Science China Earth Sciences

, Volume 62, Issue 11, pp 1702–1715 | Cite as

Tracing the formation and differentiation of the Earth by non-traditional stable isotopes

  • Fangzhen TengEmail author
  • Shuijiong Wang
  • Frédéric Moynier


The Earth has grown from chaotically mixed small dusts and gases to its present highly differentiated layered structure over the past 4.567 billion years. This differentiation has led to the formation of the atmosphere, hydrosphere, biosphere, crust, mantle, and core. The timing and mechanism for the formation and evolution of these different layers are still subjects of intense debate. This review brings together recent advances in using non-traditional stable isotopes to constrain major events and processes leading to the formation and differentiation of the Earth, including the Moon-forming giant impact, crust-mantle interactions, evolution of life, the rise of atmospheric oxygen, extreme paleoclimate changes, and cooling rate of magmas.


Non-traditional stable isotopes Differentiation of the Earth Crust-mantle interactions Atmospheric evolution Snowball Earth Mass extinction 



We thank Prof. Yongfei Zheng for the invitation to write this manuscript. Fruitful discussion with Prof. James Farquhar and comments from Drs. Xinyang Chen, Yongsheng He, Yan Hu and Hengci Tian have significantly improved the manuscript. Three anonymous reviewers are acknowledged for their insightful reviews. This study was financially supported by the National Natural Science Foundation of China (Grant No. 41729001), the National Science Foundation (Grant No. EAR-1747706), the European Research Council under the H2020 framework program/ERC grant agreement (Grant No. #637503-Pristine), the UnivEarthS Labex program at Sorbonne Paris Cité (Grant Nos. #ANR-10-LABX-0023 and #ANR-11-IDEX-0005-02), and the ANR through a chaire d’excellence Sorbonne Paris Cité.


  1. Albarède F, Télouk P, Balter V. 2017. Medical applications of isotope metallomics. Rev Mineral Geochem, 82: 851–885CrossRefGoogle Scholar
  2. Armytage R M G, Georg R B, Williams H M, Halliday A N. 2012. Silicon isotopes in lunar rocks: Implications for the Moon’s formation and the early history of the Earth. Geochim Cosmochim Acta, 77: 504–514CrossRefGoogle Scholar
  3. Anbar A D, Duan Y, Lyons T W, Arnold G L, Kendall B, Creaser R A, Kaufman A J, Gordon G W, Scott C, Garvin J, Buick R. 2007. A whiff of oxygen before the great oxidation event? Science, 317: 1903–1906CrossRefGoogle Scholar
  4. Andersen M B, Elliott T, Freymuth H, Sims K W W, Niu Y, Kelley K A. 2015. The terrestrial uranium isotope cycle. Nature, 517: 356–359CrossRefGoogle Scholar
  5. André L, Abraham K, Hofmann A, Monin L, Kleinhanns I C, Foley S. 2019. Early continental crust generated by reworking of basalts variably silicified by seawater. Nat Geosci, 12: 769–773CrossRefGoogle Scholar
  6. Barnes J D, Sharp Z D. 2017. Chlorine isotope geochemistry. Rev Mineral Geochem, 82: 345–378CrossRefGoogle Scholar
  7. Barnes J D, Sharp Z D, Fischer T P. 2008. Chlorine isotope variations across the Izu-Bonin-Mariana arc. Geology, 36: 883–886CrossRefGoogle Scholar
  8. Bigeleisen J, Mayer M G. 1947. Calculation of equilibrium constants for isotopic exchange reactions. J Chem Phys, 15: 261–267CrossRefGoogle Scholar
  9. Blanchard M, Balan E, Schauble E A. 2017. Equilibrium fractionation of non-traditional isotopes: A molecular modeling perspective. Rev Mineral Geochem, 82: 27–63CrossRefGoogle Scholar
  10. Blum J D, Johnson M W. 2017. Recent developments in mercury stable isotope analysis. Rev Mineral Geochem, 82: 733–757CrossRefGoogle Scholar
  11. Boyce J W, Treiman A H, Guan Y, Ma C, Eiler J M, Gross J, Greenwood J P, Stolper E M. 2015. The chlorine isotope fingerprint of the lunar magma ocean. Sci Adv, 1: e1500380CrossRefGoogle Scholar
  12. Burgess S D, Bowring S, Shen S. 2014. High-precision timeline for Earth’s most severe extinction. Proc Natl Acad Sci USA, 111: 3316–3321CrossRefGoogle Scholar
  13. Cameron V, Vance D, Archer C, House C H. 2009. A biomarker based on the stable isotopes of nickel. Proc Natl Acad Sci USA, 106: 10944–10948CrossRefGoogle Scholar
  14. Canup R M. 2012. Forming a Moon with an Earth-like Composition via a Giant Impact. Science, 338: 1052–1055CrossRefGoogle Scholar
  15. Cheng Z, Zhang Z, Xie Q, Hou T, Ke S. 2018. Subducted slab-plume interaction traced by magnesium isotopes in the northern margin of the Tarim Large Igneous Province. Earth Planet Sci Lett, 489: 100–110CrossRefGoogle Scholar
  16. Chi Fru E, Rodríguez N P, Partin C A, Lalonde S V, Andersson P, Weiss D J, El Albani A, Rodushkin I, Konhauser K O. 2016. Cu isotopes in marine black shales record the Great Oxidation Event. Proc Natl Acad Sci USA, 113: 4941–4946CrossRefGoogle Scholar
  17. Chen Y X, Schertl H P, Zheng Y F, Huang F, Zhou K, Gong Y Z. 2016. Mg-O isotopes trace the origin of Mg-rich fluids in the deeply subducted continental crust of Western Alps. Earth Planet Sci Lett, 456: 157–167CrossRefGoogle Scholar
  18. Conway T M, John S G. 2014. The biogeochemical cycling of zinc and zinc isotopes in the North Atlantic Ocean. Glob Biogeochem Cycle, 28: 1111–1128CrossRefGoogle Scholar
  19. Crowe S A, Døssing L N, Beukes N J, Bau M, Kruger S J, Frei R, Canfield D E. 2013. Atmospheric oxygenation three billion years ago. Nature, 501: 535–538CrossRefGoogle Scholar
  20. Ćuk M, Stewart S T. 2012. Making the Moon from a fast-spinning Earth: A giant impact followed by resonant despinning. Science, 338: 1047–1052CrossRefGoogle Scholar
  21. Dauphas N, Craddock P R, Asimow P D, Bennett V C, Nutman A P, Ohnenstetter D. 2009. Iron isotopes may reveal the redox conditions of mantle melting from Archean to Present. Earth Planet Sci Lett, 288: 255–267CrossRefGoogle Scholar
  22. Dauphas N, Roskosz M, Alp E E, Neuville D R, Hu M Y, Sio C K, Tissot F L H, Zhao J, Tissandier L, Médard E, Cordier C. 2014. Magma redox and structural controls on iron isotope variations in Earth’s mantle and crust. Earth Planet Sci Lett, 398: 127–140CrossRefGoogle Scholar
  23. Davis A M, Richter F M. 2004. Condensation and evaporation of solar system materials. In: Holland H D, Turekian K K, Davis A M, eds. Treatise on Geochemistry (Vol 1): Meteorites, Comets, and Planets. Oxford: Elsevier-Pergamon. 407–430Google Scholar
  24. Deng Z, Chaussidon M, Guitreau M, Puchtel I S, Dauphas N, Moynier F. 2019. An oceanic subduction origin for Archaean granitoids revealed by silicon isotopes. Nat Geosci, 12: 774–778CrossRefGoogle Scholar
  25. Eickmann B, Hofmann A, Wille M, Bui T H, Wing B A, Schoenberg R. 2018. Isotopic evidence for oxygenated Mesoarchaean shallow oceans. Nat Geosci, 11: 133–138CrossRefGoogle Scholar
  26. Frei R, Gaucher C, Poulton S W, Canfield D E. 2009. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature, 461: 250–253CrossRefGoogle Scholar
  27. Griffin W L, O’Reilly S Y. 2007. Cratonic lithospheric mantle: Is anything subducted? Episodes, 30: 43–53CrossRefGoogle Scholar
  28. Gussone N, Schmitt A D, Heuser A, Wombacher F, Dietzel M, Tipper E, Schiller M. 2016. Calcium Stable Isotope Geochemistry. Heidelberg: Springer, Berlin. 260CrossRefGoogle Scholar
  29. Halliday A N, Lee D C, Christensen J N, Walder A J, Freedman P A, Jones C E, Hall C M, Yi W, Teagle D. 1995. Recent developments in inductively coupled plasma magnetic sector multiple collector mass spectrometry. Int J Mass Spectrometry Ion Processes, 146–147: 21–33CrossRefGoogle Scholar
  30. Hazen R M, Jones A P, Baross J A. 2013. Carbon in Earth. Rev Mineral Geochem, 75: 1–698CrossRefGoogle Scholar
  31. He Y, Meng X, Ke S, Wu H, Zhu C, Teng F Z, Hoefs J, Huang J, Yang W, Xu L, Hou Z, Ren Z Y, Li S. 2019. A nephelinitic component with unusual δ 56Fe in Cenozoic basalts from eastern China and its implications for deep oxygen cycle. Earth Planet Sci Lett, 512: 175–183CrossRefGoogle Scholar
  32. Hoefs J. 2018. Stable Isotope Geochemistry. Berlin: Springer-Verlag. 435CrossRefGoogle Scholar
  33. Hofmann A W. 1997. Mantle geochemistry: The message from oceanic volcanism. Nature, 385: 219–229CrossRefGoogle Scholar
  34. Hu Y, Teng F Z, Plank T. 2018. Potassium isotopic inputs to subduction zones. 28th Annual V. M. Goldschmidt ConferenceGoogle Scholar
  35. Hu Y, Teng F Z, Plank T, Huang K J. 2017. Magnesium isotopic composition of subducting marine sediments. Chem Geol, 466: 15–31CrossRefGoogle Scholar
  36. Huang F, Tian S Y. 2018. Several metal stable isotope systems: Analytical methods, principles of tracing and important applications (in Chinese). Bull Mineral Petrol Geochem, 37: 793–811Google Scholar
  37. Huang J, Li S G, Xiao Y, Ke S, Li W Y, Tian Y. 2015. Origin of low δ26Mg Cenozoic basalts from South China Block and their geodynamic implications. Geochim Cosmochim Acta, 164: 298–317CrossRefGoogle Scholar
  38. Huang K J, Teng F Z, Shen B, Xiao S, Lang X, Ma H R, Fu Y, Peng Y. 2016. Episode of intense chemical weathering during the termination of the 635 Ma Marinoan glaciation. Proc Natl Acad Sci USA, 113: 14904–14909CrossRefGoogle Scholar
  39. Huang K J, Teng F Z, Plank T, Staudigel H, Hu Y, Bao Z Y. 2018. Magnesium isotopic composition of altered oceanic crust and the global Mg cycle. Geochim Cosmochim Acta, 238: 357–373CrossRefGoogle Scholar
  40. Huang S, Farkaš J, Jacobsen S B. 2011. Stable calcium isotopic compositions of Hawaiian shield lavas: Evidence for recycling of ancient marine carbonates into the mantle. Geochim Cosmochim Acta, 75: 4987–4997CrossRefGoogle Scholar
  41. Huh Y, Chan L H, Edmond J M. 2001. Lithium isotopes as a probe of weathering processes: Orinoco River. Earth Planet Sci Lett, 194: 189–199CrossRefGoogle Scholar
  42. Jacob D E. 2004. Nature and origin of eclogite xenoliths from kimberlites. Lithos, 77: 295–316CrossRefGoogle Scholar
  43. John S G, Conway T M. 2014. A role for scavenging in the marine biogeochemical cycling of zinc and zinc isotopes. Earth Planet Sci Lett, 394: 159–167CrossRefGoogle Scholar
  44. John S G, Kunzmann M, Townsend E J, Rosenberg A D. 2017. Zinc and cadmium stable isotopes in the geological record: A case study from the post-snowball Earth Nuccaleena cap dolostone. Palaeogeogr Palaeoclimatol Palaeoecol, 466: 202–208CrossRefGoogle Scholar
  45. Johnson C M, Beard B L, Albarede F. 2004. Geochemistry of Non-Traditional Stable Isotopes. Rev Mineral Geochem, 55: 1–454CrossRefGoogle Scholar
  46. Kasting J. 2005. Methane and climate during the Precambrian era. Precambrian Res, 137: 119–129CrossRefGoogle Scholar
  47. Kato C, Moynier F, Valdes M C, Dhaliwal J K, Day J M D. 2015. Extensive volatile loss during formation and differentiation of the Moon. Nat Commun, 6: 7617CrossRefGoogle Scholar
  48. Kato C, Moynier F. 2017. Gallium isotopic evidence for extensive volatile loss from the Moon during its formation. Sci Adv, 3: e1700571CrossRefGoogle Scholar
  49. Ke S, Liu S A, Li W Y, Yang W, Teng F Z. 2011. Advances and application in magnesium isotope geochemistry (in Chinese). Acta Petrol Sin, 27: 383–397Google Scholar
  50. Kipp M A, Stüeken E E, Bekker A, Buick R. 2017. Selenium isotopes record extensive marine suboxia during the Great Oxidation Event. Proc Natl Acad Sci USA, 114: 875–880CrossRefGoogle Scholar
  51. Konhauser K O, Pecoits E, Lalonde S V, Papineau D, Nisbet E G, Barley M E, Arndt N T, Zahnle K, Kamber B S. 2009. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature, 458: 750–753CrossRefGoogle Scholar
  52. Kunzmann M, Halverson G P, Sossi P A, Raub T D, Payne J L, Kirby J. 2013. Zn isotope evidence for immediate resumption of primary productivity after snowball Earth. Geology, 41: 27–30CrossRefGoogle Scholar
  53. Lee C T A, Luffi P, Chin E J. 2011. Building and destroying continental mantle. Annu Rev Earth Planet Sci, 39: 59–90CrossRefGoogle Scholar
  54. Li S G, Yang W, Ke S, Meng X, Tian H, Xu L, He Y, Huang J, Wang X C, Xia Q, Sun W, Yang X, Ren Z Y, Wei H, Liu Y, Meng F, Yan J. 2017. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. Natl Sci Rev, 4: 111–120Google Scholar
  55. Li W Y, Teng F Z, Wing B A, Xiao Y. 2014. Limited magnesium isotope fractionation during metamorphic dehydration in metapelites from the Onawa contact aureole, Maine. Geochem Geophys Geosyst, 15: 408–415CrossRefGoogle Scholar
  56. Little S H, Sherman D M, Vance D, Hein J R. 2014. Molecular controls on Cu and Zn isotopic fractionation in Fe-Mn crusts. Earth Planet Sci Lett, 396: 213–222CrossRefGoogle Scholar
  57. Liu S A, Li S G. 2019. Tracing the deep carbon cycle using metal stable isotopes: Opportunities and challenges. Engineering, 5: 448–457CrossRefGoogle Scholar
  58. Liu S A, Wang Z Z, Li S G, Huang J, Yang W. 2016. Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China. Earth Planet Sci Lett, 444: 169–178CrossRefGoogle Scholar
  59. Liu S A, Wu H, Shen S, Jiang G, Zhang S, Lv Y, Zhang H, Li S. 2017. Zinc isotope evidence for intensive magmatism immediately before the end-Permian mass extinction. Geology, 45: 343–346CrossRefGoogle Scholar
  60. Liu X M, Rudnick R L. 2011. Constraints on continental crustal mass loss via chemical weathering using lithium and its isotopes. Proc Natl Acad Sci USA, 108: 20873–20880CrossRefGoogle Scholar
  61. Lock S J, Stewart S T, Petaev M I, Leinhardt Z, Mace M T, Jacobsen S B, Cuk M. 2018. The origin of the Moon within a terrestrial synestia. J Geophys Res Planets, 123: 910–951CrossRefGoogle Scholar
  62. Lodders K. 2003. Solar system abundances and condensation temperatures of the elements. Astrophys J, 591: 1220–1247CrossRefGoogle Scholar
  63. Lv Y, Liu S A, Wu H, Hohl S V, Chen S, Li S. 2018. Zn-Sr isotope records of the Ediacaran Doushantuo Formation in South China: diagenesis assessment and implications. Geochim Cosmochim Acta, 239: 330–345CrossRefGoogle Scholar
  64. Lyons T W, Reinhard C T, Planavsky N J. 2014. The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 506: 307–315CrossRefGoogle Scholar
  65. Magna T, Wiechert U, Halliday A N. 2006. New constraints on the lithium isotope compositions of the Moon and terrestrial planets. Earth Planet Sci Lett, 243: 336–353CrossRefGoogle Scholar
  66. MacPherson G J. 2008. Oxygen in the Solar System. Rev Mineral Geochem, 68: 1–598CrossRefGoogle Scholar
  67. Maréchal C N, Nicolas E, Douchet C, Albarède F. 2000. Abundance of zinc isotopes as a marine biogeochemical tracer. Geochem Geophys Geosyst, 1: 1015CrossRefGoogle Scholar
  68. Maréchal C N, Télouk P, Albarède F. 1999. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem Geol, 156: 251–273CrossRefGoogle Scholar
  69. Mougel B, Moynier F, Göpel C. 2018. Chromium isotopic homogeneity between the Moon, the Earth, and enstatite chondrites. Earth Planet Sci Lett, 481: 1–8CrossRefGoogle Scholar
  70. Moynier F, Vance D, Fujii T, Savage P. 2017a. The isotope geochemistry of zinc and copper. Rev Mineral Geochem, 82: 543–600CrossRefGoogle Scholar
  71. Moynier F, Foriel J, Shaw A S, Le Borgne M. 2017b. Distribution of Zn isotopes during Alzheimer’s disease. Geochem Persp Let, 3: 142–150CrossRefGoogle Scholar
  72. Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299: 715–717CrossRefGoogle Scholar
  73. Nielsen S G, Wasylenki L E, Rehkämper M, Peacock C L, Xue Z, Moon E M. 2013. Towards an understanding of thallium isotope fractionation during adsorption to manganese oxides. Geochim Cosmochim Acta, 117: 252–265CrossRefGoogle Scholar
  74. Nier A O. 1940. A mass spectrometer for routine isotope abundance measurements. Rev Sci Instruments, 11: 212–216CrossRefGoogle Scholar
  75. Niu Y, Gong H, Wang X, Xiao Y, Guo P, Shao F, Sun P, Shen S, Duan M, Kong J, Wang G, Xue Q, Gao Y, Hong D. 2017. Some key problems on the petrogenesis of seafloor basalts, abyssal peridotites and geodynamics? A non-traditional isotope approach (in Chinese). Adv Earth Sci, 32: 111–127Google Scholar
  76. Ostrander C M, Nielsen S G, Owens J D, Kendall B, Gordon G W, Romaniello S J, Anbar A D. 2019. Fully oxygenated water columns over continental shelves before the Great Oxidation Event. Nat Geosci, 12: 186–191CrossRefGoogle Scholar
  77. Paniello R C, Day J M D, Moynier F. 2012. Zinc isotopic evidence for the origin of the Moon. Nature, 490: 376–379CrossRefGoogle Scholar
  78. Pearson D G, Canil D, Shirey S B. 2014. Mantle samples included in volcanic rocks: Xenoliths and diamonds. In: Holland H D, Turekian K K, Davis A M, eds. Treatise on Geochemistry (Vol 3): The Mantle and Core. Oxford: Elsevier. 169–253CrossRefGoogle Scholar
  79. Penniston-Dorland S, Liu X M, Rudnick R L. 2017. Lithium isotope geochemistry. Rev Mineral Geochem, 82: 165–217CrossRefGoogle Scholar
  80. Planavsky N J, Asael D, Hofmann A, Reinhard C T, Lalonde S V, Knudsen A, Wang X, Ossa Ossa F, Pecoits E, Smith A J B, Beukes N J, Bekker A, Johnson T M, Konhauser K O, Lyons T W, Rouxel O J. 2014. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat Geosci, 7: 283–286CrossRefGoogle Scholar
  81. Pringle E A, Moynier F. 2017. Rubidium isotopic composition of the Earth, meteorites, and the Moon: Evidence for the origin of volatile loss during planetary accretion. Earth Planet Sci Lett, 473: 62–70CrossRefGoogle Scholar
  82. Qin L, Wang X. 2017. Chromium isotope geochemistry. Rev Mineral Geochem, 82: 379–414CrossRefGoogle Scholar
  83. Richter F M, Dauphas N, Teng F Z. 2009. Non-traditional fractionation of non-traditional isotopes: Evaporation, chemical diffusion and Soret diffusion. Chem Geol, 258: 92–103CrossRefGoogle Scholar
  84. Samanta M, Ellwood M J, Sinoir M, Hassler C S. 2017. Dissolved zinc isotope cycling in the Tasman Sea, SW Pacific Ocean. Mar Chem, 192: 1–12CrossRefGoogle Scholar
  85. Sedaghatpour F, Teng F Z, Liu Y, Sears D W G, Taylor L A. 2013. Magnesium isotopic composition of the Moon. Geochim Cosmochim Acta, 120: 1–16CrossRefGoogle Scholar
  86. Shahar A, Elardo S M, Macris C A. 2017. Equilibrium fractionation of nontraditional stable isotopes: An experimental perspective. Rev Mineral Geochem, 82: 65–83CrossRefGoogle Scholar
  87. Sharp Z D, Shearer C K, McKeegan K D, Barnes J D, Wang Y Q. 2010. The chlorine isotope composition of the Moon and implications for an anhydrous mantle. Science, 329: 1050–1053CrossRefGoogle Scholar
  88. Sheldon N D. 2006. Abrupt chemical weathering increase across the Permian-Triassic boundary. Palaeogeogr Palaeoclimatol Palaeoecol, 231: 315–321CrossRefGoogle Scholar
  89. Sio C K I, Dauphas N, Teng F Z, Chaussidon M, Helz R T, Roskosz M. 2013. Discerning crystal growth from diffusion profiles in zoned olivine by in situ Mg-Fe isotopic analyses. Geochim Cosmochim Acta, 123: 302–321CrossRefGoogle Scholar
  90. Sossi P A, Moynier F, van Zuilen K. 2018. Volatile loss following cooling and accretion of the Moon revealed by chromium isotopes. Proc Natl Acad Sci USA, 115: 10920–10925CrossRefGoogle Scholar
  91. Sossi P A, Moynier F. 2017. Chemical and isotopic kinship of iron in the Earth and Moon deduced from the lunar Mg-Suite. Earth Planet Sci Lett, 471: 125–135CrossRefGoogle Scholar
  92. Stracke A, Bizimis M, Salters V J M. 2003. Recycling oceanic crust: Quantitative constraints. Geochemistry Geophysics Geosystems, 4: 8003Google Scholar
  93. Stüeken E E, Buick R, Anbar A D. 2015. Selenium isotopes support free O2 in the latest Archean. Geology, 43: 259–262CrossRefGoogle Scholar
  94. Su B X, Hu Y, Teng F Z, Xiao Y, Zhou X H, Sun Y, Zhou M F, Chang S C. 2017. Magnesium isotope constraints on subduction contribution to Mesozoic and Cenozoic East Asian continental basalts. Chem Geol, 466: 116–122CrossRefGoogle Scholar
  95. Sun H, Xiao Y, Gao Y, Zhang G, Casey J F, Shen Y. 2018. Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian-Triassic boundary. Proc Natl Acad Sci USA, 115: 3782–3787CrossRefGoogle Scholar
  96. Sun W, Wei G J, Zhang Z F, Ding X, Ling M X. 2012. Research status and advance in isotope geochemistry (in Chinese). Bull Mineral Petrol Geochem, 31: 560–564Google Scholar
  97. Sun Y, Teng F Z, Hu Y, Chen X Y, Pang K N. 2019. Tracing subducted oceanic slabs in the mantle by using potassium isotopes. Geochim Cosmochim ActaGoogle Scholar
  98. Sun Y, Teng F Z, Ying J F, Su B X, Hu Y, Fan Q C, Zhou X H. 2017. Magnesium isotopic evidence for ancient subducted oceanic crust in LOMU-like potassium-rich volcanic rocks. J Geophys Res Solid Earth, 122: 7562–7572CrossRefGoogle Scholar
  99. Taylor S R. 2014. The Moon re-examined. Geochim Cosmochim Acta, 141: 670–676CrossRefGoogle Scholar
  100. Teng F Z, Dauphas N, Helz R T, Gao S, Huang S. 2011. Diffusion-driven magnesium and iron isotope fractionation in Hawaiian olivine. Earth Planet Sci Lett, 308: 317–324CrossRefGoogle Scholar
  101. Teng F Z, Hu Y, Chauvel C. 2016. Magnesium isotope geochemistry in arc volcanism. Proc Natl Acad Sci USA, 113: 7082–7087CrossRefGoogle Scholar
  102. Teng F Z, Li W Y, Ke S, Marty B, Dauphas N, Huang S, Wu F Y, Pourmand A. 2010. Magnesium isotopic composition of the Earth and chondrites. Geochim Cosmochim Acta, 74: 4150–4166CrossRefGoogle Scholar
  103. Teng F Z, Watkins J M, Dauphas N. 2017. Non-traditional stable isotopes. Rev Mineral Geochem, 82: 1–885CrossRefGoogle Scholar
  104. Teng F Z. 2017. Magnesium isotope geochemistry. Rev Mineral Geochem, 82: 219–287CrossRefGoogle Scholar
  105. Tian H C, Yang W, Li S G, Ke S, Chu Z Y. 2016. Origin of low δ 26Mg basalts with EM-I component: Evidence for interaction between enriched lithosphere and carbonated asthenosphere. Geochim Cosmochim Acta, 188: 93–105CrossRefGoogle Scholar
  106. Tian H C, Yang W, Li S G, Ke S, Duan X Z. 2018. Low δ 26Mg volcanic rocks of Tengchong in Southwestern China: A deep carbon cycle induced by supercritical liquids. Geochim Cosmochim Acta, 240: 191–219CrossRefGoogle Scholar
  107. Tomascak P B, Magna T, Dohmen R. 2016. Advances in Lithium Isotope Geochemistry. New York: Springer. 195CrossRefGoogle Scholar
  108. Touboul M, Kleine T, Bourdon B, Palme H, Wieler R. 2007. Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature, 450: 1206–1209CrossRefGoogle Scholar
  109. Urey H C. 1947. The thermodynamic properties of isotopic substances. J Chem Soc, 562Google Scholar
  110. Valley J W, Cole D R. 2001. Stable isotope geochemistry. Rev Mineral Geochem, 43: 1–663CrossRefGoogle Scholar
  111. Valley J W, Taylor H P, O’Neil J R. 1986. Stable isotopes in high-temperature geological processes. Rev Mineral, 16: 1–570Google Scholar
  112. Wang K, Jacobsen S B. 2016. Potassium isotopic evidence for a high-energy giant impact origin of the Moon. Nature, 538: 487–490CrossRefGoogle Scholar
  113. Wang S J, Teng F Z, Williams H M, Li S G. 2012. Magnesium isotopic variations in cratonic eclogites: Origins and implications. Earth Planet Sci Lett, 359–360: 219–226CrossRefGoogle Scholar
  114. Wang S J, Teng F Z, Li S G. 2014a. Tracing carbonate-silicate interaction during subduction using magnesium and oxygen isotopes. Nat Commun, 5: 5328CrossRefGoogle Scholar
  115. Wang S J, Teng F Z, Li S G, Hong J A. 2014b. Magnesium isotopic systematics of mafic rocks during continental subduction. Geochim Cosmochim Acta, 143: 34–48CrossRefGoogle Scholar
  116. Wang S J, Teng F Z, Rudnick R L, Li S G. 2015a. The behavior of magnesium isotopes in low-grade metamorphosed mudrocks. Geochim Cosmochim Acta, 165: 435–448CrossRefGoogle Scholar
  117. Wang S J, Teng F Z, Rudnick R L, Li S G. 2015b. Magnesium isotope evidence for a recycled origin of cratonic eclogites. Geology, 43: 1071–1074CrossRefGoogle Scholar
  118. Wang S J, Teng F Z, Scott J M. 2016. Tracing the origin of continental HIMU-like intraplate volcanism using magnesium isotope systematics. Geochim Cosmochim Acta, 185: 78–87CrossRefGoogle Scholar
  119. Wang S J, Teng F Z, Li S G, Zhang L F, Du J X, He Y S, Niu Y. 2017. Tracing subduction zone fluid-rock interactions using trace element and Mg-Sr-Nd isotopes. Lithos, 290–291: 94–103CrossRefGoogle Scholar
  120. Wang S J, Rudnick R L, Gaschnig R M, Wang H, Wasylenki L E. 2019. Methanogenesis sustained by sulfide weathering during the Great Oxidation Event. Nat Geosci, 12: 296–300CrossRefGoogle Scholar
  121. Wang X, Liu S A, Wang Z, Chen D, Zhang L. 2018a. Zinc and strontium isotope evidence for climate cooling and constraints on the Frasnian-Famennian (~372 Ma) mass extinction. Palaeogeogr Palaeoclimatol PalaeoEcol, 498: 68–82CrossRefGoogle Scholar
  122. Wang Z Z, Liu S A, Chen L H, Li S G, Zeng G. 2018b. Compositional transition in natural alkaline lavas through silica-undersaturated meltlithosphere interaction. Geology, 46: 771–774CrossRefGoogle Scholar
  123. Watkins J M, DePaolo D J, Watson E B. 2017. Kinetic fractionation of nontraditional stable isotopes by diffusion and crystal growth reactions. Rev Mineral Geochem, 82: 85–125CrossRefGoogle Scholar
  124. Weyer S, Ionov D A. 2007. Partial melting and melt percolation in the mantle: The message from Fe isotopes. Earth Planet Sci Lett, 259: 119–133CrossRefGoogle Scholar
  125. Wu H, He Y, Teng F Z, Ke S, Hou Z, Li S. 2018. Diffusion-driven magnesium and iron isotope fractionation at a gabbro-granite boundary. Geochim Cosmochim Acta, 222: 671–684CrossRefGoogle Scholar
  126. Yan B, Zhu X, He X, Tang S. 2019. Zn isotopic evolution in early Ediacaran ocean: A global signature. Precambrian Res, 320: 472–483CrossRefGoogle Scholar
  127. Yang W, Teng F Z, Zhang H F, Li S G. 2012. Magnesium isotopic systematics of continental basalts from the North China craton: Implications for tracing subducted carbonate in the mantle. Chem Geol, 328: 185–194CrossRefGoogle Scholar
  128. Zahnle K, Claire M, Catling D. 2006. The loss of mass-independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane. Geobiology, 4: 271–283CrossRefGoogle Scholar
  129. Zhang H F, Tang Y J, Zhao X M, Yang Y H. 2007. Significance and prospective of non-traditional isotopic systems in mantle geochemistry (in Chinese). Earth-Sci Front, 14: 37–57CrossRefGoogle Scholar
  130. Zhang J, Dauphas N, Davis A M, Leya I, Fedkin A. 2012. The proto-Earth as a significant source of lunar material. Nat Geosci, 5: 251–255CrossRefGoogle Scholar
  131. Zhao Y, Vance D, Abouchami W, de Baar H J W. 2014. Biogeochemical cycling of zinc and its isotopes in the Southern Ocean. Geochim Cosmochim Acta, 125: 653–672CrossRefGoogle Scholar
  132. Zhu X K, Guo Y, Williams R J P, O’Nions R K, Matthews A, Belshaw N S, Canters G W, de Waal E C, Weser U, Burgess B K, Salvato B. 2002. Mass fractionation processes of transition metal isotopes. Earth Planet Sci Lett, 200: 47–62CrossRefGoogle Scholar
  133. Zhu X K, Wang Y, Yan B, Li J, Dong A, Li Z H, Sun J. 2013. Developments of Non-Traditional Stable Isotope Geochemistry (in Chinese). Bull Mineral Petrol Geochem, 32: 651–688Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Fangzhen Teng
    • 1
    Email author
  • Shuijiong Wang
    • 2
  • Frédéric Moynier
    • 3
    • 4
    • 5
  1. 1.Isotope Laboratory, Department of Earth and Space SciencesUniversity of WashingtonSeattleUSA
  2. 2.State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesBeijingChina
  3. 3.Institut de Physique du Globe de ParisUniversité de ParisParisFrance
  4. 4.Institut Universitaire de FranceParisFrance
  5. 5.State Key Laboratory of Geological Processes and Mineral Resources, School of Earth SciencesChina University of GeosciencesWuhanChina

Personalised recommendations