
    Ming X, Dai C Y, Shi S X. A new phenomenon of acoustic streaming. Acta Mech Sin (in Chinese), 1992, 24(1): 48–54Google Scholar
  3. 3.
    Wiltse J, Glezer A. Manipulation of free shear flows using piezoelectric actuators. J Fluid Mech, 1993, 249: 261–285CrossRefGoogle Scholar
  4. 4.
    Luo Z B, Xia Z X. Advances in synthetic jet technology and applications in flow control. Adv Mech (in Chinese), 2005, 35(2): 221–234Google Scholar
  5. 5.
    Luo Z B, Xia Z X, Liu B. New generation of synthetic jet actuators. AIAA J, 2006, 44(10): 2418–2420CrossRefGoogle Scholar
  6. 6.
    Luo Z B, Xia Z X. A novel valve-less synthetic-jet-based micro-pump. Sensor Actuat A-Phys, 2005, 122(1): 131–140CrossRefMathSciNetGoogle Scholar
  7. 7.
    Zhang P F, Wang J J. Novel signal wave pattern to generate more efficient synthetic jet. AIAA J, 2007, 45(5): 1058–1065CrossRefGoogle Scholar
  8. 8.
    Wang J J, Feng L H, Xu C J. Experimental investigations on separation control and flow structure around a circular cylinder with synthetic jet. Sci China Ser E-Tech Sci, 2007, 50(5): 550–559zbMATHCrossRefGoogle Scholar
  9. 9.
    Feng L H, Wang J J, Xu C J. Experimental verification of a novel actuator signal for efficient synthetic jet. J Exp Fluid Mech (in Chinese), 2007, 22(1): 6–10Google Scholar
  10. 10.
    Liu Y M, Wu N M, Dong J Z, et al. Process mechanism of synthetic jet and its effect on the mixing in coaxial jets. J Beihang University (in Chinese), 2007, 33(1): 5–9Google Scholar
  11. 11.
    Zhao H, Yang Z G, Lou H J. Experimental investigation of flow characteristics of synthetic jet and it’s preliminary application to combustion. J Aerospace Power (in Chinese), 2004, 19(4): 512–519Google Scholar
  12. 12.
    Sun J H, Ji Y M, Ming X, et al. Gas oscillations in open pipes and application in atomization. Acta Aerodync Sin (in Chinese), 1997, 15(2): 177–184Google Scholar
  13. 13.
    Sun J H, Ming X. Effect of nonlinear gas oscillations on wing-tip vortexes. J Nanjing Univ Aeronaut Astronaut (in Chinese), 2004, 36(1): 39–43Google Scholar
  14. 14.
    Zhang F Y, Li L, Dong Y, et al. Experimental investigation of flow vectoring by using zero-mass synthetic jets actuator. J Propulsion Tech (in Chinese), 2004, 25(3): 224–226MathSciNetGoogle Scholar
  15. 15.
    Hao L S, Qiao Z D. Maximizing the effect of synthetic jet on airfoil separation flow control. J Northwestern Polytech Univ (in Chinese), 2006, 26(4): 528–531Google Scholar
  16. 16.
    Gao F, Wang L. Numerical study on synthetic flow field of adjacent microjet actuators. Acta Aerodync Sin (in Chinese), 2003, 21(3): 267–274Google Scholar
  17. 17.
    Luo X B, Li Z X, Guo Z Y. Analysis of the mechanism of synthetic jet formation. J Tsinghua Univ (Sci Tech)(in Chinese), 2000, 40(12): 24–28Google Scholar
  18. 18.
    Luo X B, Li Z X, Guo Z Y. Numerical simulations on flow field of incompressible synthetic jet. J Eng Thermophys (in Chinese), 2001, 22: 56–58Google Scholar
  19. 19.
    Glezer A, Amitay M. Synthetic jets. Annu Rev Fluid Mech, 2002, 34: 503–529CrossRefMathSciNetGoogle Scholar
  20. 20.
    Kiddy J, Chen P, Niemczuk J, et al. Active flow control using micro electro-mechanical systems. AIAA Paper 2000-1561, 2000Google Scholar
  21. 21.
    Glezer A, Amitay M, Honohan A. Aspects of low and high frequency actuation for aerodynamic flow control. AIAA J, 2005, 43(7): 1501–1511CrossRefGoogle Scholar
  22. 22.
    Smith B L, Glezer A. The formation and evolution of synthetic jets. Phys Fluids, 1998, 10(9): 2281–2297zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Glezer A. The formation of vortex rings. Phys Fluids, 1988, 31(12): 3532–3541CrossRefGoogle Scholar
  24. 24.
    Zhong S, Jabbal M, Tang H, et al. Toward the design of synthetic jet actuators for full scale Flight conditions, Part 1: the fluid mechanics of synthetic jet actuators, Flow, Turbulence and Combustion, 2007, 78: 283–307CrossRefGoogle Scholar
  25. 25.
    Utturkar Y, Holman R, Mittal R. A jet formation criterion for synthetic jet actuator. AIAA Paper 2003-0636, 2003Google Scholar
  26. 26.
    Holman R, Utturkar Y, Mittal R, et al. A formation criterion for synthetic jets. AIAA J, 2005, 43(10): 2110–2116CrossRefGoogle Scholar
  27. 27.
    Shuster J.M, Smith D R. Experimental study of the formation and scaling of a round synthetic jet. Phys Fluids, 2007, 19(4): 045109-045109-21Google Scholar
  28. 28.
    Smith B L, Swift G W. Synthetic jet at large Reynolds number and comparison to continuous jets. AIAA Paper 2001-3030, 2003Google Scholar
  29. 29.
    Gharib M, Rambod E, Shariff K. A universal time scale for vortex ring formation. J Fluid Mech, 1998, 360: 121–140zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Smith B L, Glezer A. Vectoring and small scale motions effected in free shear flows using synthetic jet actuators. AIAA Paper 97-0213, 1997Google Scholar
  31. 31.
    James R D, Jacobs J W. A round turbulent jet produced by an oscillating diaphragm. Phys Fluids, 1996, 8(9): 2484–2495CrossRefGoogle Scholar
  32. 32.
    Gordon M, Cater J E, Soria J. Investigation of the mean passive scalar field in zero-net-mass-flux jets in cross-flow using planar laser induced florescence. Phys Fluids, 2004, 16(3): 794–808CrossRefGoogle Scholar
  33. 33.
    Hassan A, Munts E. Transverse and near tangent synthetic jets for aerodynamic flow control. AIAA Paper 2000-4334, 2000Google Scholar
  34. 34.
    Duvigneau R, Visonneau M. Simulation and optimization of stall control using a synthetic jet, AIAA paper 2004-2315, 2004Google Scholar
  35. 35.
    Smith D, Amitay M, Glezer A. Modification of lifting body aerodynamics using synthetic jet actuators. AIAA Paper 98-0209, 1998Google Scholar
  36. 36.
    Shaw L, Smith B, Saddoughi S. Full scale flight demonstration of active flow control of a pod wake. AIAA Paper 2006-3183, 2006Google Scholar
  37. 37.
    Rumsey C L, Gatski T B, Sellers W L. Summary of the 2004 CFD validation workshop on synthetic jets and turbulent separation control, AIAA Paper 20004-2217, 2004Google Scholar
  38. 38.
    Milanovic I, Zaman M, Rumsey C. An Isolated circular synthetic jet in cross-flow at low momentum-flux ratio. AIAA Paper AIAA 2005-1110, 2005Google Scholar
  39. 39.
    Schaeffler N. The isolated synthetic jet in cross-flow: a benchmark for flow control simulation. AIAA Paper 2004-2219, 2004Google Scholar
  40. 40.
    Rumsey C. Computation of a synthetic jet in a turbulent cross-flow boundary layer. NASA/TM-2004-213273, 2004Google Scholar
  41. 41.
    Schaeffler N. The interaction of a synthetic jet and a turbulent boundary layer. AIAA Paper 2003-643, 2003Google Scholar
  42. 42.
    Keffer J F, Baines W D. The round turbulent jet in a cross-wind. J FluidD Mech, 1963, 15: 481–496zbMATHCrossRefGoogle Scholar
  43. 43.
    Pratte B D, Baines W D. Profiles of the round turbulent jet in a cross flow. J Hydraulic Division, Am Soc Civil Eng, 1967, 92(2): 53–64Google Scholar
  44. 44.
    Smith S H, Mungal M G. Mixing, structure and scaling of the jet in crossflow. J Fluid Mech, 1998, 357: 83–122CrossRefGoogle Scholar
  45. 45.
    Hasselbrink E F, Mungal M G. An analysis of the time-averaged properties of the far field of the transverse jet. AIAA Paper 96-0201, 1996Google Scholar
  46. 46.
    Ugrina S. Experimental analysis and analytical modeling of synthetic jet cross flow interaction. Ph.D Dissertation. Maryland: University of Maryland, 2007Google Scholar
  47. 47.
    Mittal R, Rampunggoon P. Interaction of synthetic jet with a flat plate boundary layer. AIAA Paper 01-31243, 2001Google Scholar
  48. 48.
    Mittal R, Rampunggoon P. On the virtual aeroshaping effect of synthetic jets. Phys Fluids, 2002, 14(4): 1533–1536CrossRefGoogle Scholar
  49. 49.
    Crook A, Wood N J. Measurements and visualization of synthetic jets. AIAA Paper 2001-0145, 2001Google Scholar
  50. 50.
    Amitay M, Honohan A M, Trautman M, et al. Modification of the aerodynamic characteristics of bluff bodies using fluidic actuators. AIAA Paper 97-2004, 1997Google Scholar
  51. 51.
    Honohan A.M, Amitay M, Glezer A. Aerodynamic Control Using Synthetic Jets. AIAA Paper 2000-2401, 2000Google Scholar
  52. 52.
    Catalanoy P, Wang M, Iaccarino G., et al. Optimization of cylinder flow control via actuators with zero net mass flux. Centre for Turbulence Research, Proceedings of the Summer Program. NASA Ames/Stanford University, CA, 2007. 297–304Google Scholar
  53. 53.
    Smith D R, Amitay M, Valdis K, et al. Modification of lifting body aerodynamics using synthetic jet actuators. AIAA Paper 98-0209, 1998Google Scholar
  54. 54.
    Amitay M, Smith D R, Kibens V, et al. Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators. AIAA J, 2001, 39(3): 361–370Google Scholar
  55. 55.
    Amitay M, Glezer A. Role of actuation frequency in controlled flow reattachment over a stalled airfoil. AIAA J, 2002, 40(2): 209–216CrossRefGoogle Scholar
  56. 56.
    Zhang P F, Wang J J. Numerical simulation on flow control of stalled NACA0015 airfoil with synthetic jet actuator in re-circulation region. J Beihang Univ (in Chinese), 2008, 34(4): 443–446Google Scholar
  57. 57.
    Gilarranz, J, Traub L, Rediniotis O. Characterization of a compact, high power synthetic jet actuator flow separation control. AIAA Paper 2002-0127, 2002Google Scholar
  58. 58.
    Seifert A, Darabi A, Wygnanski I. Delay of airfoil stall by periodic excitation. AIAA J, 1996, 33(4): 691–707Google Scholar
  59. 59.
    Ravindran S S. Active control of flow separation over an airfoil. NASA/TM-1999-209838, 1999Google Scholar
  60. 60.
    Tuck A, Soria J. Separation control on a NACA 0015 airfoil using a 2D micro ZNMF. Aircraft Eng Aerospace Technol, 2008, 28(2): 175–180CrossRefGoogle Scholar
  61. 61.
    Donovan J F, Kral L D, Cary A W. Active flow control applied to an airfoil. AIAA Paper 98-0210, 1998Google Scholar
  62. 62.
    Milanovic I M, Zaman K. Highly inclined jets in cross-flow. AIAA Paper 2003-0183, 2003Google Scholar
  63. 63.
    Zhong S, Garcillan L, Wood N J. Dye visualisation of inclined and skewed synthetic jets in a cross-flow. Aeronaut J, 2005, 109(2): 147–155Google Scholar
  64. 64.
    Seifert A, Pack L. Separation control at flight Reynolds numbers — lessons learned and future directions. AIAA Paper 2000-2542, 2000Google Scholar
  65. 65.
    Suzuki T. Effect of a synthetic jet acting on a separated flow over a hump. J Fluid Mech, 2007, 547: 331–359CrossRefGoogle Scholar
  66. 66.
    Dandois J, Garnier E, Sagaut P. Numerical simulation of active separation control by a synthetic jet. J Fluid Mech, 2007, 574: 25–58zbMATHCrossRefGoogle Scholar
  67. 67.
    Brunn A, Nitsche W. Active control of turbulent separated flows over slanted surfaces. Int J Heat Fluid FL, 2006, 27: 748–755CrossRefGoogle Scholar
  68. 68.
    Parviz B A, Najafi K, Muller M O, et al. Electrostatically driven synthetic microjet arrays as a propulsion method for micro flight, Part II: microfabrication and initial characterization. Microsyst Technol, 2005, 11: 1292–1300CrossRefGoogle Scholar
  69. 69.
    Fung P, Amitay M. Control of a miniducted-fan unmanned aerial vehicle using active flow control. J Aircraft, 2002, 39(4): 561–571Google Scholar
  70. 70.
    Kondor S, Amitay M, Parekh D, et al. Active flow control application on a mini ducted fan UAV. AIAA Paper 2001-2440, 2001Google Scholar
  71. 71.
    Chatlynne E, Rumigny N, Amitay M, et al. Virtual aero shaping of a Clark-Y airfoil using synthetic jet actuators. AIAA Paper 2001-0732, 2001Google Scholar
  72. 72.
    Amitay M, Horvath M, Michaux M, et al. Virtual aerodynamic shape modification at low angles of attack using synthetic jet actuators. AIAA Paper 2001-2975, 2001Google Scholar
  73. 73.
    Washburn A E, Amitay M. Active flow control on the Stingray UAV: physical mechanisms. AIAA Paper 2004-0745, 2004Google Scholar
  74. 74.
    Amitay M, Parekh D E. Active flow control on the Stingray uninhabited air vehicle: transient behavior. AIAA J, 2004, 42(11): 2205–2215CrossRefGoogle Scholar
  75. 75.
    Ciuryla M, Liu Y, Farnsworth J, et al. Flow control and flight control on a Cessna 182 model. J Aircraft, 2007, 44(2): 653CrossRefGoogle Scholar
  76. 76.
    Wu K E, Breuer K S. Dynamics of synthetic jet actuator arrays for flow control. AIAA Paper 2003-4257, 2003Google Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.Institute of Fluid MechanicsBeijing University of Aeronautics and AstronauticsBeijingChina

Personalised recommendations