Science China Earth Sciences

, Volume 62, Issue 11, pp 1665–1701 | Cite as

Major advances in studies of the physical geography and living environment of China during the past 70 years and future prospects

  • Fahu ChenEmail author
  • Bojie Fu
  • Jun Xia
  • Duo Wu
  • Shaohong Wu
  • Yili Zhang
  • Hang Sun
  • Yu Liu
  • Xiaomin Fang
  • Boqiang Qin
  • Xin Li
  • Tingjun Zhang
  • Baoyuan Liu
  • Zhibao Dong
  • Shugui Hou
  • Lide Tian
  • Baiqing Xu
  • Guanghui Dong
  • Jingyun Zheng
  • Wei Yang
  • Xin Wang
  • Zaijun Li
  • Fei Wang
  • Zhenbo Hu
  • Jie Wang
  • Jianbao Liu
  • Jianhui Chen
  • Wei Huang
  • Juzhi Hou
  • Qiufang Cai
  • Hao Long
  • Ming Jiang
  • Yaxian Hu
  • Xiaoming Feng
  • Xingguo Mo
  • Xiaoyan Yang
  • Dongju Zhang
  • Xiuhong Wang
  • Yunhe Yin
  • Xiaochen Liu


The natural environment provides material essentials for human survival and development. The characteristics, processes, regional differentiation and forcing mechanisms of the elements of the natural environment (e.g. geomorphology, climate, hydrology, soil, etc.) are the main objects of research in physical geography. China has a complex natural environment and huge regional differentiation and therefore it provides outstanding reserach opportunities in physical geography. This review summarizes the most important developments and the main contributions of research in the physical geography and human living environment in China during the past 70 years. The major topics addressed are the uplift of the Tibetan Plateau and the evolution of its cryosphere, the development of fluvial systems, the acidification of the vast arid region of the Asian interior, variations in the monsoon and westerly climate systems on multiple timescales, the development of lakes and wetlands, the watershed system model, soil erosion, past human-environment interactions, biogeography, and physical geographic zonality. After briefly introducing international research developments, we review the history of research in physical geography in China, focusing on the major achievements and major academic debates, and finally we summarize the status of current research and the future prospects. We propose that in the context of the national demand for the construction of an ecological civilization, we should make full use of the research findings of physical geography, and determine the patterns and mechanisms of natural environmental processes in order to continue to promote the continued contribution of physical geography to national development strategies, and to further contribute to the theory of physical geography from a global perspective.


Physical geography in China Living environment Climate change Tibetan Plateau Human-environment interactions 



This is a subject review paper organized by the journal of Science China Earth Sciences to celebrate the 70th anniversary of the founding of the People’s Republic of China. Developments within key research areas in physical geography have been reviewed by experts in each study field. The order of the majority of authors is based on their research areas and affiliations. We wish to thank several scholars who are not listed as authors but who contributed to the paper. This research was supported by the National Natural Science Foundation of China (Grant No. 41842050).


  1. An Z S, Clemens S C, Shen J, Qiang X K, Jin Z D, Sun Y B, Prell W L, Luo J J, Wang S M, Xu H, Cai Y J, Zhou W J, Liu X D, Liu W G, Shi Z G, Yan L B, Xiao X Y, Chang H, Wu F, Ai L, Lu F Y. 2011. Glacial-Interglacial Indian summer monsoon dynamics. Science, 333: 719–723CrossRefGoogle Scholar
  2. An Z S, Kutzbach J E, Prell W L, Porter S C. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature, 411: 62–66CrossRefGoogle Scholar
  3. An Z S, Porter S C, Kutzbach J E, Wu X H, Wang S M, Liu X D, Zhou W J. 2000. Asynchronous Holocene optimum of the East Asian monsoon. Quat Sci Rev, 19: 743–762CrossRefGoogle Scholar
  4. Barton L, Newsome S D, Chen F H, Wang H, Guilderson T P, Bettinger R L. 2009. Agricultural origins and the isotopic identity of domestication in northern China. Proc Natl Acad Sci USA, 106: 5523–5528CrossRefGoogle Scholar
  5. Berger A, Loutre M F. 1991. Insolation values for the climate of the last 10 million years. Quat Sci Rev, 10: 297–317CrossRefGoogle Scholar
  6. Beven K J. 2001. Rainfall-Rainoff Modelling. Chichester: John Wiley&-Sons. 359Google Scholar
  7. Biskaborn B K, Smith S L, Noetzli J, Matthes H, Vieira G, Streletskiy D A, Schoeneich P, Romanovsky V E, Lewkowicz A G, Abramov A, Allard M, Boike J, Cable W L, Christiansen H H, Delaloye R, Diekmann B, Drozdov D, Etzelmüller B, Grosse G, Guglielmin M, Ingeman-Nielsen T, Isaksen K, Ishikawa M, Johansson M, Johannsson H, Joo A, Kaverin D, Kholodov A, Konstantinov P, Kröger T, Lambiel C, Lanckman J P, Luo D, Malkova G, Meiklejohn I, Moskalenko N, Oliva M, Phillips M, Ramos M, Sannel A B K, Sergeev D, Seybold C, Skryabin P, Vasiliev A, Wu Q, Yoshikawa K, Zheleznyak M, Lantuit H. 2019. Permafrost is warming at a global scale. Nat Commun, 10: 264CrossRefGoogle Scholar
  8. Bolch T, Kulkarni A, Kääb A, Huggel C, Paul F, Cogley J G, Frey H, Kargel J S, Fujita K, Scheel M, Bajracharya S, Stoffel M. 2012. The state and fate of Himalayan glaciers. Science, 336: 310–314CrossRefGoogle Scholar
  9. Bond G, Showers W, Cheseby M, Lotti R, Almasi P, Demenocal P, Priore P, Cullen H, Hajdas I, Bonani G. 1997. A pervasive millennial-scale cycle in north Atlantic Holocene and glacial climates. Science, 278: 1257–1266CrossRefGoogle Scholar
  10. Borrelli P, Robinson D A, Fleischer L R, Lugato E, Ballabio C, Alewell C, Meusburger K, Modugno S, Schütt B, Ferro V, Bagarello V, Oost K V, Montanarella L, Panagos P. 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nat Commun, 8: 1–3CrossRefGoogle Scholar
  11. Brantingham P J, Gao X. 2006. Peopling of the northern Tibetan Plateau. World Archaeol, 38: 387–414CrossRefGoogle Scholar
  12. Brun F, Berthier E, Wagnon P, Kääb A, Treichler D. 2017. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat Geosci, 10: 668–673CrossRefGoogle Scholar
  13. Burbank D W, Blythe A E, Putkonen J, Pratt-Sitaula B, Gabet E, Oskin M, Barros A, Ojha T P. 2003. Decoupling of erosion and precipitation in the Himalayas. Nature, 426: 652–655CrossRefGoogle Scholar
  14. Cai Y L. 2010. New perspectives on physical geography (in Chinese). Geogr Res, 29: 1–12Google Scholar
  15. Cai Y L, Song C Q, Leng S Y. 2009. Future development trends and priority areas of physical geography in China (in Chinese). Sci Geogr Sin, 29: 619–626Google Scholar
  16. Cai Z C, Tsuruta H, Minami K. 2000. Methane emission from rice fields in China: Measurements and influencing factors. J Geophys Res, 105: 17231–17242CrossRefGoogle Scholar
  17. Cai Z C, Xing G X, Yan X Y, Xu H, Tsuruta H, Yagi K, Minami K. 1997. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management. Plant Soil, 196: 7–14CrossRefGoogle Scholar
  18. Cao B, Zhang T, Wu Q, Sheng Y, Zhao L, Zou D. 2019. Permafrost zonation index map and statistics over the Qinghai-Tibet Plateau based on field evidence. Permafrost Periglac Process, 30: 178–194CrossRefGoogle Scholar
  19. Chang C F, Chen N S, Coward M P, Deng W M, Dewey J F, Gansser A, Harris N B W, Jin C W, Kidd W S F, Leeder M R, Li H, Lin J L, Liu C J, Mei H J, Molnar P, Pan Y, Pan Y S, Pearce J A, Shackleton R M, Smith A B, Sun Y Y, Wardllll M, Watts D R, Xu J T, Xu R H, Yin J X, Zhang Y Q. 1986. Preliminary conclusions of the Royal Society and Academia Sinica 1985 geotraverse of Tibet. Nature, 323: 501–507CrossRefGoogle Scholar
  20. Chardin T D, Yang C C. 1930. Stratigraphic observation of the Penti postloess period in northwestern Shaanxi and western Shanxi (in Chinese). Geol Report, 8: 1–19Google Scholar
  21. Chen C K, Zheng D, Shen Y C, Yang Q Y. 1994. Progress of Chinese physical geography in recent ten years (in Chinese). Acta Geogr Sin, 49: 684–690Google Scholar
  22. Chen F H, Chen J H, Holmes J, Boomer I, Austin P, Gates J B, Wang N L, Brooks S J, Zhang J W. 2010. Moisture changes over the last millennium in arid central Asia: A review, synthesis and comparison with monsoon region. Quat Sci Rev, 29: 1055–1068CrossRefGoogle Scholar
  23. Chen F H, Chen J H, Holmes J, Boomer I, Austin P, Gates J B, Wang N L, Brooks S J, Zhang J W. 2014. Holocene vegetation history, precipitation changes and Indian Summer Monsoon evolution documented from sediments of Xingyun Lake, south-west China. J Quat Sci, 29: 661–674CrossRefGoogle Scholar
  24. Chen F H, Dong G H, Zhang D J, Liu X Y, Jia X, An C B, Ma M M, Xie Y W, Barton L, Ren X Y, Zhao Z J, Wu X H, Jones M K. 2015b. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P. Science, 347: 248–250CrossRefGoogle Scholar
  25. Chen F H, Fan Y X, Chun X, Madsen D B, Oviatt C G, Zhao H, Yang L P, Sun Y. 2008b. Preliminary research on Megalake Jilantai-Hetao in the arid areas of China during the Late Quaternary (in Chinese). Chin Sci Bull, 53: 1207–1219CrossRefGoogle Scholar
  26. Chen F H, Fan Y X, Madsen D B, Chun X, Zhao H, Yang L P. 2008a. Preliminary study on the formation mechanism of the “Jilantai-Hetao” megalake and the lake evolutionary history in Hetao region (in Chinese). Quat Sci, 28: 866–873Google Scholar
  27. Chen F H, Huang W, Jin L Y, Chen J H, Wang J S. 2011. Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming. Sci China Earth Sci, 54: 1812–1821CrossRefGoogle Scholar
  28. Chen F H, Welker F, Shen C C, Bailey S E, Bergmann I, Davis S, Xia H, Wang H, Fischer R, Freidline S E, Yu T L, Skinner M M, Stelzer S, Dong G R, Fu Q M, Dong G H, Wang J, Zhang D J, Hublin J J. 2019b. A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature, 569: 409–412CrossRefGoogle Scholar
  29. Chen F H, Xu Q H, Chen J H, Birks H J B, Liu J B, Zhang S R, Jin L Y, An C B, Telford R J, Cao X Y, Wang Z L, Zhang X J, Selvaraj K, Lü H Y, Li Y C, Zheng Z, Wang H P, Zhou A F, Dong G H, Zhang J W, Huang X Z, Bloemendal J, Rao Z G. 2015a. East Asian summer monsoon precipitation variability since the last deglaciation. Sci Rep, 5: 11186CrossRefGoogle Scholar
  30. Chen F H, Yu Z C, Yang M L, Ito E, Wang S M, Madsen D B, Huang X Z, Zhao Y, Sato T, Birks H J B, Boomer I, Chen J H, An C B, Wunnemann B. 2008c. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat Sci Rev, 27: 351–364CrossRefGoogle Scholar
  31. Chen F Z, Chen M J, Kong F X, Wu X D, Wu Q L. 2012. Species-dependent effects of crustacean plankton on a microbial community, assessed using an enclosure experiment in Lake Taihu, China. Limnol Oceanogr, 57: 1711–1720CrossRefGoogle Scholar
  32. Chen F, Chen J, Huang W, Chen S, Huang X, Jin L, Jia J, Zhang X, An C, Zhang J, Zhao Y, Yu Z, Zhang R, Liu J, Zhou A, Feng S. 2019a. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales. Earth-Sci Rev, 192: 337–354CrossRefGoogle Scholar
  33. Chen F, Jia J, Chen J, Li G, Zhang X, Xie H, Xia D, Huang W, An C. 2016. A persistent Holocene wetting trend in arid central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China. Quat Sci Rev, 146: 134–146CrossRefGoogle Scholar
  34. Chen J H, Chen F H, Feng S, Huang W, Liu J B, Zhou A F. 2015. Hydroclimatic changes in China and surroundings during the Medieval Climate Anomaly and Little Ice Age: Spatial patterns and possible mechanisms. Quat Sci Rev, 107: 98–111CrossRefGoogle Scholar
  35. Chen J H, Lv F Y, Huang X Z, Birks H J B, Telford R J, Zhang S R, Xu Q H, Zhao Y, Wang H P, Zhou A F, Huang W, Liu J B, Wei G Y. 2018. A novel procedure for pollen-based quantitative paleoclimate reconstructions and its application in China. Sci China Earth Sci, 60: 2059–2066CrossRefGoogle Scholar
  36. Chen J H, Rao Z G, Liu J B, Huang W, Feng S, Dong G H, Hu Y, Xu Q H, Chen F H. 2016. On the timing of the East Asian summer monsoon maximum during the Holocene—Does the speleothem oxygen isotope record reflect monsoon rainfall variability? Sci China Earth Sci, 59: 2328–2338CrossRefGoogle Scholar
  37. Chen K, Bowler J. 1986. Late pleistocene evolution of salt lakes in the Qaidam basin, Qinghai province, China. Palaeogeogr Palaeoclimatol Palaeoecol, 54: 87–104CrossRefGoogle Scholar
  38. Chen L Z, Sun H, Guo K. 2014. Flora and Vegetation Geography of China (in Chinese). Beijing: Science Press. 596Google Scholar
  39. Chen Y S, Deng T, Zhou Z, Sun H. 2018. Is the East Asian flora ancient or not? Natl Sci Rev, 5: 920–932CrossRefGoogle Scholar
  40. Chen Y Y, Lü X G. 2003. Wetland function and research direction of wetland science (in Chinese). Wetland Sci, 1: 7–11Google Scholar
  41. Cheng G D, Li X, Zhao W Z, Xu Z M, Feng Q, Xiao S C, Xiao H L. 2014. Integrated study of the water-ecosystem-economy in the Heihe River Basin. Nat Sci Rev, 1: 413–428CrossRefGoogle Scholar
  42. Cheng G D, Li X. 2015. Integrated research methods in watershed science. Sci China Earth Sci, 58: 1159–1168CrossRefGoogle Scholar
  43. Cheng G D, Wu Q B, Ma W. 2009. Innovative designs of permafrost roadbed for the Qinghai-Tibet Railway. Sci China Ser E-Technol Sci, 52: 530–538CrossRefGoogle Scholar
  44. Cheng G D. 1983. The mechanism of repeated-segregation for the formation of thick layered ground ice. Cold Regions Sci Tech, 8: 57–66CrossRefGoogle Scholar
  45. China Association for Science and Technology. 2012. Report on Advances in Ecology (2011-2012). Beijing: China Science and Technology Press. 215Google Scholar
  46. Clapp F G. 1922. The Hwang Ho, Yellow River. Geograph Rev, 12: 1–8CrossRefGoogle Scholar
  47. Clift P D, Blusztajn J. 2005. Reorganization of the western Himalayan river system after five million years ago. Nature, 438: 1001–1003CrossRefGoogle Scholar
  48. Clift P D, Blusztajn J, Nguyen A D. 2006. Large-scale drainage capture and surface uplift in eastern Tibet-SW China before 24 Ma inferred from sediments of the Hanoi Basin, Vietnam. Geophys Res Lett, 33: 1–5CrossRefGoogle Scholar
  49. Craddock W H, Kirby E, Harkins N W, Zhang H, Shi X, Liu J. 2010. Rapid fluvial incision along the Yellow River during headward basin integration. Nat Geosci, 3: 209–213CrossRefGoogle Scholar
  50. Creamean J M, Suski K J, Rosenfeld D, Cazorla A, DeMott P J, Sullivan R C, White A B, Ralph F M, Minnis P, Comstock J M, Tomlinson J M, Prather K A. 2013. Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S. Science, 339: 1572–1578CrossRefGoogle Scholar
  51. Cui H, Wang J, Yu B, Hu Z, Yao P, Harbor J M. 2018. Marine Isotope Stage 3 paleotemperature inferred from reconstructing the Die Shan ice cap, northeastern Tibetan Plateau. Quat Res, 89: 494–504CrossRefGoogle Scholar
  52. Cui Z J. 1958. A preliminary observation of the modern glacier of Gongga mountain—In memory of the comrades who died bravely to conquer Gongga mountain (in Chinese). Acta Geogr Sin, 24: 318–342Google Scholar
  53. Dansgaard W, Johnsen S J, Clausen H B, Dahl-Jensen D, Gundestrup N S, Hammer C U, Hvidberg C S, Steffensen J P, Sveinbjörnsdottir A E, Jouzel J, Bond G. 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364: 218–220CrossRefGoogle Scholar
  54. Deng G Y. 1979. A climatic calculative method of evaporation from open water (in Chinese). Acta Meteorol Sin, 37: 87–96Google Scholar
  55. Deng J, Paerl H W, Qin B, Zhang Y, Zhu G, Jeppesen E, Cai Y, Xu H. 2018. Climatically-modulated decline in wind speed may strongly affect eutrophication in shallow lakes. Sci Total Environ, 645: 1361–1370CrossRefGoogle Scholar
  56. Deng Y, Gou X, Gao L, Yang M, Zhang F. 2017. Spatiotemporal drought variability of the eastern Tibetan Plateau during the last millennium. Clim Dyn, 49: 2077–2091CrossRefGoogle Scholar
  57. Deng Z, Qin L, Gao Y, Weisskopf A R, Zhang C, Fuller D Q, Parida S K. 2015. From early domesticated rice of the middle Yangtze Basin to millet, rice and wheat agriculture: Archaeobotanical macro-remains from Baligang, Nanyang Basin, Central China (6700-500 BC). PLoS ONE, 10: e0139885CrossRefGoogle Scholar
  58. Ding L, Kapp P, Wan X Q. 2005. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics, 24: TC3001CrossRefGoogle Scholar
  59. Ding L, Kapp P, Yue Y, Lai Q. 2007. Postcollisional calc-alkaline lavas and xenoliths from the southern Qiangtang terrane, central Tibet. Earth Planet Sci Lett, 254: 28–38CrossRefGoogle Scholar
  60. Ding L, Spicer R A, Yang J, Xu Q, Cai F, Li S, Lai Q, Wang H, Spicer T E V, Yue Y, Shukla A, Srivastava G, Khan M A, Bera S, Mehrotra R. 2017. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology, 45: 215–218CrossRefGoogle Scholar
  61. Ding L, Xu Q, Yue Y, Wang H, Cai F, Li S. 2014. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou Basin. Earth Planet Sci Lett, 392: 250–264CrossRefGoogle Scholar
  62. Ding S M, Chen M S, Gong M D, Fan X F, Qin B Q, Xu H, Gao S S, Jin Z F, Tsang D C W, Zhang C S. 2018. Internal phosphorus loading from sediments causes seasonal nitrogen limitation for harmful algal blooms. Sci Total Environ, 625: 872–884CrossRefGoogle Scholar
  63. Ding S, Han C, Wang Y, Yao L, Wang Y, Xu D, Sun Q, Williams P N, Zhang C. 2015. In situ, high-resolution imaging of labile phosphorus in sediments of a large eutrophic lake. Water Res, 74: 100–109CrossRefGoogle Scholar
  64. Ding Z L, Ranov V, Yang S L, Finaev A, Han J M, Wang G A. 2002. The loess record in southern Tajikistan and correlation with Chinese loess. Earth Planet Sci Lett, 200: 387–400CrossRefGoogle Scholar
  65. Ding Z L, Rutter N W, Liu T S. 1997. The onset of extensive loess deposition around the G/M boundary in China and its palaeoclimatic implications. Quat Int, 40: 53–60CrossRefGoogle Scholar
  66. Ding Z L, Xiong S F, Sun J M, Yang S L, Gu Z Y, Liu T S. 1999. Pedostratigraphy and paleomagnetism of a ∼7.0 Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution. Palaeogeogr Palaeoclimatol Palaeoecol, 152: 49–66CrossRefGoogle Scholar
  67. Dong G C, Zhou W J, Yi C L, Fu Y C, Zhang L, Li M. 2018. The timing and cause of glacial activity during the last glacial in central Tibet based on 10Be surface exposure dating east of Mount Jaggang, the Xainza range. Quat Sci Rev, 186: 284–297CrossRefGoogle Scholar
  68. Dong G H, Li R, Lu M X, Zhang D J, James N. 2019. Evolution of human-environmental interactions in China from the Late Paleolithic to the Bronze Age. Prog Phys Geog, 9: 030913331987680CrossRefGoogle Scholar
  69. Dong G H, Liu F W, Chen F H. 2017b. Environmental and technological effects on ancient social evolution at different spatial scales. Sci China Earth Sci, 60: 2067–2077CrossRefGoogle Scholar
  70. Dong G H, Yang Y S, Han J Y, Wang H, Chen F H. 2017a. Exploring the history of cultural exchange in prehistoric Eurasia from the perspectives of crop diffusion and consumption. Sci China Earth Sci, 60: 1110–1123CrossRefGoogle Scholar
  71. Dong G H, Yang Y S, Liu X Y, Li H M, Cui Y F, Wang H, Chen G K, Dodson J, Chen F H. 2018. Prehistoric trans-continental cultural exchange in the Hexi Corridor, northwest China. Holocene, 28: 621–628CrossRefGoogle Scholar
  72. Dong G R. 2002. Formation and Climate Evolution of Deserts in China and Desertification (in Chinese). Beijing: Ocean Press. 734Google Scholar
  73. Dong Z B, Hu G Y, Qian G Q, Lu J F, Zhang Z C, Luo W Y, Lyu P. 2017. High-altitude Aeolian research on the Tibetan Plateau. Rev Geophys, 55: 864–901CrossRefGoogle Scholar
  74. Dong Z B, Su Z Z, Qian G Q, Luo W Y, Zhang Z S, Wu J F. 2011. Aeolian Geomorphology of Kumtag Desert (in Chinses). Beijing: Science Press. 484Google Scholar
  75. Duan J P, Esper J, Büntgen U, Li L, Xoplaki E, Zhang H, Wang L, Fang Y, Luterbacher J. 2017. Weakening of annual temperature cycle over the Tibetan Plateau since the 1870s. Nat Commun, 8: 14008CrossRefGoogle Scholar
  76. Duan J P, Ma Z G, Wu P L, Xoplaki E, Hegerl G, Li L, Schurer A, Guan D B, Chen L, Duan Y W, Luterbacher J. 2019. Detection of human influences on temperature seasonality from the nineteenth century. Nat Sustain, 2: 484–490CrossRefGoogle Scholar
  77. EDW (Mountain Research Initiative EDW Working Group). 2015. Elevation-dependent warming in mountain regions of the world. Nat Clim Chang, 5: 424–430CrossRefGoogle Scholar
  78. Egholm D L, Nielsen S B, Pedersen V K, Lesemann J E. 2009. Glacial effects limiting mountain height. Nature, 460: 884–887CrossRefGoogle Scholar
  79. Esper J, Cook E R, Schweingruber F H. 2002. Low frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science, 295: 2250–2253CrossRefGoogle Scholar
  80. Fan Q S, Lai Z P, Long H, Sun Y J, Liu X J. 2009. OSL chronology for lacustrine sediments recording high stands of Gahai Lake in Qaidam Basin, northeastern Qinghai-Tibetan Plateau. Quat Geochronol, 5: 223–227CrossRefGoogle Scholar
  81. Fang X M, Fang Y H, Zan J B, Zhang W L, Song C H, Appel E, Meng Q Q, Miao Y F, Dai S, Lu Y, Zhang T. 2019. Cenozoic magnetostratigraphy of the Xining Basin, NE Tibetan Plateau, and its constraints on paleontological, sedimentological and tectonomorphological evolution. Earth-Sci Rev, 190: 460–485CrossRefGoogle Scholar
  82. Fang X M, Garzione C, Van V R, Li J J, Fan M J. 2003. Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China. Earth Planet Sci Lett, 210: 545–560CrossRefGoogle Scholar
  83. Fang X M, Li J J, Zhu J J, Chen H L, Cao J X. 1997. Age-dating and classification of Cenozoic stratigraphy in the Linxia Basin, Gansu Province (in Chinese). Chin Sci Bull, 42: 1457–1471Google Scholar
  84. FAO, ITPS. 2015. Status of the World’s Soil Resources (Main Report). Food and Agriculture Organization of the United Nations. Rome. Also available at Google Scholar
  85. Feng X M, Fu B J, Lu N, Zeng Y, Wu B F. 2013. How ecological restoration alters ecosystem services: An analysis of carbon sequestration in China’s Loess Plateau. Sci Rep, 3: 2846CrossRefGoogle Scholar
  86. Feng X M, Fu B J, Piao S L, Wang S, Ciais P, Zeng Z D, Lu Y H, Zeng Y, Li Y, Jiang X H, Wu B F. 2016. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat Clim Change, 6: 1019–1022CrossRefGoogle Scholar
  87. Feng X M, Sun G, Fu B J, Su C H, Liu Y, Lamparski H. 2012. Regional effects of vegetation restoration on water yield across the Loess Plateau, China. Hydrol Earth Syst Sci, 16: 2617–2628CrossRefGoogle Scholar
  88. Frachetti M D, Smith C E, Traub C M, Williams T. 2017. Nomadic ecology shaped the highland geography of Asia’s Silk Roads. Nature, 543: 193–198CrossRefGoogle Scholar
  89. Fu B J. 1989. Soil erosion and its control in the loess plateau of China. Soil Use Manage, 5: 76–82CrossRefGoogle Scholar
  90. Fu B J. 2018. Thoughts on the recent development of physical geography (in Chinese). Progr in Geogr, 37: 1–7CrossRefGoogle Scholar
  91. Fu B P. 1981. Calculation of soil evaporation (in Chinese). Acta Meteorol Sin, 39: 23–31Google Scholar
  92. Fu B J, Liu Y, Lv Y H, He C S, Zeng Y, Wu B F. 2011. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecol Complex, 8: 284–293CrossRefGoogle Scholar
  93. Fu B J, Pan N Q. 2016. Integrated studies of physical geography in China: Review and prospects. J Geogr Sci, 26: 771–790CrossRefGoogle Scholar
  94. Fuller D Q, Qin L, Zheng Y, Zhao Z, Chen X, Hosoya L A, Sun G P. 2009. The domestication process and domestication rate in rice: Spikelet bases from the Lower Yangtze. Science, 323: 1607–1610CrossRefGoogle Scholar
  95. Gao B, Yang D, Qin Y, Wang Y, Li H, Zhang Y, Zhang T. 2018. Change in frozen soils and its effect on regional hydrology, upper Heihe basin, northeastern Qinghai-Tibetan Plateau. Cryosphere, 12: 657–673CrossRefGoogle Scholar
  96. Ge Q S. 2011. Climate Change in Chinese Dynasties (in Chinese). Beijing: Science Press. 709Google Scholar
  97. Ge Q, Hao Z, Zheng J, Shao X. 2013. Temperature changes over the past 2000 yr in China and comparison with the Northern Hemisphere. Clim Past, 9: 1153–1160CrossRefGoogle Scholar
  98. Ge Q, Zheng J, Fang X, Man Z, Zhang X, Zhang P, Wang W C. 2003. Winter half-year temperature reconstruction for the middle and lower reaches of the Yellow River and Yangtze River, China, during the past 2000 years. Holocene, 13: 933–940Google Scholar
  99. Gong S Y, Jiang D Q. 1978. Water and soil erosion and treatment of channel and small watershed in loess hilly and gully region in the middle reaches of the Yellow River (in Chinese). Sci China Ser A, 21: 671–678Google Scholar
  100. Gou X H, Deng Y, Chen F H, Yang M X, Fang K Y, Gao L L, Yang T, Zhang F. 2010. Tree ring based streamflow reconstruction for the Upper Yellow River over the past 1234 years. Chin Sci Bull, 55: 4179–4186CrossRefGoogle Scholar
  101. Gregory K J. 2000. The Changing Nature of Physical Geography. London, UK: Arnold. 384Google Scholar
  102. Guo D, Wang H. 2016. CMIP5 permafrost degradation projection: A comparison among different regions. J Geophys Res-Atmos, 121: 4499–4517CrossRefGoogle Scholar
  103. Guo Z S, Shao M A. 2003. Soil water carrying capacity of vegetation and soil desiccation in artificial forestry and grassland in semi-arid regions of the Loess Plateau (in Chinese). Aata Ecolog Sin, 23: 1640–164Google Scholar
  104. Guo Z T, Ruddiman W F, Hao Q Z, Wu H B, Qiao Y S, Zhu R X, Peng S Z, Wei J J, Yuan B Y, Liu T S. 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416: 159–163CrossRefGoogle Scholar
  105. He K, Lu H, Zhang J, Wang C, Huan X. 2017. Prehistoric evolution of the dualistic structure mixed rice and millet farming in China. Holocene, 27: 1885–1898CrossRefGoogle Scholar
  106. Heermance R V, Pearson J, Moe A, Liu L, Xu J, Chen J, Richter F, Garzione N, Nie J, Bogue S. 2018. Erg deposition and development of the ancestral Taklimakan Desert (western China) between 12.2 and 7.0 Ma. Geology, 46: 919–922CrossRefGoogle Scholar
  107. Heller F, Liu T S. 1982. Magnetostratigraphical dating of loess deposits in China. Nature, 300: 431–433CrossRefGoogle Scholar
  108. Hou J Z, Huang Y S, Zhao J T, Liu Z H, Colman S, An Z S. 2016. Large Holocene summer temperature oscillations and impact on the peopling of the northeastern Tibetan Plateau. Geophys Res Lett, 43: 1323–1330CrossRefGoogle Scholar
  109. Hou S, Jenk T M, Zhang W, Wang C, Wu S, Wang Y, Pang H, Schwikowski M. 2018. Age ranges of the Tibetan ice cores with emphasis on the Chongce ice cores, western Kunlun Mountains. Cryosphere, 12: 2341–2348CrossRefGoogle Scholar
  110. Hu G, Zhao L, Li R, Wu X, Wu T, Xie C, Zhu X, Su Y. 2019. Variations in soil temperature from 1980 to 2015 in permafrost regions on the Qinghai-Tibetan Plateau based on observed and reanalysis products. Geoderma, 337: 893–905CrossRefGoogle Scholar
  111. Hu Z B, Li M H, Dong Z J, Guo L Y, Bridgland D, Pan B T, Li X H, Liu X F. 2019. Fluvial entrenchment and integration of the Sanmen Gorge, the Lower Yellow River. Glob Planet Change, 178: 129–138CrossRefGoogle Scholar
  112. Hu Z B, Pan B T, Bridgland D, Vandenberghe J, Guo L Y, Fan Y L, Westaway R. 2017. The linking of the upper-middle and lower reaches of the Yellow River as a result of fluvial entrenchment. Quat Sci Rev, 166: 324–338CrossRefGoogle Scholar
  113. Hu Z, Pan B, Guo L, Vandenberghe J, Liu X, Wang J, Fan Y, Mao J, Gao H, Hu X. 2016. Rapid fluvial incision and headward erosion by the Yellow River along the Jinshaan gorge during the past 1.2 Ma as a result of tectonic extension. Quat Sci Rev, 133: 1–14CrossRefGoogle Scholar
  114. Huang B W. 1955. Lessons from mapping soil erosion zone in the middle reaches of the Yellow River. Chin Sci Bull, 12: 15–21CrossRefGoogle Scholar
  115. Huang B W. 1959. Comprehensive natural zone draft of China (in Chinese). Chin Sci Bull, 18: 594–602CrossRefGoogle Scholar
  116. Huang B W. 1960. Some of the most important trends in physical geography (in Chinese). Acta Geogr Sin, 26: 149–154Google Scholar
  117. Huang J H, Chen B, Liu C, Lai J, Zhang J, Ma K. 2012. Identifying hotspots of endemic woody seed plant diversity in China. Divers Distrib, 18: 673–688CrossRefGoogle Scholar
  118. Huang W W, Chen K Z, Yuan B Y. 1987. Paleolith of Qinghai Xiaochaida Lake. In: Proceedings of the China-Australia Quaternary Academic Symposium (in Chinese). Beijing: Science Press. 168–175Google Scholar
  119. Huang W, Feng S, Chen J, Chen F. 2015. Physical mechanisms of summer precipitation variations in the Tarim Basin in Northwestern China. J Clim, 28: 3579–3591CrossRefGoogle Scholar
  120. Huang X C. 1962. Eurasia Temperate Mountain Vertical Belt Structure Type (in Chinese). Beijing: Science Press. 356Google Scholar
  121. Huang X, Meyers P A, Jia C, Zheng M, Xue J, Wang X, Xie S. 2013. Paleotemperature variability in central China during the last 13 ka recorded by a novel microbial lipid proxy in the Dajiuhu peat deposit. Holocene, 23: 1123–1129CrossRefGoogle Scholar
  122. Huerta-Sánchez E, Jin X, Asan X, Bianba Z, Peter B M, Vinckenbosch N, Liang Y, Yi X, He M, Somel M, Ni P, Wang B, Ou X, Huasang X, Luosang J, Cuo Z X P, Li K, Gao G, Yin Y, Wang W, Zhang X, Xu X, Yang H, Li Y, Wang J, Wang J, Nielsen R. 2014. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature, 512: 194–197CrossRefGoogle Scholar
  123. Hugelius G, Strauss J, Zubrzycki S, Harden J W, Schuur E A G, Ping C L, Schirrmeister L, Grosse G, Michaelson G J, Koven C D, O’Donnell J A, Elberling B, Mishra U, Camill P, Yu Z, Palmtag J, Kuhry P. 2014. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 11: 6573–6593CrossRefGoogle Scholar
  124. Huss M, Hock R. 2018. Global-scale hydrological response to future glacier mass loss. Nat Clim Change, 8: 135–140CrossRefGoogle Scholar
  125. Immerzeel W W, van Beek L P H, Bierkens M F P. 2010. Climate change will affect the Asian water towers. Science, 328: 1382–1385CrossRefGoogle Scholar
  126. Intergovernmental Panel on Climate Change (IPCC). 2013. Climate change 2013: The physical science basis. In: Stocker T F, Qin D, Plattner G K, eds. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom: Cambridge University PressGoogle Scholar
  127. Jia J T, Zheng H B, Huang X T, Wu F Y, Yang S Y, Wang K, He M Y. 2010. Detrital zircon U-Pb ages of Late Cenozoic sediments from the Yangtze delta: Implication for the evolution of the Yangtze River. Chin Sci Bull, 55: 1520–1528CrossRefGoogle Scholar
  128. Jia Y W, Wang H, Zhou Z H, Qiu Y Q, Luo X Y, Wang J H, Yan D H, Qin D Y. 2006. Development of the WEP-L distributed hydrological model and dynamic assessment of water resources in the Yellow River Basin. J Hydrol, 331: 606–629CrossRefGoogle Scholar
  129. Jiang D B, Lang X M, Tian Z P, Wang T. 2012. Considerable model-data mismatch in temperature over china during the mid-Holocene: Results of PMIP simulations. J Clim, 25: 4135–4153CrossRefGoogle Scholar
  130. Jiang M, Zou Y C, Zhang G X, Tong S Z, Wu H T, Liu X H, Zhang Z S, Xue Z S, Lu X G. 2018. Progress and prospects of wetland science in China progress China-Commemoration on the commemorationon the 60th anniversary of the founding of northeast geography and agroecology, Chinese academy of sciences northeast sciences (in Chinese). Wetland Sci, 16: 279–287Google Scholar
  131. Jin L, Chen F, Morrill C, Otto-Bliesner B L, Rosenbloom N. 2012. Causes of early Holocene desertification in arid central Asia. Clim Dyn, 38: 1577–1591CrossRefGoogle Scholar
  132. Johnsen S J, Dansgaard W, Clausen H B, Langway C C. 1972. Oxygen isotope profiles through the Antarctic and Greenland ice sheets. Nature, 235: 429–434CrossRefGoogle Scholar
  133. Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola J M, Chappellaz J, Fischer H, Gallet J C, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen J P, Stenni B, Stocker T F, Tison J L, Werner M, Wolff E W. 2007. Orbital and millennial Antarctic climate variability over the past 800000 years. Science, 317: 793–796CrossRefGoogle Scholar
  134. Kääb A, Leinss S, Gilbert A, Bühler Y, Gascoin S, Evans S G, Bartelt P, Berthier E, Brun F, Chao W A, Farinotti D, Gimbert F, Guo W, Huggel C, Kargel J S, Leonard G J, Tian L, Treichler D, Yao T. 2018. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability. Nat Geosci, 11: 114–120CrossRefGoogle Scholar
  135. Kong F X, Gao G. 2005. Hypothesis on cyanobacteria bloom-forming mechanism in large shallow eutrophic lakes (in Chinese). Acta Ecologica Sin, 25: 589–595Google Scholar
  136. Kong P, Granger D E, Wu F Y, Caffee M W, Wang Y J, Zhao X T, Zheng Y. 2009. Cosmogenic nuclide burial ages and provenance of the Xigeda paleo-lake: Implications for evolution of the Middle Yangtze River. Earth Planet Sci Lett, 278: 131–141CrossRefGoogle Scholar
  137. Kuhle M. 1988. The pleistocene glaciation of Tibet and the onset of ice ages? An autocycle hypothesis. Geo J, 17: 581–595Google Scholar
  138. Kuzmina E E, Mair V H. 2008. The Prehistory of the Silk Road. Philadelphia: University of Pennsylvania Press. 1–108CrossRefGoogle Scholar
  139. Lai Z P, Mischke S, Madsen D. 2014. Paleoenvironmental implications of new OSL dates on the formation of the “Shell Bar” in the Qaidam Basin, northeastern Qinghai-Tibetan Plateau. J Paleolimnol, 51: 197–210CrossRefGoogle Scholar
  140. Lewkowicz A G, Way R G. 2019. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nat Commun, 10: 1329CrossRefGoogle Scholar
  141. Li B Y. 2000. The last greatest lakes on the Xizang (Tibetan) Plateau (in Chinese). Acta Geogr Sin, 55: 174–182Google Scholar
  142. Li B F, Sun D H, Xu W H, Wang F, Liang B Q, Ma Z W, Wang X, Li Z J, Chen F H. 2017. Paleomagnetic chronology and paleoenvironmental records from drill cores from the Hetao Basin and their implications for the formation of the Hobq Desert and the Yellow River. Quat Sci Rev, 156: 69–89CrossRefGoogle Scholar
  143. Li G, Jin M, Chen X, Wen L, Zhang J, Madsen D, Zhao H, Wang X, Fan T, Duan Y, Liu X, Wu D, Li F, Chen F. 2015. Environmental changes in the Ulan Buh Desert, southern Inner Mongolia, China since the middle Pleistocene based on sedimentology, chronology and proxy indexes. Quat Sci Rev, 128: 69–80CrossRefGoogle Scholar
  144. Li G, She L, Jin M, Yang H, Madsen D, Chun X, Yang L, Wei H, Tao S, Chen F. 2018. The spatial extent of the East Asian summer monsoon in arid NW China during the Holocene and Last Interglaciation. Glob Planet Change, 169: 48–65CrossRefGoogle Scholar
  145. Li J J, Fang X M, Ma H Z, Zhu J J, Pan B T, Chen H L. 1996. Geomorphological evolution of the upper reaches of the Yellow River and the uplift of the Tibetan Plateau in the late Cenozoic. Sci China, 26: 316–322Google Scholar
  146. Li J J, Fang X M. 1998. Study on the uplift of Qinghai-Tibet Plateau and environmental changes. Chin Sci Bull, 43: 1569–1574CrossRefGoogle Scholar
  147. Li J J, Feng Z D, Tang L Y. 1988. Late Quaternary monsoon patterns on the loess plateau of China. Earth Surf Process Landf, 13: 125–135CrossRefGoogle Scholar
  148. Li J J, Wen S X, Zhang Q S, Wang F B, Zheng B X, Li B Y. 1979. Discussion on the age, range and form of the Qinghai-Tibet Plateau uplift. Sci China, 6: 608–616Google Scholar
  149. Li J J, Zheng B X, Yang X J. 1986. Glacier of Tibet (in Chinese). Beijing: Science Press. 328Google Scholar
  150. Li J J. 1990. The patterns of environmental changes since late Pleistocene in northwestern China (in Chinese). Quat Sci, 3: 197–204Google Scholar
  151. Li J J. 1995. Uplift of Qinghai-Xizang (Tibet) Plateau and Global Change (in Chinese). Lanzhou: Lanzhou University Press. 207Google Scholar
  152. Li J X, Yue L P, Roberts A P, Hirt A M, Pan F, Guo L, Xu Y, Xi R G, Guo L, Qiang X K, Gai C C, Jiang Z X, Sun Z M, Liu Q S. 2018. Global cooling and enhanced Eocene Asian mid-latitude interior aridity. Nat Commun, 9: 3026CrossRefGoogle Scholar
  153. Li J, Xie S, Kuang M. 2001. Geomorphic evolution of the Yangtze Gorges and the time of their formation. Geomorphology, 41: 125–135CrossRefGoogle Scholar
  154. Li R, Kraft N J B, Yang J, Wang Y. 2015. A phylogenetically informed delineation of floristic regions within a biodiversity hotspot in Yunnan, China. Sci Rep, 5: 9396CrossRefGoogle Scholar
  155. Li S G. 1947. Ice age of Lushan (in Chinese). Special Issue of National Institute of Geological Research, (2): 1–60Google Scholar
  156. Li W C. 1996. Ecological restoration of shallow, eutrophic lakes-experimental studies on the recovery of aquaticvegetation in Wuli Lake (in Chinese). J Lake Sci, 8: 1–10Google Scholar
  157. Li X, Cheng G D, Ge Y C, Li H Y, Han F, Hu X L, Tian W, Pan X D, Nian Y Y, Zhang Y L, Ran Y H, Zheng Y, Gao B, Yang D W, Zheng C M, Wang X S, Liu S M, Cai X M. 2018b. Hydrological cycle in the Heihe River Basin and its implication for water resource management in endorheic basins. J Geophys Res-Atmos, 123: 890–914CrossRefGoogle Scholar
  158. Li X, Cheng G D, Lin H, Cai X M, Fang M, Ge Y C, Hu X L, Chen M, Li W Y. 2018a. Watershed system model: The essentials to model complex human-nature system at the river basin scale. J Geophys Res-Atmos, 123: 3019–3034CrossRefGoogle Scholar
  159. Li Y K, Liu G N, Chen Y X, Li Y N, Harbor J M, Stroeven A P, Caffee M W, Zhang M, Li C C, Cui Z J. 2014. Timing and extent of Quaternary glaciations in the Tianger Range, eastern Tian Shan, China, investigated using 10Be surface exposure dating. Quat Sci Rev, 98: 7–23CrossRefGoogle Scholar
  160. Li Z, Sun D, Chen F, Wang F, Zhang Y, Guo F, Wang X, Li B. 2014. Chronology and paleoenvironmental records of a drill core in the central Tengger Desert of China. Quat Sci Rev, 85: 85–98CrossRefGoogle Scholar
  161. Liang E Y, Eckstein D. 2009. Dendrochronological potential of the alpine shrub Rhododendron nivale on the south-eastern Tibetan Plateau. Ann Bot, 104: 665–670CrossRefGoogle Scholar
  162. Licht A, van Cappelle M, Abels H A, Ladant J B, Trabucho-Alexandre J, France-Lanord C, Donnadieu Y, Vandenberghe J, Rigaudier T, Lécuyer C, Terry Jr. D, Adriaens R, Boura A, Guo Z, Soe A N, Quade J, Dupont-Nivet G, Jaeger J J. 2014. Asian monsoons in a late Eocene greenhouse world. Nature, 513: 501–506CrossRefGoogle Scholar
  163. Lin N, Deng T, Moore M J, Sun Y, Huang X, Sun W, Luo D, Wang H, Zhang J, Sun H. 2018. Phylogeography of parasyncalathium souliei (asteraceae) and its potential application in delimiting phylogeoregions in the Qinghai-Tibet Plateau (QTP)-Hengduan Mountains (HDM) hotspot. Front Genet, 9: 171CrossRefGoogle Scholar
  164. Liu B Y, Zhang K L, Xie Y. 2002. An empirical soil loss equation. Beijing: Proceedings-Process of Soil Erosion and Its Environment Effect (Vol. II), 12: 21–25Google Scholar
  165. Liu C M, Hong B X, Zeng M X, Cheng Y. 1965. Preliminary experimental study on the relationship between storm runoff forecast on the Loess Plateau (in Chinese). Chin Sci Bull, 2: 158–161Google Scholar
  166. Liu C M, Wang Z G, Zheng H X, Zhang L, Wu X F. 2008. Development and application of HIMS system and its customized model. Sci China Ser E-Technical Sci, 3: 350–360Google Scholar
  167. Liu C M, Zhang X, Zhang Y. 2002. Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter. Agric For Meteorol, 111: 109–120CrossRefGoogle Scholar
  168. Liu C M. 2013. Discussion on “Green Water” research and ecological maintenance (in Chinese). Beijing: Watershed Water Environment Protection and Technology Innovation ForumGoogle Scholar
  169. Liu D S, Zheng J P, Guo Z T. 1998. Initiation and evolution of the Asian monsoon system timely coupled with the ice-sheet growth and the tectonic movement in Asia (in Chinese). Quat Sci, 18: 194–204Google Scholar
  170. Liu D S. 1985. Loess and Environment (in Chinese). Beijing: Science Press. 497Google Scholar
  171. Liu J B, Chen F H, Chen J H, Xia D S, Xu Q H, Wang Z L, Li Y C. 2011. Humid Medieval Warm Period recorded by magnetic characteristics of sediments from Gonghai Lake, Shanxi, North China. Chin Sci Bull, 56: 2464–2474CrossRefGoogle Scholar
  172. Liu J B, Chen J H, Zhang X J, Li Y, Rao Z G, Chen F H. 2015. Holocene East Asian summer monsoon records in northern China and their inconsistency with Chinese stalagmite δ 18O records. Earth-Sci Rev, 148: 194–208CrossRefGoogle Scholar
  173. Liu J B, Rühland K M, Chen J H, Xu Y Y, Chen S Q, Chen Q M, Huang W, Xu Q H, Chen F H, Smol J P. 2017. Aerosol-weakened summer monsoons decrease lake fertilization on the Chinese Loess Plateau. Nat Clim Change, 7: 190–194CrossRefGoogle Scholar
  174. Liu J Q, Sun Y S, Ge X J, Gao L M, Qiu Y X. 2012. Phylogeographic studies of plants in China: Advances in the past and directions in the future. J Syst Evol, 50: 267–275CrossRefGoogle Scholar
  175. Liu L, Bestel S, Shi J, Song Y, Chen X. 2013. Paleolithic human exploitation of plant foods during the last glacial maximum in north China. Proc Natl Acad Sci USA, 110: 5380–5385CrossRefGoogle Scholar
  176. Liu S J. 1953. Preliminary analysis of soil and water loss test in Tianshui (in Chinese). Chin Sci Bull, 12: 59–65CrossRefGoogle Scholar
  177. Liu S Y, Yao X J, Guo W Q, Xu J L, Shangguan D H, Wei J F, Bao W J, Wu L Z. 2015. The contemporary glaciers in China based on the second Chinese glacier inventory (in Chinese). Acta Geogr Sin, 70: 3–16Google Scholar
  178. Liu X Y, Jones P J, Matuzeviciute G M, Lister D L, An T, Przelomska N, Kneale C, Zhao Z J, Jones M K. 2019. From ecological opportunism to multi-cropping: Mapping food globalisation in prehistory. Quat Sci Rev, 206: 21–28CrossRefGoogle Scholar
  179. Liu Y X, Yang S Q, Zhao W W, Fu B J. 2018. Contemporary Chinese physical geography in the context of changes: Review of the 2017 National Physical Geography Conference (in Chinese). Prog Geog, 37: 163–171CrossRefGoogle Scholar
  180. Liu Y, An Z S, Linderholm H W, Chen D L, Song H M, Cai Q F, Sun J Y, Tian H. 2009. Annual temperatures during the last 2485 years in the mid-eastern Tibetan Plateau inferred from tree rings. Sci China Ser DEarth Sci, 52: 348–359CrossRefGoogle Scholar
  181. Liu Y, Cai W, Sun C, Song H, Cobb K M, Li J, Leavitt S W, Wu L, Cai Q, Liu R, Ng B, Cherubini P, Büntgen U, Song Y, Wang G, Lei Y, Yan L, Li Q, Ma Y, Fang C, Sun J, Li X, Chen D, Linderholm H W. 2019b. Anthropogenic aerosols cause recent pronounced weakening of Asian Summer Monsoon relative to last four centuries. Geophys Res Lett, 46: 5469–5479CrossRefGoogle Scholar
  182. Liu Y, Cobb K M, Song H, Li Q, Li C Y, Nakatsuka T, An Z, Zhou W, Cai Q, Li J, Leavitt S W, Sun C, Mei R, Shen C C, Chan M H, Sun J, Yan L, Lei Y, Ma Y, Li X, Chen D, Linderholm H W. 2017. Recent enhancement of central Pacific El Niño variability relative to last eight centuries. Nat Commun, 8: 15386CrossRefGoogle Scholar
  183. Liu Y, Song H, Sun C, Song Y, Cai Q, Liu R, Lei Y, Li Q. 2019a. The 600-mm precipitation isoline distinguishes tree-ring-width responses to climate in China. Natl Sci Rev, 6: 359–368CrossRefGoogle Scholar
  184. Liu Z, Zhu J, Rosenthal Y, Zhang X, Otto-Bliesner B L, Timmermann A, Smith R S, Lohmann G, Zheng W, Elison Timm O. 2014. The Holocene temperature conundrum. Proc Natl Acad Sci USA, 111: E3501–E3505CrossRefGoogle Scholar
  185. Livingstone I, Warren A. 2019. Aeolian Geomorphology: A New Introduction. Chichester: John Wiley & Sons Ltd. 336CrossRefGoogle Scholar
  186. Long H, Lai Z P, Fuchs M, Zhang J R, Li Y. 2012. Timing of Late Quaternary palaeolake evolution in Tengger Desert of northern China and its possible forcing mechanisms. Glob Planet Change, 92–93: 119–129CrossRefGoogle Scholar
  187. Long H, Shen J, Wang Y, Gao L, Frechen M. 2015. High-resolution OSL dating of a late Quaternary sequence from Xingkai Lake (NE Asia): Chronological challenge of the “MIS 3a Mega-paleolake” hypothesis in China. Earth Planet Sci Lett, 428: 281–292CrossRefGoogle Scholar
  188. Long H, Shen J. 2015. Underestimated 14C-based chronology of late Pleistocene high lake-level events over the Tibetan Plateau and adjacent areas: Evidence from the Qaidam Basin and Tengger Desert. Sci China Earth Sci, 58: 183–194CrossRefGoogle Scholar
  189. Long H, Zhang J R. 2016. Luminescence dating of late Quaternary Lake-levels in Northern China (in Chinese). Quat Sci, 36: 1191–1203Google Scholar
  190. Long T W, Leipe C, Jin G Y, Wagner M, Guo R Z, Schröder O, Tarasov P E. 2018. The early history of wheat in China from 14C dating and Bayesian chronological modelling. Nat Plants, 4: 272–279CrossRefGoogle Scholar
  191. Lu H Y, Wang X Y, Wang X Y, Chang X, Zhang H Z, Xu Z W, Zhang W C, Wei H Z, Zhang X J, Yi S W, Zhang W F, Feng H, Wang Y C, Wang Y, Han Z Y. 2019. Formation and evolution of Gobi Desert in central and eastern Asia. Earth-Sci Rev, 194: 251–263CrossRefGoogle Scholar
  192. Lu H, Zhang J, Liu K, Wu N, Li Y, Zhou K, Ye M, Zhang T, Zhang H, Yang X, Shen L, Xu D, Li Q. 2009. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10000 years ago. Proc Natl Acad Sci USA, 106: 7367–7372CrossRefGoogle Scholar
  193. Lu L M, Mao L F, Yang T, Ye J F, Liu B, Li H L, Sun M, Miller J T, Mathews S, Hu H H, Niu Y T, Peng D X, Chen Y H, Smith S A, Chen M, Xiang K L, Le C T, Dang V C, Lu A M, Soltis P S, Soltis D E, Li J H, Chen Z D. 2018. Evolutionary history of the angiosperm flora of China. Nature, 554: 234–238CrossRefGoogle Scholar
  194. Lü P, Narteau C, Dong Z, Rozier O, Courrech du Pont S. 2017. Unravelling raked linear dunes to explain the coexistence of bedforms in complex dunefields. Nat Commun, 8: 14239CrossRefGoogle Scholar
  195. Lü P, Narteau C, Dong Z B, Zhang Z C, Courrech P S. 2014. Emergence of oblique dunes in a landscape-scale experiment. Nat Geosci, 7: 99–103CrossRefGoogle Scholar
  196. Lü X G. 2008. Wetlands and Wetlands in China (in Chinese). Shijiazhuang: Hebei Science & Technology Press. 922Google Scholar
  197. Lu Y H, Conrad R. 2005. In situ stable isotope probing of methanogenic archaea in the rice rhizosphere. Science, 309: 1088–1090CrossRefGoogle Scholar
  198. Lutz A F, Immerzeel W W, Shrestha A B, Bierkens M F P. 2014. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat Clim Change, 4: 587–592CrossRefGoogle Scholar
  199. Ma M M, Dong G H, Jia X, Wang H, Cui Y F, Chen F H. 2016. Dietary shift after 3600 cal yr BP and its influencing factors in northwestern China: Evidence from stable isotopes. Quat Sci Rev, 145: 57–70CrossRefGoogle Scholar
  200. Ma Y, Yang X, Huan X, Gao Y, Wang W, Li Z, Ma Z, Perry L, Sun G, Jiang L, Jin G, Lu H, Biehl P F. 2018. Multiple indicators of rice remains and the process of rice domestication: A case study in the lower yangtze river region, china. PLoS ONE, 13: e0208104CrossRefGoogle Scholar
  201. Ma Z G, Fu C B. 2006. Basic facts of drought in northern China from 1951 to 2004 (in Chinese). Chin Sci Bull, 51: 2429–2439Google Scholar
  202. Madsen D B, Haizhou M, Rhode D, Brantingham P J, Forman S L. 2008. Age constraints on the late Quaternary evolution of Qinghai Lake, Tibetan Plateau. Quat Res, 69: 316–325CrossRefGoogle Scholar
  203. Mann M E, Zhang Z, Hughes M K, Bradley R S, Miller S K, Rutherford S, Ni F. 2008. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci USA, 105: 13252–13257CrossRefGoogle Scholar
  204. Marcott S A, Shakun J D, Clark P U, Mix A C. 2013. A reconstruction of regional and global temperature for the past 11,300 years. Science, 339: 1198–1201CrossRefGoogle Scholar
  205. Marsicek J, Shuman B N, Bartlein P J, Shafer S L, Brewer S. 2018. Reconciling divergent trends and millennial variations in Holocene temperatures. Nature, 554: 92–96CrossRefGoogle Scholar
  206. Meyer M C, Aldenderfer M S, Wang Z, Hoffmann D L, Dahl J A, Degering D, Haas W R, Schlütz F. 2017. Permanent human occupation of the central Tibetan Plateau in the early Holocene. Science, 355: 64–67CrossRefGoogle Scholar
  207. Millennium Ecosystem Assessment. 2005. Ecosystems and Human Wellbeing: Wetlands and Water Synthesis. WashingtonD C: World Resources Institute. 1–2Google Scholar
  208. Mo X G, Liu S X, Lin Z H. 2004. Simulating temporal and spatial variation of evapotranspiration over the Lushi basin. J Hydrol, 285: 125–142CrossRefGoogle Scholar
  209. Mo X G, Liu S X, Lin Z H, Xu Y, Xiang Y, McVicar T R. 2005. Prediction of crop yield, water consumption and water use efficiency with a SVAT-crop growth model using remotely sensed data on the North China Plain. Ecol Model, 183: 301–322CrossRefGoogle Scholar
  210. Monteith J L. 1965. Evaporation and environment. Symp SocExp Biol, 19: 205–224Google Scholar
  211. Mu C, Zhang T, Wu Q, Peng X, Cao B, Zhang X, Cao B, Cheng G. 2015. Editorial: Organic carbon pools in permafrost regions on the Qinghai-Xizang (Tibetan) Plateau. Cryosphere, 9: 479–486CrossRefGoogle Scholar
  212. Nie J, Steven T, Rittner M, Stockli D, Garzanti E, Limonta M, Bird A, Ando S, Vermeesch P, Saylor J, Lu H, Breecker D, Hu X, Liu S, Resentini A, Vezzoli G, Peng W, Carter A, Ji S, Pan B. 2015. Loess Plateau storage of Northeastern Tibetan Plateau-drived Yellow River sediment. Nat Commun, 6: 8511CrossRefGoogle Scholar
  213. North Greenland Ice Core Project members (NGRIP). 2004. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431: 147–151CrossRefGoogle Scholar
  214. Overland J E, Dethloff K, Francis J A, Hall R J, Hanna E, Kim S J, Screen J A, Shepherd T G, Vihma T. 2016. Nonlinear response of mid-latitude weather to the changing Arctic. Nat Clim Change, 6: 992–999CrossRefGoogle Scholar
  215. Owen L A, Finkel R C, Caffee M W. 2002. A note on the extent of glaciation throughout the Himalaya during the global Last Glacial Maximum. Quat Sci Rev, 21: 147–157CrossRefGoogle Scholar
  216. Pachur H J, Wünnemann B, Zhang H. 1995. Lake evolution in the Tengger Desert, Northwestern China, during the last 40000 years. Quat Res, 44: 171–180CrossRefGoogle Scholar
  217. Pan B T. 1991. The development of the Yellow River and the uplift of the Tibetan Plateau (in Chinese). Dissertation for Doctoral Degree. Lanzhou: Lanzhou UniversityGoogle Scholar
  218. Pan B, Hu Z, Wang J, Vandenberghe J, Hu X. 2011. A magnetostratigraphic record of landscape development in the eastern Ordos Plateau, China: Transition from Late Miocene and Early Pliocene stacked sedimentation to Late Pliocene and Quaternary uplift and incision by the Yellow River. Geomorphology, 125: 225–238CrossRefGoogle Scholar
  219. Peng X, Zhang T, Frauenfeld O W, Wang K, Luo D, Cao B, Su H, Jin H, Wu Q. 2018. Spatiotemporal changes in active layer thickness under contemporary and projected climate in the Northern hemisphere. J Clim, 31: 251–266CrossRefGoogle Scholar
  220. Pu P M, Wang G X, Hu C H, Hu W P, Fan C X. 2000. Can we control lake eutrophication by dredging? J Lake Sci, 12: 269–279CrossRefGoogle Scholar
  221. Pye K, Tsoar H. 2009. Aeolian Sand and Sand Dunes. Heidelberg: Springer-Verlag. 458CrossRefGoogle Scholar
  222. Qian N, Wang K Q, Yan L D, Fu R S. 1980. Impact of Coarse Sediment Source Area in the Middle Reaches of the Yellow River on Erosion and Sediment in the Lower Resches of the Yellow River. Papers of the First International Symposium on River Sediment. 53–62Google Scholar
  223. Qiang X, An Z, Song Y, Chang H, Sun Y, Liu W, Ao H, Dong J, Fu C, Wu F, Lu F, Cai Y, Zhou W, Cao J, Xu X, Ai L. 2011. New eolian red clay sequence on the western Chinese loess plateau linked to onset of Asian desertification about 25 Ma ago. Sci China Earth Sci, 54: 136–144CrossRefGoogle Scholar
  224. Qin B Q. 2009. Lake eutrophication: Control countermeasures and recycling exploitation. Ecol Eng, 35: 1569–1573CrossRefGoogle Scholar
  225. Qin B Q, Hu W P, Chen W P. 2004b. Evolution Process and Mechanism of Water Environment in Taihu Lake (in Chinese). Beijing: Science Press. 397Google Scholar
  226. Qin B Q, Hu W P, Gao G, Luo L C, Zhang J S. 2004a. Dynamics of sediment resuspension and the conceptual schema of nutrient release in the large shallow Lake Taihu, China. Chin Sci Bull, 49: 54–64CrossRefGoogle Scholar
  227. Qin B Q, Li W, Zhu G W, Zhang Y L, Wu T F, Gao G. 2015. Cyano-bacterial bloom management through integrated monitoring and forecasting in large shallow eutrophic Lake Taihu (China). J Hazard Mater, 287: 356–363CrossRefGoogle Scholar
  228. Qin B Q, Liu Z W, Havens K. 2007. Preface. Hydrobiologia, 581: 1–2CrossRefGoogle Scholar
  229. Qin B Q, Paerl H W, Brookes J D, Liu J G, Jeppesen E, Zhu G W, Zhang Y L, Xu H, Shi K, Deng J M. 2019. Why Lake Taihu continues to be plagued with cyanobacterial blooms through 10 years (2007–2017) efforts. Chin Sci Bull, 64: 354–356Google Scholar
  230. Qin B Q, Xie P, eds. 2005. Endogenous Nutrition Load, Cycle and Eutrophication of Lakes in the Middle and Lower Reaches of the Yangtze River. Sci Earth Sci Ser D-Earth Sci, 35(Supplement): 1–202Google Scholar
  231. Qin B Q, Yang G J, Ma J R, Deng J M, Li W, Wu T F, Liu L Z, Gao G, Zhu G W, Zhang Y L. 2016. Dynamics of variability and mechanism of harmful cyanobacteria bloom in Lake Taihu, China (in Chinese). Chin Sci Bull, 61: 759–770CrossRefGoogle Scholar
  232. Qin B Q, Yang G J, Ma J R, Wu T F, Li W, Liu L Z, Deng J M, Zhou J. 2018. Spatiotemporal changes of cyanobacterial bloom in large shallow eutrophic Lake Taihu, China. Front Microbiol, 9: 451CrossRefGoogle Scholar
  233. Qiu Y X, Fu C X, Comes H P. 2011. Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Mol Phylogenets Evol, 59: 225–244CrossRefGoogle Scholar
  234. Quinton J N, Govers G, van Oost K, Bardgett R D. 2010. The impact of agricultural soil erosion on biogeochemical cycling. Nat Geosci, 3: 311–314CrossRefGoogle Scholar
  235. Rao Z G, Li Y X, Zhang J W, Jia G D, Chen F H. 2016. Investigating the long-term palaeoclimatic controls on the δD and δ 18O of precipitation during the Holocene in the Indian and East Asian monsoonal regions. Earth-Sci Rev, 159: 292–305CrossRefGoogle Scholar
  236. Rehfeld K, Münch T, Ho S L, Laepple T. 2018. Global patterns of declining temperature variability from the Last Glacial Maximum to the Holocene. Nature, 554: 356–359CrossRefGoogle Scholar
  237. Ren M E. 2006. Sediment discharge of the Yellow River, China, past, present and future-a synthesis (in Chinese). Adv Earth Sci, 21: 551–563Google Scholar
  238. Routson C C, McKay N P, Kaufman D S, Erb M P, Goosse H, Shuman B N, Rodysill J R, Ault T. 2019. Mid-latitude net precipitation decreased with Arctic warming during the Holocene. Nature, 568: 83–87CrossRefGoogle Scholar
  239. Rutter N. 1995. Problematic ice sheets. Quat Int, 28: 19–37CrossRefGoogle Scholar
  240. Schaefer J M, Denton G H, Barrell D J A, Ivy-Ochs S, Kubik P W, Andersen B G, Phillips F M, Lowell T V, Schlüchter C. 2006. Near-synchronous interhemispheric termination of the last glacial maximum in mid-latitudes. Science, 312: 1510–1513CrossRefGoogle Scholar
  241. Schumm S A, Dumont J F, Holbrook J M. 2000. Active Tectonics and Alluvial Rivers. Cambridge: Cambridge University Press. 276Google Scholar
  242. Schuster M, Duringer P, Ghienne J F, Vignaud P, Mackaye H T, Likius A, Brunet M. 2006. The age of the Sahara Desert. Science, 311: 821CrossRefGoogle Scholar
  243. Seong Y B, Owen L A, Yi C, Finkel R C. 2009. Quaternary glaciation of Muztag Ata and Kongur Shan: Evidence for glacier response to rapid climate changes throughout the Late Glacial and Holocene in westernmost Tibet. Geol Soc Am Bull, 121: 348–365CrossRefGoogle Scholar
  244. Shao M A, Guo Z S, Xia Y Q, Wang Y P. 2010. Study on the Bearing Capacity of Soil Moisture and Vegetation on the Loess Plateau (in Chinese). Beijing: Science Press. 342Google Scholar
  245. Shao X, Xu Y, Yin Z Y, Liang E, Zhu H, Wang S. 2010. Climatic implications of a 3585-year tree-ring width chronology from the northeastern Qinghai-Tibetan Plateau. Quat Sci Rev, 29: 2111–2122CrossRefGoogle Scholar
  246. Shi H, Shao M G. 2000. Soil and water loss from the Loess Plateau in China. J Arid Environ, 45: 9–20CrossRefGoogle Scholar
  247. Shi Y F, Cui Z J, Li J J. 1989. Quaternary Glaciers and Environmental Problems in Eastern China (in Chinese). Beijing: Science Press. 462Google Scholar
  248. Shi Y F, Kong Z C, Li J J, Tang L Y, Wang F B, Yao T D, Zhao X T, Zhang P Y, Shi S H. 1993. Climate and environment during the heyday of Holocene warm period in China (in Chinese). Sci China Ser B, 23: 865–873Google Scholar
  249. Shi Y F, Liu S Y. 2000. Prediction of the response of glaciers in China to global warming in the 21st century (in Chinese). Chin Sci Bull, 45: 434–438CrossRefGoogle Scholar
  250. Shi Y F, Qu Y G. 1989. Water Resources and Environment in Chaiwopu-Dabancheng Area (in Chinese). Beijing: Science Press. 192Google Scholar
  251. Shi Y F, Tang M C, Ma Y Z. 1998. Discussion on the relationship between the second stage uplift the Tibetan Plateau and breeding of Asian monsoon. Sci Earth Sci Ser D-Earth Sci, 28: 263–271Google Scholar
  252. Shi Y F, Yu G, Liu X D, Li B Y, Yao T D. 2001. Reconstruction of the 30–40 ka bp enhanced Indian monsoon climate based on geological records from the Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol, 169: 69–83CrossRefGoogle Scholar
  253. Shi Y F. 2005. A Concise Catalogue of Glaciers in China (in Chinese). Shanghai Science Popularization Press. 194Google Scholar
  254. Sun D H, Shaw J, An Z S, Cheng M Y, Yue L P. 1998. Magnetostratigraphy and paleoclimatic interpretation of a continuous 7.2 Ma late Cenozoic eolian sediments from the Chinese Loess Plateau. Geophys Res Lett, 25: 85–88CrossRefGoogle Scholar
  255. Sun D, Bloemendal J, Yi Z, Zhu Y, Wang X, Zhang Y, Li Z, Wang F, Han F, Zhang Y. 2011. Palaeomagnetic and palaeoenvironmental study of two parallel sections of late Cenozoic strata in the central Taklimakan Desert: Implications for the desertification of the Tarim Basin. Palaeogeogr Palaeoclimatol Palaeoecol, 300: 1–10CrossRefGoogle Scholar
  256. Sun H L, Zheng D, Yao T D, Zhang Y L. 2012. Protection and construction of the national ecological security shelter zone on Tibetan Plateau (in Chinese). J Geogr Sci, 67: 3–12Google Scholar
  257. Sun H, Deng T, Chen Y S, Zhou Z. 2017b. Current research and development trends in floristic geography (in Chinese). Bio Sci, 25: 111–122Google Scholar
  258. Sun H, Zhang J W, Deng T, Boufford D. 2017a. Origins and evolution of plant diversity in the Hengduan Mountains, China. Plant Diversity, 39: 161–166CrossRefGoogle Scholar
  259. Sun J M, Alloway B, Fang X, Windley B F. 2015. Refuting the evidence for an earlier birth of the Taklimakan Desert. Proc Natl Acad Sci USA, 112: E5556–E5557CrossRefGoogle Scholar
  260. Sun J M, Jiang M S. 2013. Eocene seawater retreat from the southwest Tarim Basin and implications for early Cenozoic tectonic evolution in the Pamir Plateau. Tectonophysics, 588: 27–38CrossRefGoogle Scholar
  261. Sun J, Liu T. 2006. The age of the Taklimakan Desert. Science, 312: 1621CrossRefGoogle Scholar
  262. Sun J, Zhang Z, Zhang L. 2009. New evidence on the age of the Taklimakan Desert. Geology, 37: 159–162CrossRefGoogle Scholar
  263. Tan M. 2014. Circulation effect: Response of precipitation δ 18O to the ENSO cycle in monsoon regions of China. Clim Dyn, 42: 1067–1077CrossRefGoogle Scholar
  264. Tang C Q, Matsui T, Ohashi H, Dong Y F, Momohara A, Moraira S H, Qian S H, Yang Y C, Ohsawa M, Luu H T, Grote P J, Krestov P V, LePage B, Werger M, Robertson K, Hobohm C, Wang C Y, Peng M C, Chen X, Wang H C, Su E H, Zhou R, Li S F, He L Y, Yan K, Zhu M Y, Hu J, Yang R H, Li W J, Tomita M, Wu Z L, Yan H Z, Zhang G F, He H, Yi S R, Gong H D, Song K, Song D, Li X S, Zhang Z Y, Han P B, Shen L Q, Huang D S, Luo K, Pujol J L. 2018. Identifying long-term stable refugia for relict plant species in East Asia. Nat Commun, 9: 4488CrossRefGoogle Scholar
  265. Tang K L. 1985. Comprehensive control of sediment in the Yellow River and Soil and Water Loss on the Loess Plateau (in Chinese). Soil Water Conser China, 12: 10–12Google Scholar
  266. Thompson L G, Davis M E, Mosley-Thompson E, Lin P N, Henderson K A, Mashiotta T A. 2005. Tropical ice core records: Evidence for asynchronous glaciation on Milankovitch timescales. J Quat Sci, 20: 723–733CrossRefGoogle Scholar
  267. Thompson L G, Mosley-Thompson E, Davis M E, Bolzan J F, Dai J, Klein L, Yao T, Wu X, Xie Z, Gundestrup N. 1989. Holocene-Late Pleistocene climatic ice core records from Qinghai-Tibetan Plateau. Science, 246: 474–477CrossRefGoogle Scholar
  268. Thompson L, Yao T, Davis M, Henderson K, Mosley-Thompson E, Lin P, Beer J, Synal H, Cole-Dai J, Bolzan J. 1997. Tropical climate instability: The last glacial cycle from a Qinghai-Tibetan ice core. Science, 276: 1821–1825CrossRefGoogle Scholar
  269. Thompson L G, Yao T, Mosley-Thompson E, Davis M E, Henderson K A, Lin P N. 2000. A high-resolution millennial record of the south Asian monsoon from Himalayan ice cores. Science, 289: 1916–1919CrossRefGoogle Scholar
  270. Tian J L, Zhou P H, Liu P L, Wu P T, Zheng S Q, Li Y Q, Wu C L. 1992. A preliminary report of REE tracer method for soil erosion (in Chinese). J. Soil And Water Conserv, 6: 23–27Google Scholar
  271. Tian L D, Yao T D. 2016. High-resolution climatic and environmental records from the Tibetan Plateau ice cores (in Chinese). Chin Sci Bull, 61: 926–937CrossRefGoogle Scholar
  272. Tian L, Ritterbusch F, Gu J Q, Hu S M, Jiang W, Lu Z T, Wang D, Yang G M. 2019. 81Kr dating at the Guliya Ice Cap, Tibetan Plateau. Geophys Res Lett, 46: 6636–6643CrossRefGoogle Scholar
  273. Tian Y, Zheng Y, Han F, Zheng C, Li X. 2018. A comprehensive graphical modeling platform designed for integrated hydrological simulation. Environ Model Software, 108: 154–173CrossRefGoogle Scholar
  274. Trenberth K E, Stepaniak D P, Caron J M. 2000. The global monsoon as seen through the divergent atmospheric circulation. J Clim, 13: 3969–3993CrossRefGoogle Scholar
  275. Troll C. 1959. Die tropischen Gebirge, Ihre dreidimensionale klimatische und pflanzengeographische Zinierung. Bonner geographische Abhandlungen. Heft 25, BonnGoogle Scholar
  276. Van Oost K, Quine T A, Govers G, De Gryze S, Six J, Harden J W, Ritchie J C, McCarty G W, Heckrath G, Kosmas C, Giraldez J V, Marques da Silva J R, Merckx R. 2007. The impact of agricultural soil erosion on the global carbon cycle. Science, 318: 626–629CrossRefGoogle Scholar
  277. Wang C S, Zhao X X, Liu Z F, Lippert P C, Graham S A, Coe R S, Yi H S, Zhu L D, Liu S, Li Y L. 2008. Constraints on the early uplift history of the Tibetan Plateau. Proc Natl Acad Sci USA, 105: 4987–4992CrossRefGoogle Scholar
  278. Wang F, Sun D, Chen F, Bloemendal J, Guo F, Li Z, Zhang Y, Li B, Wang X. 2015. Formation and evolution of the Badain Jaran Desert, North China, as revealed by a drill core from the desert centre and by geological survey. Palaeogeogr Palaeoclimatol Palaeoecol, 426: 139–158CrossRefGoogle Scholar
  279. Wang H P, Chen J H, Zhang X J, Chen F H. 2014. Palaeosol development in the Chinese loess plateau as an indicator of the strength of the East Asian summer monsoon: Evidence for a mid-Holocene maximum. Quat Int, 334–335: 155–164CrossRefGoogle Scholar
  280. Wang H, Jia Y W, Yang G Y, Zhou Z H, Qiu Y Q, Niu C W, Peng H. 2013. Integrated simulation of the dualistic water cycle and its associated processes in the Haihe River Basin (in Chinese). Chin Sci Bull, 58: 1064–1077CrossRefGoogle Scholar
  281. Wang J T, Chen W L, Li B S. 1994. Review and perspectives of plant ecology study on the Tibetan Plateau. In: Vegetation Ecology Research (in Chinese). Beijing: Science Press. 112–119Google Scholar
  282. Wang J, Cui H, Harbor J M, Zheng L, Yao P. 2015. Mid-MIS3 climate inferred from reconstructing the Dalijia Shan ice cap, north-eastern Tibetan Plateau. J Quat Sci, 30: 558–568CrossRefGoogle Scholar
  283. Wang J, Kassab C, Harbor J M, Caffee M W, Cui H, Zhang G. 2013. Cosmogenic nuclide constraints on late Quaternary glacial chronology on the Dalijia Shan, northeastern Tibetan Plateau. Quat Res, 79: 439–451CrossRefGoogle Scholar
  284. Wang J, Yao P, Yu B, Zou L, Wang F, Harbor J M. 2018. Controls on spatial variations of glacial erosion in the Qilian Shan, northeastern Tibetan Plateau. Geomorphology, 318: 128–138CrossRefGoogle Scholar
  285. Wang N L. 1956. Comments on Mr. Zhang Bosheng’s “Explaining the Development of the Yellow River from the Loess Line” (in Chinese). Chin Sci Bull, 7: 67–72CrossRefGoogle Scholar
  286. Wang P X. 2009. Global monsoon in a geological perspective (in Chinese). Chin Sci Bull, 54: 1113–1136Google Scholar
  287. Wang S M, Dou H S, eds. 1998. Chinese Lake Catalogue (in Chinese). Beijing: Science Press. 580Google Scholar
  288. Wang S, Fu B J, Piao S L, Lü Y H, Ciais P, Feng X M, Wang Y F. 2016. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat Geosci, 9: 38–41CrossRefGoogle Scholar
  289. Wang X, Carrapa B, Chapman J B, Henriquez S, Wang M, Decelles P G, Li Z, Wang F, Oimahmadov I, Gadoev M, Chen F. 2019. Parathethys last gasp in central Asia and late Oligocene accelerated uplift of the Pamirs. Geophys Res Lett, 2019GL084838Google Scholar
  290. Wang X, Kraatz B, Meng J, Carrapa B, Decelles P, Clementz M, Abdulov S, Chen F H. 2016. Central Asian aridification during the late Eocene to early Miocene inferred from preliminary study of shallow marine-eolian sedimentary rocks from northeastern Tajik Basin. Sci China Earth Sci, 59: 1242–1257CrossRefGoogle Scholar
  291. Wang Y J, Cheng H, Edwards R L, He Y Q, Kong X G, An Z S, Wu J Y, Kelly M J, Dykoski C A, Li X D. 2005. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science, 308: 854–857CrossRefGoogle Scholar
  292. Wen J, Zhang J Q, Nie Z L, Zhong Y, Sun H. 2014. Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau. Friont Genet, 5: 1–14Google Scholar
  293. Wu D, Chen X M, Lv F Y, Brenner M, Curtis J, Zhou A F, Chen J H, Abbott M, Yu J Q, Chen F H. 2018. Decoupled early Holocene summer temperature and monsoon precipitation in southwest China. Quat Sci Rev, 193: 54–67CrossRefGoogle Scholar
  294. Wu Q, Zhang T. 2008. Recent permafrost warming on the Qinghai-Tibetan Plateau. J Geophys Res, 113: D13108CrossRefGoogle Scholar
  295. Wu T F, Qin B Q, Ding W H, Zhu G W, Zhang Y L, Gao G, Xu H, Li W, Dong B L, Luo L C. 2018. Field observation of different wind-induced basin-scale current field dynamics in a large, polymictic, eutrophic lake. J Geophys Res-Oceans, 123: 6945–6961CrossRefGoogle Scholar
  296. Wu Z Y, Lu A M, Tang Y C, Chen Z D, Li D Z. 2003. The Families and Genera of Angiosperms in China: A Comprehensive Analysis (in Chinese). Beijing: Science Press. 1209Google Scholar
  297. Wu Z Y, Wang H S. 1983. Physical Geography of China: Phytogeography (in Chinese). Beijing: Science Press. 129Google Scholar
  298. Wu Z Y, Wu S G. 1998. A proposal for a new floristic kingdom (realm)-the E. Asiatic kindom, its delineation and characteristics. In: Zhang A L, Wu S G, eds. Floristic Characteristics and Diversity of East Asian Plants. Beijing & Berlin: China Higher Education Press & Springer. 3–42Google Scholar
  299. Wu Z Y. 1965. Tropical relatives of Chinese flora (in Chinese). Chin Sci Bull, 1: 25–33CrossRefGoogle Scholar
  300. Wu Z Y. 1979. On the division of plant flora in China (in Chinese). Acta Botan Yunnan, 1: 1–24Google Scholar
  301. Xia J, Wang G, Tan G, Ye A, Huang G H. 2005. Development of distributed time-variant gain model for nonlinear hydrological systems. Sci China Ser D-Earth Sci, 48: 713–723CrossRefGoogle Scholar
  302. Xia J. 1991. Identification of a constrained nonlinear hydrological system described by Volterra functional series. Water Resour Res, 27: 2415–2420CrossRefGoogle Scholar
  303. Xia J, O’Connor K M, Kachroo R K, Liang G C. 1997. A non-linear perturbation model considering catchment wetness and its application in river flow forecasting. J Hydrol, 200: 164–178CrossRefGoogle Scholar
  304. Xia J, Wang G, Lv A F, Tan G. 2003. A research on distributed time variant gain modeling (in Chinese). Acta Geogr Sin, 5: 789–796Google Scholar
  305. Xie S C, Evershed R P, Huang X Y, Zhu Z M, Pancost R D, Meyers P A, Gong L F, Hu C Y, Huang J H, Zhang S H, Gu Y S, Zhu J Y. 2013. Concordant monsoon-driven postglacial hydrological changes in peat and stalagmite records and their impacts on prehistoric cultures in central China. Geology, 41: 827–830CrossRefGoogle Scholar
  306. Yang B, Qin C, Wang J, He M, Melvin T M, Osborn T J, Briffa K R. 2014. A 3500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau. Proc Natl Acad Sci USA, 111: 2903–2908CrossRefGoogle Scholar
  307. Yang B, Shi Y, Braeuning A, Wang J. 2004. Evidence for a warm-humid climate in arid northwestern China during 40–30 ka BP. Quat Sci Rev, 23: 2537–2548CrossRefGoogle Scholar
  308. Yang D W, Gao B, Jiao Y, Lei H M, Zhang Y L, Yang H B, Cong Z T. 2015. A distributed scheme developed for eco-hydrological modeling in the upper Heihe River. Sci China Earth Sci, 58: 36–45CrossRefGoogle Scholar
  309. Yang S H, Shi Y L. 2015. Three-dimensional numerical simulation of glacial trough forming process. Sci China Earth Sci, 58: 1656–1668CrossRefGoogle Scholar
  310. Yang X, Chen Q, Ma Y, Li Z, Hung H, Zhang Q, Jin Z, Liu S, Zhou Z, Fu X. 2018. New radiocarbon and archaeobotanical evidence reveal the timing and route of southward dispersal of rice farming in south China. Chin Sci Bull, 63: 1495–1501Google Scholar
  311. Yang X, Scuderi L, Paillou P, Liu Z, Li H, Ren X. 2011. Quaternary environmental changes in the drylands of China—A critical review. Quat Sci Rev, 30: 3219–3233CrossRefGoogle Scholar
  312. Yang X, Wan Z, Perry L, Lu H, Wang Q, Zhao C, Li J, Xie F, Yu J, Cui T, Wang T, Li M, Ge Q. 2012. Early millet use in Northern China. Proc Natl Acad Sci USA, 109: 3726–3730CrossRefGoogle Scholar
  313. Yang Y, Dong G, Zhang S, Cui Y, Li H, Chen G, Dodson J, Chen F. 2017. Copper content in anthropogenic sediments as a tracer for detecting smelting activities and its impact on environment during prehistoric period in Hexi Corridor, Northwest China. Holocene, 27: 282–291CrossRefGoogle Scholar
  314. Yang Z, Zhang M, Shi X, Kong F, Ma R, Yu Y. 2016. Nutrient reduction magnifies the impact of extreme weather on cyanobacterial bloom formation in large shallow Lake Taihu (China). Water Res, 103: 302–310CrossRefGoogle Scholar
  315. Yao T D, Chen F H, Cui P, Ma Y M, Xu B Q, Zhu L P, Zhang F, Wang W C, Ai L K, Yang X Y. 2017. From Tibetan Plateau to Third Pole and Pan-Third Pole. Bull Chin Acad Sci, 9: 12–19Google Scholar
  316. Yao T D, Thompson L, Shi Y F, Qin D H, Jiao K Q, Yang Z H, Tian L D, Mosley-Thompson E. 1997. Climate change records since the last interglacial period in Guliya ice core. Sci China Ser D-Earth Sci, 27: 447–452Google Scholar
  317. Yao T D, Thompson L. 1992. Dunde ice core records and temperature variations over the past 5 ka (in Chinese). Sci China Ser B, 10: 1089–1093Google Scholar
  318. Yao T D. 2007. Map of Glaciers and Lakes on the Tibetan Plateau and Adjoining Regions. Xi’an: Xi’an Cartographic Publishing PressGoogle Scholar
  319. Yao T, Thompson L, Yang W, Yu W, Gao Y, Guo X, Yang X, Duan K, Zhao H, Xu B, Pu J, Lu A, Xiang Y, Kattel D B, Joswiak D. 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Change, 2: 663–667CrossRefGoogle Scholar
  320. Yao T, Wu F, Ding L, Sun J, Zhu L, Piao S, Deng T, Ni X, Zheng H, Ouyang H. 2015. Multispherical interactions and their effects on the Tibetan Plateau’s earth system: A review of the recent researches. Nat Sci Rev, 2: 468–488CrossRefGoogle Scholar
  321. Yao X, Zhang L, Zhang Y, Du Y, Jiang X, Li M. 2018. Water diversion projects negatively impact lake metabolism: A case study in Lake Dazong, China. Sci Total Environ, 613–614: 1460–1468CrossRefGoogle Scholar
  322. Yu S Y, Colman S M, Lai Z P. 2019. Late-Quaternary history of ‘great lakes’ on the Tibetan Plateau and palaeoclimatic implications—A review. Boreas, 48: 1–19CrossRefGoogle Scholar
  323. Zhang B P, Yao Y H. 2015. Studies on Mass Elevation Effect (in Chinese). Beijing: China Environmental Science Press. 250Google Scholar
  324. Zhang B S. 1956. The development of the channel of the Yellow River based on loess line. Chin Sci Bull, 3: 5–10CrossRefGoogle Scholar
  325. Zhang B S. 1957. The development of the river terrain of the Yellow River (in Chinese). Chin Sci Bull, 8: 231–237CrossRefGoogle Scholar
  326. Zhang B X, Li S L, Wang H C, Tan W P, Zhao Q C, Zhang Y Y, Yan M L, Liu Y L, Jiang J J. 1988. An initial approach to measure soil loss amount of farmland on weir and mound using 137Cs method (in Chinese). Bull Soil Water Conser, 8: 18–22Google Scholar
  327. Zhang B, Yao Y. 2016. Implications of mass elevation effect for the altitudinal patterns of global ecology. J Geogr Sci, 26: 871–877CrossRefGoogle Scholar
  328. Zhang D C, Ye J X, Sun H. 2016. Quantitative approaches to identify floristic units and centres of species endemism in the Qinghai-Tibetan Plateau, south-western China. J Biogeogr, 43: 2465–2476CrossRefGoogle Scholar
  329. Zhang D D, Li S H. 2002. Optical dating of Tibetan human hand- and footprints: An implication for the palaeoenvironment of the last glaciation of the Tibetan Plateau. Geophys Res Lett, 29: 16–1-16-3Google Scholar
  330. Zhang D J, Dong G H, Wang H, Ren X Y, Ha P P’, Qiang M R, Chen F H. 2016. History and possible mechanisms of prehistoric human migration to the Tibetan Plateau. Sci China Earth Sci, 59: 1765–1778CrossRefGoogle Scholar
  331. Zhang D J, Zhang N M, Wang J, Ha B, Dong G H, Chen F H. 2017. Comment on “Permanent human occupation of the central Tibetan Plateau in the early Holocene”. Science, 357: eaam8273Google Scholar
  332. Zhang E L, Chang J, Cao Y M, Sun W W, Shulmeister J, Tang H Q, Langdon P G, Yang X D, Shen J. 2017. Holocene high-resolution quantitative summer temperature reconstruction based on subfossil chironomids from the southeast margin of the Qinghai-Tibetan plateau. Quat Sci Rev, 165: 1–12CrossRefGoogle Scholar
  333. Zhang H B, Griffiths M L, Chiang J C H, Kong W W, Wu S T, Atwood A, Huang J H, Cheng H, Ning Y F, Xie S C. 2018. East Asian hydro-climate modulated by the position of the Westerlies during Termination I. Science, 362: 580–583CrossRefGoogle Scholar
  334. Zhang H C, Peng J L, Ma Y Z, Chen G J, Feng Z D, Li B, Fan H F, Chang F Q, Lei G L, Wünnemann B. 2004. Late Quaternary palaeolake levels in Tengger Desert, NW China. Palaeogeogr Palaeoclimatol Palaeoecol, 211: 45–58CrossRefGoogle Scholar
  335. Zhang J, Tsukamoto S, Jia Y, Frechen M. 2016. Lake level reconstruction of Huangqihai Lake in northern China since MIS 3 based on pulsed optically stimulated luminescence dating. J Quat Sci, 31: 225–238CrossRefGoogle Scholar
  336. Zhang M G, Slik J W F, Ma K P. 2016. Using species distribution modeling to delineate the botanical richness patterns and phytogeographical regions of China. Sci Rep, 6: 22400CrossRefGoogle Scholar
  337. Zhang P, Cheng H, Edwards R L, Chen F, Wang Y, Yang X, Liu J, Tan M, Wang X, Liu J, An C, Dai Z, Zhou J, Zhang D, Jia J, Jin L, Johnson K R. 2008. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science, 322: 940–942CrossRefGoogle Scholar
  338. Zhang Q B, Evans M N, Lyu L. 2015. Moisture dipole over the Tibetan Plateau during the past five and a half centuries. Nat Commun, 6: 8062CrossRefGoogle Scholar
  339. Zhang R Z. 2011. Chinese Natural Geography Series Monographs: Chinese Zoogeography (in Chinese). Beijing: Science Press. 330Google Scholar
  340. Zhang T, Barry R G, Knowles K, Heginbottom J A, Brown J. 2008. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geography, 31: 47–68CrossRefGoogle Scholar
  341. Zhang X L, Ha B B, Wang S J, Chen Z J, Ge J Y, Long H, He W, Da W, Nian X M, Yi M J, Zhou X Y, Zhang P Q, Jin Y S, Bar-Yosef O, Olsen J W, Gao X. 2018. The earliest human occupation of the high-altitude Tibetan Plateau 40 thousand to 30 thousand years ago. Science, 362: 1049–1051CrossRefGoogle Scholar
  342. Zhang X S. 1994. Vegetation Ecology Research (in Chinese). Beijing: Science Press. 77–92Google Scholar
  343. Zhang Y L, Liu X H, Qin B Q, Shi K, Deng J M, Zhou Y Q. 2016. Aquatic vegetation in response to increased eutrophication and degraded light climate in Eastern Lake Taihu: Implications for lake ecological restoration. Sci Rep, 6: 23867CrossRefGoogle Scholar
  344. Zhang Y L, Wu X, Zheng D. 2019. Vertical differentiation of land cover in the middle Himalayas. Acta Geogr Sin, in pressGoogle Scholar
  345. Zhang Y L. 2012. Land Use & Land Cover Change and the Climate Change Adaptation in Tibetan Plateau (in Chinese). Beijing: China Meteorological Press. 740Google Scholar
  346. Zhang Y, Hu Z, Qi W, Wu X, Bai W, Li L, Ding M, Liu L, Wang Z, Zheng D. 2016. Assessment of effectiveness of nature reserves on the Tibetan Plateau based on net primary production and the large sample comparison method. J Geogr Sci, 26: 27–44CrossRefGoogle Scholar
  347. Zhang Y, Qi W, Zhou C, Ding M, Liu L, Gao J, Bai W, Wang Z, Zheng D. 2014. Spatial and temporal variability in the net primary production of alpine grassland on the Tibetan Plateau since 1982. J Geogr Sci, 24: 269–287CrossRefGoogle Scholar
  348. Zhang Z, Hou S, Yi S. 2018. The first luminescence dating of Tibetan glacier basal sediment. Cryosphere, 12: 163–168CrossRefGoogle Scholar
  349. Zhao Q S. 1956. Tianzhu, the intersection of the three major landscapes in China (in Chinese). Geogr Knowl, 7: 249–252Google Scholar
  350. Zhao R J, Zhuang Y L. 1963. Regional pattern of rainfall-runoff relationship (in Chinese). J East China Tech Univ Water Resour Eng (Hydrol Fascicl), S2: 53–68Google Scholar
  351. Zhao R J. 1984. Modeling Watershed Hydrology-Xin’anjing Model and Northern Shanxi Model (in Chinese). Beijing: Water Resources and Power Press. 106–130Google Scholar
  352. Zhao Z J. 2009. Eastward spread of wheat into China-New data and new issues. Chin Archaeol, 1: 1–9Google Scholar
  353. Zhao Z. 1998. The middle Yangtze region in China is one place where rice was domesticated: Phytolith evidence from the Diaotonghuan Cave, Northern Jiangxi. Antiquity, 72: 885–897CrossRefGoogle Scholar
  354. Zheng B X. 1989. Controversy regarding the existence of a large ice sheet on the Qinghai-Xizang (Tibetan) Plateau during the Quaternary Period. Quat Res, 32: 121–123CrossRefGoogle Scholar
  355. Zheng B X, Rutter N. 1998. On the problem of Quaternary glaciations, and the extent and patterns of Pleistocene ice cover in the Qinghai-Xizang (Tibet) Plateau. Quat Int, 45–46: 109–122Google Scholar
  356. Zheng D, Chen S P. 2001. Progress and disciplinary frontiers of geographical research (in Chinese). Adv Earth Sci, 16: 599–606Google Scholar
  357. Zheng D, Li B Y. 1990. The evolution and differentiation of the natural environment of the Qinghai-Tibet Plateau (in Chinese). Geogr Res, 9: 1–9Google Scholar
  358. Zheng D, Yang Q Y, Wu S H. 2015. General Introduction to Physical Geography of China (in Chinese). Beijing: Science Press. 767Google Scholar
  359. Zheng D. 1996. Natural region system research of Tibetan Plateau. Sci China Ser D-Earth Sci, 2: 336–341Google Scholar
  360. Zheng H B, Wei X C, Tada R, Clift P D, Wang B, Jourdan F, Wang P, He M Y. 2015. Late Oligocene-Early Miocene birth of the Taklimakan Desert. Proc Natl Acad Sci USA, 112: 7662–7667CrossRefGoogle Scholar
  361. Zheng H, Clift P D, Wang P, Tada R, Jia J, He M, Jourdan F. 2013. Pre-Miocene birth of the Yangtze River. Proc Natl Acad Sci USA, 110: 7556–7561CrossRefGoogle Scholar
  362. Zheng J Y, Hao Z X, Di X C. 2002. A study on the establishment and application of environmental change database during historical times (in Chinese). Geogra Res, 21: 146–154Google Scholar
  363. Zheng M P, Yuan H R, Zhao X T, Zhao X F. 2006. The Quaternary Pan-lake (overflow) period and paleoclimate on the Qinghai-Tibet Plateau (in Chinese). Acta Geol Sin, 80: 170–180Google Scholar
  364. Zhong D L, Ding L. 1996. Rising process of the Qinghai-Xizang (Tibet) Plateau and its mechanism. Sci China Ser D-Earth Sci, 26: 289–295Google Scholar
  365. Zhou S Z, Li J J, Zhao J D, Wang J, Zheng J X. 2011. Quaternary glaciations: Extent and chronology in China. Develop Quat Sci, 15: 981–1002Google Scholar
  366. Zhou W, Yu X, Jull A J T, Burr G, Xiao J Y, Lu X, Xian F. 2004. Highresolution evidence from southern China of an early holocene optimum and a mid-Holocene dry event during the past 18000 years. Quat Res, 62: 39–48CrossRefGoogle Scholar
  367. Zhou Y W, Guo D X, Qiu G Q, Cheng G D, Li S D. 2000. Geocryology in China (in Chinese). Beijing: Science Press. 1–450Google Scholar
  368. Zhou Y W, Guo D X. 1982. Major features of permafrost in China (in Chinese). J Glaciol Geocryol, 4: 1–19Google Scholar
  369. Zhu D G, Meng X G, Zhao X T, Shao Z G, Yang C B, Ma Z B, Wu Z H, Wang J P. 2004. Evolution and climatic change of Nam Co of Tibet and an ancient large lake in the northern Tibetan Pleistocene (in Chinese). Geol China, 31: 269–277Google Scholar
  370. Zhu K Z. 1925. Climate fluctuation during historic in China (in Chinese). Eastern Miscel, 22: 58–68Google Scholar
  371. Zhu K Z. 1934. The enigma of southeast monsoon in China (in Chinese). Acta Geogr Sin, 1: 1–28Google Scholar
  372. Zhu K Z. 1972. Preliminary study on climatic change during last five thousand years in China (in Chinese). Acta Archeol Sin, 1: 15–38Google Scholar
  373. Zhu M Y, Zhu G W, Zhao L L, Zhang Y L, Gao G, Qin B Q. 2013. Influence of algal bloom degradation on nutrient release at the sediment-water interface in Lake Taihu, China. Environ Sci Pollut Res, 20: 1803–1811CrossRefGoogle Scholar
  374. Zhu X M. 1956. Classification on the soil erosion in the loess region (in Chinese). Acta Pedol Sin, 02: 99–115Google Scholar
  375. Zhu Z D, Chen Z P, Wu Z, Li J Z, Li B Y, Wu G C. 1981. Study on the Geomorphology of Wind-drift Sand in the Taklimakan Desert (in Chinese). Beijing: Science Press. 100Google Scholar
  376. Zhu Z D, Guo H W, Wu Q C. 1964. The study on the law of sand dune movement near oasis in the South-west of the Taklimakan Desert (in Chinese). Acta Geogra Sin, 30: 35–50Google Scholar
  377. Zou D, Zhao L, Sheng Y, Chen J, Hu G, Wu T, Wu J, Xie C, Wu X, Pang Q, Wang W, Du E, Li W, Liu G, Li J, Qin Y, Qiao Y, Wang Z, Shi J, Cheng G. 2017. A new map of permafrost distribution on the Tibetan Plateau. Cryosphere, 11: 2527–2542CrossRefGoogle Scholar
  378. Zuo X, Lu H, Jiang L, Zhang J, Yang X, Huan X, He K, Wang C, Wu N. 2017. Dating rice remains through phytolith carbon-14 study reveals domestication at the beginning of the Holocene. Proc Natl Acad Sci USA, 114: 6486–6491CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Fahu Chen
    • 1
    • 2
    • 3
    Email author
  • Bojie Fu
    • 4
    • 18
  • Jun Xia
    • 5
    • 20
  • Duo Wu
    • 2
  • Shaohong Wu
    • 6
  • Yili Zhang
    • 3
    • 6
  • Hang Sun
    • 7
  • Yu Liu
    • 8
    • 21
  • Xiaomin Fang
    • 3
    • 9
  • Boqiang Qin
    • 10
  • Xin Li
    • 3
    • 11
  • Tingjun Zhang
    • 2
  • Baoyuan Liu
    • 2
  • Zhibao Dong
    • 13
  • Shugui Hou
    • 3
    • 14
  • Lide Tian
    • 3
    • 15
  • Baiqing Xu
    • 3
    • 16
  • Guanghui Dong
    • 2
    • 3
  • Jingyun Zheng
    • 6
  • Wei Yang
    • 3
    • 16
  • Xin Wang
    • 2
  • Zaijun Li
    • 2
  • Fei Wang
    • 2
  • Zhenbo Hu
    • 2
  • Jie Wang
    • 2
  • Jianbao Liu
    • 1
    • 3
  • Jianhui Chen
    • 2
  • Wei Huang
    • 2
  • Juzhi Hou
    • 1
    • 3
  • Qiufang Cai
    • 8
    • 21
  • Hao Long
    • 10
    • 21
  • Ming Jiang
    • 17
  • Yaxian Hu
    • 12
  • Xiaoming Feng
    • 18
  • Xingguo Mo
    • 19
  • Xiaoyan Yang
    • 1
    • 3
  • Dongju Zhang
    • 2
  • Xiuhong Wang
    • 6
  • Yunhe Yin
    • 6
  • Xiaochen Liu
    • 3
    • 11
  1. 1.Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
  2. 2.Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental SciencesLanzhou UniversityLanzhouChina
  3. 3.Center for Excellence in Tibetan Plateau Earth SciencesChinese Academy of SciencesBeijingChina
  4. 4.Faculty of Geographical ScienceBeijing Normal UniversityBeijingChina
  5. 5.State Key Lab of Water Resources and Hydropower Engineering ScienceWuhan UniversityWuhanChina
  6. 6.Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
  7. 7.Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
  8. 8.The State Key Laboratory of Loess and Quaternary Geology, Institute of Earth EnvironmentChinese Academy of SciencesXi’anChina
  9. 9.Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
  10. 10.State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
  11. 11.Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
  12. 12.State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water ConservationNorthwest A & F UniversityYanglingChina
  13. 13.School of Geography and TourismShaanxi Normal UniversityXi’anChina
  14. 14.School of Geography and Ocean ScienceNanjing UniversityNanjingChina
  15. 15.Institute of International Rivers and Eco-securityYunnan UniversityKunmingChina
  16. 16.Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
  17. 17.Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
  18. 18.State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina
  19. 19.Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
  20. 20.Water Resources Research CenterChinese Academy of SciencesBeijingChina
  21. 21.Center for Excellence in Quaternary Science and Global ChangeChinese Academy of SciencesXi’anChina

Personalised recommendations