Skip to main content
Log in

Estimating stratal completeness of carbonate deposition via process-based stratigraphic forward modeling

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Hiatuses are ubiquitous in stratigraphic records at various temporal scales, but they cannot be easily identified and quantified owing to the lack of adequate methods in determining the duration of hiatuses or stratal completeness. Here a process-based stratigraphic forward modeling (SFM) approach was used to effectively estimate the completeness of carbonate strata in three dimensions and at basin-scale. By using information derived from both spatial and temporal domains in the SFM outputs for five grid locations (pseudo wells) under different depositional settings, we were able to delineate basin-wide hiatuses of various temporal scales and determine their durations and stratal completeness quantitatively. The stratal completeness appears to be controlled by sea level changes, depositional environments, carbonate growth rates and tectonic subsidence patterns in various ways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ager D V. 1973. The Nature of the Stratigraphic Record. New York: Wiley. 114

    Google Scholar 

  • Algeo T J, Wilkinson B H. 1988. Periodicity of mesoscale Phanerozoic sedimentary cycles and the role of Milankovitch orbital modulation. J Geol, 96: 313–322

    Article  Google Scholar 

  • Allan J R, Matthews R K. 1982. Isotope signatures associated with early meteoric diagenesis. Sedimentology, 29: 797–817

    Article  Google Scholar 

  • Barnett A J, Burgess P M, Wright V P. 2002. Icehouse world sea-level behaviour and resulting stratal patterns in late Visean (Mississippian) carbonate platforms: Integration of numerical forward modelling and outcrop studies. Basin Res, 14: 417–438

    Article  Google Scholar 

  • Barrell J. 1917. Rhythms and the measurements of geologic time. Geol Soc Am Bull, 28: 745–904

    Article  Google Scholar 

  • Barrett S J, Webster J M. 2017. Reef Sedimentary Accretion Model (ReefSAM): Understanding coral reef evolution on Holocene time scales using 3D stratigraphic forward modelling. Mar Geol, 391: 108–126

    Article  Google Scholar 

  • Barrett S J, Webster J M. 2012. Holocene evolution of the Great Barrier Reef: Insights from 3D numerical modelling. Sediment Geol, 265–266: 56–71

    Article  Google Scholar 

  • Bosscher H, Southam J. 1992. CARBPLAT—A computer model to simulate the development of carbonate platforms. Geology, 20: 235–238

    Article  Google Scholar 

  • Bruneau B, Chauveau B, Duarte L V, Desaubliaux G, Moretti I, Baudin F. 2018. 3D numerical modelling of marine organic matter distribution: Example of the early Jurassic sequences of the Lusitanian Basin (Portugal). Basin Res, 30: 101–123

    Article  Google Scholar 

  • Burgess P M. 2013. CarboCAT: A cellular automata model of heterogeneous carbonate strata. Comput Geosci, 53: 129–140

    Article  Google Scholar 

  • Burgess P M, Wright V P. 2003. Numerical forward modelling of carbonate platform dynamics: An evaluation of complexity and completeness in carbonate strata. J Sediment Res, 73: 637–652

    Article  Google Scholar 

  • Cantrell D L, Griffiths C M, Hughes G W. 2015. New tools and approaches in carbonate reservoir quality prediction: A case history from the Shu’aiba Formation, Saudi Arabia. Geol Soc Lond Spec Publ, 406: 401–425

    Article  Google Scholar 

  • Demicco R V, Klir G J. 2004. Fuzzy Logic in Geology. Amsterdam: Elsevier Academic Press. 347

    Google Scholar 

  • Duan T, Cross T A, Lessenger M A. 2000. 3-D carbonate stratigraphic model based on energy and sediment flux. In: AAPG Annual Convention, New Orleans, Louisiana

  • Durkin P R, Hubbard S M, Holbrook J, Boyd R. 2018. Evolution of fluvial meander-belt deposits and implications for the completeness of the stratigraphic record. GSA Bull, 130: 721–739

    Article  Google Scholar 

  • Elrick M, Scott L A. 2010. Carbon and oxygen isotope evidence for high-frequency (104-105 yr) and My-scale glacio-eustasy in Middle Pennsylvanian cyclic carbonates (Gray Mesa Formation), central New Mexico. Palaeogeogr Palaeoclimatol Palaeoecol, 285: 307–320

    Article  Google Scholar 

  • Enos P. 1991. Sedimentary parameters for computer modeling. In: Franseen E K, Watney W L, Kendall C G S C, Ross W, eds. Sedimentary Modeling: Computer Simulations and Methods for Improved Parameter Definition. Kansas Geol Survey Bull, 233: 63–99

  • Granjeon D, Joseph P. 1999. Concepts and applications of a 3D multiple lithology, diffusive model in stratigraphic modeling. In: Harbaugh J W, Watney W L, Rankey E C, Slingerland R, Goldstein R H, Franseen E K, eds. Numerical Experiments in Stratigraphy: Recent Advances in Stratigraphic and Sedimentologic Computer Simulations. SEPM Spec Publ, 62: 197–210

  • Griffiths C M, Dyt C, Paraschivoiu E, Liu K. 2001. Sedsim in hydrocarbon exploration. In: Merriam D, Davis J C, eds. Geologic Modelling and Simulation. New York: Kluwer Academic

    Google Scholar 

  • Griffiths C M, Paraschivoiu E. 1998. Three-dimensional forward stratigraphic modeling of early cretaceous sedimentation on the Leveque and Yampi Shelves, Browse Basin. APPEA J, 38: 147–158

    Article  Google Scholar 

  • Hill J, Tetzlaff D, Curtis A, Wood R. 2009. Modeling shallow marine carbonate depositional systems. Comput Geosci, 35: 1862–1874

    Article  Google Scholar 

  • Hutton J. 1788. Theory of the Earth: Investigation into laws observable in the composition, dissolution, and restoration of land upon the globe. Earth Environ Sc Trans Royal Soc Edinburgh, 1: 304

    Google Scholar 

  • Kemp D B. 2011. Shallow-water records of astronomical forcing and the eccentricity paradox. Geology, 39: 491–494

    Article  Google Scholar 

  • Kendall C G S C, Strobel J, Cannon R, Bezdek J, Biswas G. 1991. The simulation of the sedimentary fill of basins. J Geophys Res, 96: 6911–6929

    Article  Google Scholar 

  • Liu K, Liang T C K, Paterson L, Kendall C G S C. 1998. Computer simulation of the influence of basin physiography on condensed section deposition and maximum flooding. Sediment Geol, 122: 181–191

    Article  Google Scholar 

  • Miall A D. 2015. Updating uniformitarianism: Stratigraphy as just a set of ‘frozen accidents’. Geol Soc Lond Spec Publ, 404: 11–36

    Article  Google Scholar 

  • Miller T G. 1965. Time in stratigraphy. Palaeontology, 8: 113–131

    Google Scholar 

  • Montaggioni L F, Borgomano J, Fournier F, Granjeon D. 2015. Quaternary atoll development: New insights from the two-dimensional stratigraphic forward modelling of Mururoa Island (Central Pacific Ocean). Sedimentology, 62: 466–500

    Article  Google Scholar 

  • Nordlund U. 1996. Formalising geological knowledge: With an example of stratigraphic modeling using fuzzy logic. SEPM JSR, 66: 689–698

    Google Scholar 

  • Nordlund U. 1999. FUZZIM: Forward stratigraphic modeling made simple. Comput Geosci, 25: 449–456

    Article  Google Scholar 

  • Parcell W C. 2003. Evaluating the development of Upper Jurassic reefs in the Smackover Formation, Eastern Gulf Coast, U.S.A. through fuzzy logic computer modeling. J Sediment Res, 73: 498–515

    Article  Google Scholar 

  • Perfilieva I. 2004. Fuzzy transform: Application to reef growth problem. In: Demicco R V, Klir G J, eds. Fuzzy Logic in Geology. 275–300

  • Rameil N, Immenhauser A, Csoma A É, Warrlich G. 2012. Surfaces with a long history: The Aptian top Shu’aiba Formation unconformity, Sultanate of Oman. Sedimentology, 59: 212–248

    Article  Google Scholar 

  • Sadler P M. 1981. Sediment accumulation rates and the completeness of stratigraphic sections. J Geol, 89: 569–584

    Article  Google Scholar 

  • Sadler P M. 1994. The expected duration of upward-shallowing peritidal carbonate cycles and their terminal hiatuses. Geol Soc Am Bull, 106: 791–802

    Article  Google Scholar 

  • Sadler P M, Strauss D J. 1990. Estimation of completeness of stratigraphical sections using empirical data and theoretical models. J Geol Soc, 147: 471–485

    Article  Google Scholar 

  • Salles T, Marchès E, Dyt C, Griffiths C, Hanquiez V, Mulder T. 2010. Simulation of the interactions between gravity processes and contour currents on the Algarve Margin (South Portugal) using the stratigraphic forward model Sedsim. Sediment Geol, 229: 95–109

    Article  Google Scholar 

  • Salles T, Pall J, Webster J M, Dechnik B. 2018. Exploring coral reef responses to millennial-scale climatic forcings: Insights from the 1-D numerical tool pyReef-Core v1.0. Geosci Model Dev, 11: 2093–2110

    Article  Google Scholar 

  • Sattler U, Immenhauser A, Hillgartner H, Esteban M. 2005. Characterization, lateral variability and lateral extent of discontinuity surfaces on a carbonate platform (Barremian to Lower Aptian, Oman). Sedimentology, 52: 339–361

    Article  Google Scholar 

  • Schumer R, Jerolmack D J. 2009. Real and apparent changes in sediment deposition rates through time. J Geophys Res, 114: F00A06

    Google Scholar 

  • Seard C, Borgomano J, Granjeon D, Camoin G. 2013. Impact of environmental parameters on coral reef development and drowning: Forward modelling of the last deglacial reefs from Tahiti (French Polynesia, IODP Expedition #310). Sedimentology, 60: 1357–1388

    Google Scholar 

  • Straub K M, Foreman B Z. 2018. Geomorphic stasis and spatiotemporal scales of stratigraphic completeness. Geology, 46: 311–314

    Article  Google Scholar 

  • Strauss D, Sadler P M. 1989. Stochastic models for the completeness of stratigraphic sections. Math Geol, 21: 37–59

    Article  Google Scholar 

  • Tetzlaff D M, Harbaugh J W. 1989. Simulating clastic sedimentation. In: Computer Methods in Geosciences. New York: Van Nostrand Reinhold. 196

    Google Scholar 

  • Tipper J C. 1983. Rates of sedimentation, and stratigraphical completeness. Nature, 302: 696–698

    Article  Google Scholar 

  • Warrlich G M D, Waltham D A, Bosence D W J. 2002. Quantifying the sequence stratigraphy and drowning mechanisms of atolls using a new 3-D forward stratigraphic modelling program (CARBONATE 3D). Basin Res, 14: 379–400

    Article  Google Scholar 

  • Weedon G P. 2003. Time-series Analysis and Cyclostratigraphy: Examining Stratigraphic Records of Environmental Cycles. Cambridge UK: Cambridge University Press. 276

    Book  Google Scholar 

Download references

Acknowledgements

Two anonymous reviewers are thanked for their constructive comments. This work was supported by Chinese National Key R & D Project (Grant No. 2019YFC0605501), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA14010401), National Natural Science Foundation of China (Grant No. 41821002), and Shandong Provincial Natural Science Foundation, China (Grant No. ZR2018BD018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keyu Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Liu, K. Estimating stratal completeness of carbonate deposition via process-based stratigraphic forward modeling. Sci. China Earth Sci. 64, 253–259 (2021). https://doi.org/10.1007/s11430-020-9660-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-020-9660-8

Keywords

Navigation