Advertisement

Metamorphism, fluid behavior and magmatism in oceanic subduction zones

  • 42 Accesses

Abstract

Based on the updated results of experimental petrology and phase equilibria modelling and combined with the available thermal structure models of subduction zones, this paper presents an overview on the dehydration and melting of basic, sedimentary and ultrabasic rocks that occur in the different stages during oceanic subduction processes and their influences on magmatism above subduction zones. During the subduction at the forearc depth of <90–100 km, the basic and ultrabasic rocks from most oceanic slabs can release very small amounts of water, and significant dehydration may occur in the slab superficial sediments. Strong dehydration occurs in both basic and ultrabasic rocks during subduction at the subarc depth of 90–200 km. For example, more than 90% water in basic rocks is released by the successive dehydration of chlorite, glaucophane, talc and lawsonite in the subarc depths. This is diversely in contrast to the previous results from synthetic experiments. Ultrabasic rocks may undergo strong dehydration through antigorite, chlorite and phase 10 Å at the subarc depth of 120–220 km. However, sediments can contribute minor fluids at the subarc depth, one main hydrous mineral in which is phengite (muscovite). It can stabilize to ∼300 km depth and transform into K-hollandite. After phengite breaks down, there will be no significant fluid release from oceanic slab until it is subducted to the mantle transition zone. In a few hot subduction zones, partial melting (especially flux melting) can occur in both sediments and basic rocks, generating hydrous granitic melts or supercritical fluids, and in carbonates-bearing sediments potassic carbonatite melts can be generated. In a few cold subduction zones, phase A occurs in ultrabasic rocks, which can bring water deep into the transition zone. The subducted rocks, especially the sediments, contain large quantities of incompatible minor and trace elements carried through fluids to greatly influence the geochemical compositions of the magma in subduction zones. As the geothermal gradients of subduction zones cannot cross the solidi of carbonated eclogite and peridotite during the subarc subduction stage, the carbonate minerals in them can be carried into the deep mantle. Carbonated eclogite can melt to generate alkali-rich carbonatite melts at >400 km depth, while carbonated peridotite will not melt in the mantle transition zone below a subduction zone.

References

  1. Agius M R, Rychert C A, Harmon N, Laske G. 2017. Mapping the mantle transition zone beneath Hawaii from Ps receiver functions: Evidence for a hot plume and cold mantle downwellings. Earth Planet Sci Lett, 474: 226–236

  2. Ague J J, Nicolescu S. 2014. Carbon dioxide released from subduction zones by fluid-mediated reactions. Nat Geosci, 7: 355–360

  3. Auzanneau E, Vielzeuf D, Schmidt M W. 2006. Experimental evidence of decompression melting during exhumation of subducted continental crust. Contrib Mineral Petrol, 152: 125–148

  4. Berner R A. 2003. The long-term carbon cycle, fossil fuels and atmospheric composition. Nature, 426: 323–326

  5. Bulanova G P, Walter M J, Smith C B, Kohn S C, Armstrong L S, Blundy J, Gobbo L. 2010. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: Subducted protoliths, carbonated melts and primary kimberlite magmatism. Contrib Mineral Petrol, 160: 489–510

  6. Dalton J A, Presnall D C. 1998. Carbonatitic melts along the solidus of model lherzolite in the system CaO-MgO-Al2O3-SiO2-CO2 from 3 to 7 GPa. Contrib Mineral Petrol, 131: 123–135

  7. Dasgupta R, Hirschmann M M, Withers A C. 2004. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet Sci Lett, 227: 73–85

  8. Debret B, Bolfan-Casanova N, Padrón-Navarta J A, Martin-Hernandez F, Andreani M, Garrido C J, López Sánchez-Vizcaino V, Gómez-Pugnaire M T, Muñoz M, Trcera N. 2015. Redox state of iron during high-pressure serpentinite dehydration. Contrib Mineral Petrol, 169: 36

  9. Diener J F A, Powell R, White R W, Holland T J B. 2007. A new thermodynamic model for clino- and orthoamphiboles in the system Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O. J Metamorph Geol, 25: 631–656

  10. Domanik K J, Holloway J R. 1996. The stability and composition of phengitic muscovite and associated phases from 5.5 to 11 GPa: Implications for deeply subducted sediments. Geochim Cosmochim Acta, 60: 4133–4150

  11. Eggler D H. 1978. The effect of CO2 upon partial melting of peridotite in the system Na2O-CaO-Al2O3-MgO-SiO2-CO2 to 35 kb, with an analysis of melting in a peridotite-H2O-CO2 system. Am J Sci, 278: 305–343

  12. Elliott T, Plank T, Zindler A, White W, Bourdon B. 1997. Element transport from slab to volcanic front at the Mariana arc. J Geophys Res, 102: 14991–15019

  13. Eiler J M, Carr M J, Reagan M, Stolper E. 2005. Oxygen isotope constraints on the sources of Central American arc lavas. Geochem Geophys Geosyst, 6: Q07007

  14. Falloon T J, Green D H. 1989. The solidus ofcarbonated, fertile peridotite. Earth Planet Sci Lett, 94: 364–370

  15. Foley S. 1992. Petrological characterization of the source components of potassic magmas: Geochemical and experimental constraints. Lithos, 28: 187–204

  16. Frezzotti M L, Selverstone J, Sharp Z D, Compagnoni R. 2011. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nat Geosci, 4: 703–706

  17. Fumagalli P, Poli S. 2005. Experimentally determined phase relations in hydrous peridotites to 6.5 GPa and their consequences on the dynamics of subduction zones. J Petrol, 46: 555–578

  18. Fumagalli P, Zanchetta S, Poli S. 2009. Alkali in phlogopite and amphibole and their effects on phase relations in metasomatized peridotites: A high-pressure study. Contrib Mineral Petrol, 158: 723–737

  19. Ghent E, Tinkham D, Marr R. 2009. Lawsonite eclogites from the Pinchi Lake area, British Columbia—New P-T estimates and interpretation. Lithos, 109: 248–253

  20. Ghosh S, Ohtani E, Litasov K D, Terasaki H. 2009. Solidus of carbonated peridotite from 10 to 20 GPa and origin of magnesiocarbonatite melt in the Earth’s deep mantle. Chem Geol, 262: 17–28

  21. Goes S, Agrusta R, van Hunen J, Garel F. 2017. Subduction-transition zone interaction: A review. Geosphere, 13: 644–664

  22. Grassi D, Schmidt M W. 2011a. The melting ofcarbonated pelites from 70 to 700 km depth. J Petrol, 52: 765–789

  23. Grassi D, Schmidt M W. 2011b. Melting of carbonated pelites at 8–13 GPa: Generating K-rich carbonatites for mantle metasomatism. Contrib Mineral Petrol, 162: 169–191

  24. Green D H, Hibberson W O, Kovács I, Rosenthal A. 2010. Water and its influence on the lithosphere-asthenosphere boundary. Nature, 467: 448–451

  25. Green E C R, White R W, Diener J F A, Powell R, Holland T J B, Palin R M. 2016. Activity-composition relations for the calculation of partial melting equilibria in metabasic rocks. J Metamorph Geol, 34: 845–869

  26. Grove T, Chatterjee N, Parman S, Medard E. 2006. The influence of H2O on mantle wedge melting. Earth Planet Sci Lett, 249: 74–89

  27. Grove T L, Elkins-Tanton L T, Parman S W, Chatterjee N, Mütener O, Gaetani G A. 2003. Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Mineral Petrol, 145: 515–533

  28. Guiraud M, Powell R, Rebay G. 2001. H2O in metamorphism and unexpected behaviour in the preservation of metamorphic mineral assemblages. J Metamorph Geol, 19: 445–454

  29. Hammouda T. 2003. High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth Planet Sci Lett, 214: 357–368

  30. Hammouda T, Keshav S. 2015. Melting in the mantle in the presence of carbon: Review of experiments and discussion on the origin of carbonatites. Chem Geol, 418: 171–188

  31. Hammouda T, Laporte D. 2000. Ultrafast mantle impregnation by carbonatite melts. Geology, 28: 283–285

  32. Harte B. 2010. Diamond formation in the deep mantle: The record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineral mag, 74: 189–215

  33. Hazen R M, Schiffries C M. 2013. Why deep carbon? Rev Mineral Geochem, 75: 1–6

  34. Hermann J F. 2002a. Experimental constraints on phase relations in subducted continental crust. Contrib Mineral Petrol, 143: 219–235

  35. Hermann J. 2002b. Allanite: Thorium and light rare earth element carrier in subducted crust. Chem Geol, 192: 289–306

  36. Hermann J, Green D H. 2001. Experimental constraints on high pressure melting in subducted crust. Earth Planet Sci Lett, 188: 149–168

  37. Hermann J, Spandler C J. 2008. Sediment melts at sub-arc depths: An experimental study. J Petrol, 49: 717–740

  38. Hirose K. 1997. Melting experiments on lherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts. Geology, 25: 42–44

  39. Hirose K, Fei Y. 2002. Subsolidus and melting phase relations of basaltic composition in the uppermostlower mantle. Geochim Cosmochim Acta, 66: 2099–2108

  40. Hilton D R, Fischer T P, Marty B. 2002. Noble gases and volatile recycling at subduction zones. Rev Mineral Geochem, 47: 319–370

  41. Hyndman R D, Peacock S M. 2003. Serpentinization of the forearc mantle. Earth Planet Sci Lett, 212: 417–432

  42. Irifune T, Ringwood A E, Hibberson W O. 1994. Subduction of continental crust and terrigenous and pelagic sediments: An experimental study. Earth Planet Sci Lett, 126: 351–368

  43. Ishizuka O, Taylor R N, Milton J A, Nesbitt R W, Yuasa M, Sakamoto I. 2006. Variation in the mantle sources of the northern Izu arc with time and space—Constraints from high-precision Pb isotopes. J Volcanol Geotherm Res, 156: 266–290

  44. Ito E, Katsura T. 1989. A temperature profile of the mantle transition zone. Geophys Res Lett, 16: 425–428

  45. Jackson M G, Dasgupta R. 2008. Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts. Earth Planet Sci Lett, 276: 175–186

  46. Javoy M. 1997. The major volatile elements of the Earth: Their origin, behavior, and fate. Geophys Res Lett, 24: 177–180

  47. Johannes W, Puhan D. 1971. The calcite-aragonite transition, re-investigated. Contr Mineral Petrol, 31: 28–38

  48. Katayama I, Nakashima S. 2003. Hydroxyl in clinopyroxene from the deep subducted crust: Evidence for H2O transport into the mantle. Am Miner, 88: 229–234

  49. Kawamoto T, Holloway J. 1997. Melting temperature and partial melt chemistry of H2O-saturated mantle peridotite to 11 GPa. Science, 276: 240–243

  50. Kelemen P B, Hanghøj K, Greene A R. 2014. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treatise Geochem, 4: 749–805

  51. Kelemen P B, Rilling J F, Parmentier E M, Mehl L, Hacker B R. 2003. Thermal structure due to solid-state flow in the mantle wedge beneath arcs. Geophys Monograph, 138: 293–311

  52. Kerrick D M, Connolly J A D. 1998. Subduction of ophicarbonates and recycling of CO2 and H2O. Geology, 26: 375–378

  53. Kerrick D M, Connolly J A D. 2001. Metamorphic devolatilization of subducted oceanic metabasalts: Implications for seismicity, arc magmatism and volatile recycling. Earth Planet Sci Lett, 189: 19–29

  54. Keshav S, Gudfinnsson G H. 2013. Silicate liquid-carbonatite liquid transition along the melting curve of model, vapor-saturated peridotite in the system CaO-MgO-Al2O3-SiO2-CO2 from 1.1 to 2 GPa. J Geophys Res-Solid Earth, 118: 3341–3353

  55. Kessel R, Ulmer P, Pettke T, Schmidt M W, Thompson A B. 2005. The water-basalt system at 4 to 6 GPa: Phase relations and second critical endpoint in a K-free eclogite at 700 to 1400°C. Earth Planet Sci Lett, 237: 873–892

  56. Kimura J I, Gill J B, Kunikiyo T, Osaka I, Shimoshioiri Y, Katakuse M, Kakubuchi S, Nagao T, Furuyama K, Kamei A, Kawabata H, Nakajima J, van Keken P E, Stern R J. 2014. Diverse magmatic effects of subducting a hot slab in SW Japan: Results from forward modeling. Geochem Geophys Geosyst, 15: 691–739

  57. Kiseeva E S, Litasov K D, Yaxley G M, Ohtani E, Kamenetsky V S. 2013. Melting and phase relations of carbonated eclogite at 9–21 GPa and the petrogenesis of alkali-rich melts in the deep mantle. J Petrol, 54: 1555–1583

  58. Klimm K, Blundy J D, Green T H. 2008. Trace element partitioning and accessory phase saturation during H2O-saturated melting of basalt with implications for subduction zone chemical fluxes. J Petrol, 49: 523–553

  59. Kohn M J, Castro A E, Kerswell B C, Ranero C R, Spear F S. 2018. Shear heating reconciles thermal models with the metamorphic rock record of subduction. Proc Natl Acad Sci USA, 115: 11706–11711

  60. Komabayashi T, Omori S, Maruyama S. 2005. Experimental and theoretical study of stability of dense hydrous magnesium silicates in the deep upper mantle. Phys Earth Planet Inter, 153: 191–209

  61. Konzett J, Ulmer P. 1999. The Stability of hydrous potassic phases in Lherzolitic Mantle—An experimental study to 9.5 GPa in simplified and natural bulk compositions. J Petrol, 40: 629–652

  62. Kushiro I, Syono Y, Akimoto S I. 1968. Melting of a peridotite nodule at high pressures and high water pressures. J Geophys Res, 73: 6023–6029

  63. Kushiro I. 1970. Stability ofamphibole and phlogopite in the upper mantle. Carnegie Institute of Washington Yearbook, 68: 245–247

  64. Kushiro I. 1974. Melting of hydrous upper mantle and possible generation of andesitic magma: An approach from synthetic systems. Earth Planet Sci Lett, 22: 294–299

  65. Luth R W. 2001. Experimental determination of the reaction aragonite +magnesite=dolomite at 5 to 9 GPa. Contrib Mineral Petrol, 141: 222–232

  66. Manning C E. 2004. The chemistry of subduction-zone fluids. Earth Planet Sci Lett, 223: 1–16

  67. Manning C E. 2014. A piece of the deep carbon puzzle. Nat Geosci, 7: 333–334

  68. Martin H. 1999. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos, 46: 411–429

  69. Martinez I, Zhang J, Reeder R J. 1996. In situ X-ray diffraction of aragonite and dolomite at high pressure and high temperature: Evidence for dolomite breakdown to aragonite and magnesite. Am Miner, 81: 611–624

  70. Maruyama S, Liou J G, Terabayashi M. 1996. Blueschists and eclogites of the world and their exhumation. Int Geol Rev, 38: 485–594

  71. Maruyama S, Okamoto K. 2007. Water transportation from the subducting slab into the mantle transition zone. Gondwana Res, 11: 148–165

  72. McCulloch M T, Gamble J A. 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci Lett, 102: 358–374

  73. McKenzie D, Jackson J, Priestley K. 2005. Thermal structure of oceanic and continental lithosphere. Earth Planet Sci Lett, 233: 337–349

  74. Mibe K, Fujii T, Yasuda A. 2002. Composition of aqueous fluid coexisting with mantle minerals at high pressure and its bearing on the differentiation of the Earth’s mantle. Geochim Cosmochim Acta, 66: 2273–2285

  75. Milkov A V. 2000. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar Geol, 167: 29–42

  76. Miyashiro A. 1961. Evolution of metamorphic belts. J Petrol, 2: 277–311

  77. Miyashiro A. 1994. Metamorphic Petrology. London: University College London Press. 404

  78. Molina J F, Poli S. 2000. Carbonate stability and fluid composition in subducted oceanic crust: An experimental study on H2O-CO2-bearing basalts. Earth Planet Sci Lett, 176: 295–310

  79. Moyen J F, Stevens G. 2006. Experimental constraints on TTG petrogenesis: Implications for Archean geodynamics. Geophys Monograph, 164: 149–178

  80. Ni H W, Zhang L, Xiong X L, Mao Z, Wang J Y. 2017. Supercritical fluids at subduction zones: Evidence, formation condition, and physico-chemical properties. Earth-Sci Rev, 167: 62–71

  81. Nichols G T, Wyllie P J, Stern C R. 1994. Subduction zone melting of pelagic sediments constrained by melting experiments. Nature, 371: 785–788

  82. Niida K, Green D H. 1999. Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contrib Mineral Petrol, 135: 18–40

  83. Novella D, Keshav S, Gudfinnsson G H, Ghosh S. 2014. Melting phase relations of model carbonated peridotite from 2 to 3 GPa in the system CaO-MgO-Al2O3-SiO2-CO2 and further indication of possible unmixing between carbonatite and silicate liquids. J Geophys Res-Solid Earth, 119: 2780–2800

  84. Okamoto K, Maruyama S. 1999. The high-pressure synthesis of lawsonite in the MORB+H2O system. Am Miner, 84: 362–373

  85. Ono S. 1998. Stability limits of hydrous minerals in sediment and mid-ocean ridge basalt compositions: Implications for water transport in subduction zones. J Geophys Res, 103: 18253–18267

  86. Pawley A R, Wood B J. 1995. The high-pressure stability of talc and 10 Å phase: Potential storage sites for H2O in subduction zones. Am Miner, 80: 998–1003

  87. Peacock S M. 1991. Numerical simulation of subduction zone pressure-temperature-time paths: Constraints on fluid production and arc magmatism. Phil Trans R Soc Lond A, 335: 341–353

  88. Peacock S M. 1993. The importance of blueschist→eclogite dehydration reactions in subducting oceanic crust. Geol Soc Am Bull, 105: 684–694

  89. Peacock S M, Wang K. 1999. Seismic consequences of warm versus cool subduction metamorphism: Examples from Southwest and Northeast Japan. Science, 286: 937–939

  90. Penniston-Dorland S C, Kohn M J, Manning C E. 2015. The global range of subduction zone thermal structures from exhumed blueschists and eclogites: Rocks are hotter than models. Earth Planet Sci Lett, 428: 243–254

  91. Petö P. 1976. An experimental investigation of melting relations involving muscovite and paragonite in the silica-saturated portion of the system K2O-Na2O-Al2O3-SiO2-H2O to 15 kb total pressure. Prog Exp Petrol, 3: 41–45

  92. Plank T, Langmuir C H. 1988. An evaluation of the global variations in the major element chemistry of arc basalts. Earth Planet Sci Lett, 90: 349–370

  93. Plank T, Langmuir C H. 1993. Tracing trace elements from sediment input to volcanic output at subduction zones. Nature, 362: 739–743

  94. Poli S, Franzolin E, Fumagalli P, Crottini A. 2009. The transport of carbon and hydrogen in subducted oceanic crust: An experimental study to 5 GPa. Earth Planet Sci Lett, 278: 350–360

  95. Poli S, Schmidt M W. 2002. Petrology of subducted slabs. Annu Rev Earth Planet Sci, 30: 207–235

  96. Rohrbach A, Schmidt M W. 2011. Redox freezing and melting in the Earth’s deep mantle resulting from carbon-iron redox coupling. Nature, 472: 209–212

  97. Ryan J G, Morris J, Tera F, Leeman W P, Tsvetkov A. 1995. Cross-arc geochemical variations in the Kurile Arc as a function of slab depth. Science, 270: 625–627

  98. Schmidt M W. 1995. Lawsonite; upper pressure stability and formation of higher density hydrous phases. Am Miner, 80: 1286–1292

  99. Schmidt M W. 1996. Experimental constraints on recycling of potassium from subducted oceanic crust. Science, 272: 1927–1930

  100. Schmidt M W, Poli S. 1998. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett, 163: 361–379

  101. Schmidt M W, Poli S. 2003. Generation of mobile components during subduction of oceanic crust. Treatise Geochem, 3: 567–591

  102. Schmidt M W, Poli S. 2014. Devolatilization during subduction. Treatise Geochem, 4: 669–701

  103. Schmidt M W, Vielzeuf D, Auzanneau E. 2004. Melting and dissolution of subducting crust at high pressures: The key role of white mica. Earth Planet Sci Lett, 228: 65–84

  104. Sen C, Dunn T. 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: Implications for the origin of adakites. Contr Mineral Petrol, 117: 394–409

  105. Shaw D M. 1956. Geochemistry of pelitic rocks. Part III: Major elements and general geochemistry. Geol Soc Am Bull, 67: 919

  106. Shcheka S S, Wiedenbeck M, Frost D J, Keppler H. 2006. Carbon solubility in mantle minerals. Earth Planet Sci Lett, 245: 730–742

  107. Shilobreeva S, Martinez I, Busigny V, Agrinier P, Laverne C. 2011. Insights into C and H storage in the altered oceanic crust: Results from ODP/IODP Hole 1256D. Geochim Cosmochim Acta, 75: 2237–2255

  108. Song S G, Zhang L F, Niu Y, Wei C J, Liou J G, Shu G M. 2007. Eclogite and carpholite-bearing metasedimentary rocks in the North Qilian suture zone, NW China: Implications for Early Palaeozoic cold oceanic subduction and water transport into mantle. J Metamorph Geol, 25: 547–563

  109. Smyth J R. 2006. Hydrogen in high pressure silicate and oxide mineral structures. Rev Mineral Geochem, 62: 85–115

  110. Stachel T. 2001. Diamonds from the asthenosphere and the transition zone. Eur J Mineral, 13: 883–892

  111. Stagno V, Ojwang D O, McCammon C A, Frost D J. 2013. The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature, 493: 84–88

  112. Stalder R, Ulmer P, Thompson A, Günther D. 2001. High pressure fluids in he system MgO-SiO2-H2O under upper mantle conditions. Contrib Mineral Petrol, 140: 607–618

  113. Stern R J. 2002. Subduction zones. Rev Geophys, 40: 1012

  114. Stevens G, Clemens J D, Droop G T R. 1997. Melt production during granulite-facies anatexis: Experimental data from “primitive” metasedimentary protoliths. Contrib Mineral Petrol, 128: 352–370

  115. Stolper E, Newman S. 1994. The role of water in the petrogenesis of Mariana trough magmas. Earth Planet Sci Lett, 121: 293–325

  116. Sudo A, Tatsumi Y. 1990. Phlogopite and K-amphibole in the upper mantle: Implication for magma genesis in subduction zones. Geophys Res Lett, 17: 29–32

  117. Syracuse E M, van Keken P E, Abers G A, Suetsugu D, Bina C, Inoue T, Wiens D, Jellinek M. 2010. The global range of subduction zone thermal models. Phys Earth Planet Inter, 183: 73–90

  118. Tatsumi Y. 1986. Formation of the volcanic front in subduction zones. Geophys Res Lett, 13: 717–720

  119. Tatsumi Y, Eggins S. 1995. Subduction Zone Magmatism. Oxford: Blackwell

  120. Tatsumi Y, Hanyu T. 2003. Geochemical modeling of dehydration and partial melting of subducting lithosphere: Toward a comprehensive understanding of high-Mg andesite formation in the Setouchi volcanic belt, SW Japan. Geochem Geophys Geosyst, 4: 1081

  121. Tao R, Zhang L, Fei Y, Liu Q. 2014. The effect of Fe on the stability of dolomite at high pressure: Experimental study and petrological observation in eclogite from southwestern Tianshan, China. Geochim Cosmochim Acta, 143: 253–267

  122. Taylor W R, Green D H. 1988. Measurement of reduced peridotite-C-O-H solidus and implications for redox melting of the mantle. Nature, 332: 349–352

  123. Theye T, Seidel E, Vidal O. 1992. Carpholite, sudoite, and chloritoid in low-grade high-pressure metapelites from Crete and the Peloponnese, Greece. Eur J Mineral, 4: 487–508

  124. Thomson A R, Kohn S C, Bulanova G P, Smith C B, Araujo D, Walter M J. 2014. Origin of sub-lithospheric diamonds from the Juina-5 kimberlite (Brazil): Constraints from carbon isotopes and inclusion compositions. Contrib Mineral Petrol, 168: 1081

  125. Thomson A R, Walter M J, Kohn S C, Brooker R A. 2016. Slab melting as a barrier to deep carbon subduction. Nature, 529: 76–79

  126. Thomsen T B, Schmidt M W. 2008a. Melting of carbonated pelites at 2.5–5.0 GPa, silicate-carbonatite liquid immiscibility, and potassium-carbon metasomatism of the mantle. Earth Planet Sci Lett, 267: 17–31

  127. Thomsen T B, Schmidt M W. 2008b. The biotite to phengite reaction and mica-dominated melting in fluid+carbonate-saturated pelites at high pressures. J Petrol, 49: 1889–1914

  128. Tian Z L, Wei C J. 2013. Metamorphism of ultrahigh-pressure eclogites from the Kebuerte Valley, South Tianshan, NW China: Phase equilibria and P-T path. J Metamorph Geol, 31: 281–300

  129. Till C B, Grove T L, Withers A C. 2012. The beginnings of hydrous mantle wedge melting. Contrib Mineral Petrol, 163: 669–688

  130. Ulmer P, Trommsdorff V. 1995. Serpentine stability to mantle depths and subduction-related magmatism. Science, 268: 858–861

  131. van Keken P E, Kiefer B, Peacock S M. 2002. High-resolution models of subduction zones: Implications for mineral dehydration reactions and the transport ofwater into the deep mantle. Geochem Geophys Geosyst, 3: 1056

  132. van Keken P E, Hacker B R, Syracuse E M, Abers G A. 2011. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J Geophys Res, 116: B01401

  133. van Keken P E, Wada I, Abers G A, Hacker B R, Wang K. 2018. Mafic high-pressure rocks are preferentially exhumed from warm subduction settings. Geochem Geophys Geosyst, 19: 2934–2961

  134. van Keken P E, Wada I, Sime N, Abers G A. 2019. Thermal structure of the forearc in subduction zones: A comparison of methodologies. Geochem Geophys Geosyst, 92: 3268–3288

  135. Vielzeuf D, Schmidt M W. 2001. Melting relations in hydrous systems revisited: Application to metapelites, metagreywackes and metabasalts. Contrib Mineral Petrol, 141: 251–267

  136. Walter M J, Bulanova G P, Armstrong L S, Keshav S, Blundy J D, Gudfinnsson G, Lord O T, Lennie A R, Clark S M, Smith C B, Gobbo L. 2008. Primary carbonatite melt from deeply subducted oceanic crust. Nature, 454: 622–625

  137. Wei C J, Clarke G L. 2011. Calculated phase equilibria for MORB compositions: A reappraisal of the metamorphic evolution of lawsonite eclogite. J Metamorph Geol, 29: 939–952

  138. Wei C J, Duan Z Z. 2019. Phase Relations in metabasic rocks: Constraints from the results of experiments, phase modelling and ACF analysis. Geol Soc Lond Spec Publ, 474: 25–45

  139. Wei C J, Guan X, Dong J. 2017. HT-UHT metamorphism of metabasites and the petrogenesis of TTGs (in Chinese with English abstract). Acta Petrol Sin, 33: 1381–1404

  140. Wei C J, Li Y J, Yu Y, Zhang J S. 2010. Phase equilibria and metamorphic evolution of glaucophane-bearing UHP eclogites from the western Dabieshan terrane, Central China. J Metamorph Geol, 28: 647–666

  141. Wei C J, Powell R. 2003. Phase relations in high-pressure metapelites in the system KFMASH (K2O-FeO-MgO-Al2O3-SiO2-H2O) with application to natural rocks. Contrib Mineral Petrol, 145: 301–315

  142. Wei C, Wang W, Clarke G L, Zhang L, Song S. 2009. Metamorphism of high/ultrahigh-pressure pelitic-felsic schist in the South Tianshan Orogen, NW China: Phase equilibria and P-T path. J Petrol, 50: 1973–1991

  143. Wei C J, Zhang Y H. 2008. Phase transition in the subducted oceanic lithosphere and generation of the subduction zone magma. Chin Sci Bull, 53: 3603–3614

  144. White R W, Powell R, Holland T J B. 2001. Calculation of partial melting equilibria in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). J Metamorph Geol, 19: 139–153

  145. White R W, Powell R, Holland T J B. 2007. Progress relating to calculation of partial melting equilibria for metapelites. J Metamorph Geol, 25: 511–527

  146. Winter J D. 2014. Principles of Igneous and Metamorphic Petrology. 2nd ed. New Jersey: Pearson Education. 738

  147. Winther K T, Newton R C. 1991. Experimental melting of hydrous low-K tholeiite: Evidence on the origin of Archean cratons. Bull Geol Soc Denmark, 39: 497–515

  148. Wood B J, Turner S P. 2009. Origin of primitive high-Mg andesite: Constraints from natural examples and experiments. Earth Planet Sci Lett, 283: 59–66

  149. Wunder B. 1998. Equilibrium experiments in the system MgO-SiO2-H2O (MSH): Stability fields of clinohumite-OH [Mg9Si4O16(OH)2], chondrodite-OH [Mg5Si2O8(OH)2] and phase A (Mg7Si2O8(OH)6). Contrib Mineral Petrol, 132: 111–120

  150. Wyllie P J. 1978. Mantle fluid compositions buffered in peridotite-CO2-H2 O by carbonates, amphibole, and phlogopite. J Geol, 86: 687–713

  151. Wyllie P J. 1981. Plate tectonics and magma genesis. Geol Rundsch, 70: 128–153

  152. Wyllie P J, Huang W L. 1975. Influence of mantle CO2 in the generation of carbonatites and kimberlites. Nature, 257: 297–299

  153. Wyllie P J, Wolf M B. 1993. Amphibolite dehydration-melting: Sorting out the solidus. Geol Soc Lond Spec Publ, 76: 405–416

  154. Xu C, Kynický J, Tao R, Liu X, Zhang L, Pohanka M, Song W, Fei Y. 2017. Recovery of an oxidized majorite inclusion from Earth’s deep asthenosphere. Sci Adv, 3: e1601589

  155. Xu C, Kynický J, Song W, Tao R, Lü Z, Li Y, Yang Y, Pohanka M, Galiova M V, Zhang L, Fei Y. 2018. Cold deep subduction recorded by remnants of a Paleoproterozoic carbonated slab. Nat Commun, 9: 2790

  156. Xu Y, Li H, Hong L, Ma L, Ma Q, Sun M. 2018. Generation of Cenozoic intraplate basalts in the big mantle wedge under eastern Asia. Sci China Earth Sci, 61: 869–886

  157. Yasuda A, Fujii T, Kurita K. 1994. Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 GPa: Implications for the behavior of subducted oceanic crust in the mantle. J Geophys Res, 99: 9401–9414

  158. Yaxley G M, Green D H. 1994. Experimental demonstration of refractory carbonate-bearing eclogite and siliceous melt in the subduction regime. Earth Planet Sci Lett, 128: 313–325

  159. Zhao D P, Maruyama S, Omori S. 2007. Mantle dynamics of Western Pacific and East Asia: Insight from seismic tomography and mineral physics. Gondwana Res, 11: 120–131

  160. Zheng Y F. 2009. Fluid regime in continental subduction zones: Petrological insights from ultrahigh-pressure metamorphic rocks. J Geol Soc, 166: 763–782

  161. Zheng Y F. 2019. Subduction zone geochemistry. Geosci Front, 10: 1223–1254

  162. Zheng Y F, Chen Y X. 2016. Continental versus oceanic subduction zones. Natl Sci Rev, 3: 495–519

  163. Zheng Y F, Chen R X, Xu Z, Zhang S B. 2016. The transport of water in subduction zones. Sci China Earth Sci, 59: 651–682

  164. Zheng Y F, Hermann J. 2014. Geochemistry of continental subduction-zone fluids. Earth Planet Space, 66: 93

  165. Zheng Y F, Xia Q X, Chen R X, Gao X Y. 2011. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth-Sci Rev, 107: 342–374

  166. Zheng Y, Xu Z, Zhao Z, Dai L. 2018. Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere. Sci China Earth Sci, 61: 353–385

  167. Zhu R, Xu Y. 2019. The subduction of the west Pacific plate and the destruction of the North China Craton. Sci China Earth Sci, 62: 1340–1350

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (Grant No. 2015CB856105) and the National Natural Science Foundation of China (Grant No. 41872057).

Author information

Correspondence to Chunjing Wei.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wei, C., Zheng, Y. Metamorphism, fluid behavior and magmatism in oceanic subduction zones. Sci. China Earth Sci. 63, 52–77 (2020). https://doi.org/10.1007/s11430-019-9482-y

Download citation

Keywords

  • Oceanic subduction
  • Metamorphism
  • Phase equilibria
  • Fluid activity
  • Subduction zone magmatism
  • Carbon cycle