Advertisement

Pliocene flora and paleoenvironment of Zanda Basin, Tibet, China

  • Jian Huang
  • Tao Su
  • Shufeng Li
  • Feixiang Wu
  • Tao Deng
  • Zhekun ZhouEmail author
Research Paper SPECIAL TOPIC: Cenozoic mammals and plants from Tibetan Plateau and their biogeographical significance

Abstract

This paper describes a plant megafossil assemblage from the Pliocene strata of Xiangzi, Zanda Basin in the western Qinghai-Tibet Plateau. Twenty-one species belonging to 12 genera and 10 families were identified. Studies show that the Pliocene vegetation in Zanda Basin was mostly deciduous shrub composed of Cotoneaster, Spiraea, Caragana, Hippophae, Rhododendron, Potentilla fruticosa, etc. Leaf sizes of these taxa were generally small. Paleoclimate reconstruction using Coexistence Analysis and CLAMP showed that this area had higher temperature and precipitation in the Pliocene than today, and distinct seasonal precipitation variability was established. The reconstructed paleoelevation of Zanda Basin in the Pliocene was similar to modern times. In the context of central Asian aridification, the gradual drought in the area beginning in the late Cenozoic caused vegetation to transition from shrub to desert, and the flora composition also changed.

Keywords

Qinghai-Tibet Plateau Cenozoic Pliocene Plant fossils Paleovegetation Paleoclimate Environmental change 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We are grateful to the colleagues from the Xishuangbanna Tropical Botanical Garden (XTBG), Chinese Academy of Sciences (CAS), Institute of Vertebrate Paleontology and Paleoanthropology, CAS and Kunming Institute of Botany, CAS, for their assistance with fossil collection. Public Technology Service Center, XTBG helped with imaging. This work was supported by the Strategic Priority Research Program of CAS (Grant Nos. XDA2007030102, XDB26000000, XDA20070203), the Second Tibetan Plateau Scientific Expedition and Research (STEP) (Grant No. 2019QZKK0705), the NSFC-NERC (the National Natural Science Foundation of China-Natural Environment Research Council of the United Kingdom) joint research program (Grant Nos. 41661134049, NE/P013805/1), the Youth Innovation Promotion Association, CAS (Grant No. 2017439) and the Key Research Program of Frontier Sciences, CAS (Grant No. QYZDB-SSW-SMC016).

Supplementary material

References

  1. Ai K K, Shi G L, Zhang K X, Ji J L, Song B W, Shen T Y, Guo S X. 2019. The uppermost Oligocene Kailas flora from southern Tibetan Plateau and its implications for the uplift history of the southern Lhasa terrane. Palaeogeogr Palaeoclimatol Palaeoecol, 515: 143–151CrossRefGoogle Scholar
  2. An Z S, Kutzbach J E, Prell W L, Porter S C. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature, 411: 62–66CrossRefGoogle Scholar
  3. An Z S, Zhang P Z, Wang E Q, Wang S M, Qiang X K, Li L, Song Y G, Chang H, Liu X D, Zhou W J. 2006. Changes of the monsoon-arid environment in China and growth of the Tibetan Plateau since the Miocene (in Chinese). Quat Sci, 26: 678–693Google Scholar
  4. Brookfield M E. 2008. Evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision: Rivers draining north from the Pamir syntaxis. Geomorphology, 100: 296–311CrossRefGoogle Scholar
  5. Deng T, Ding L. 2015. Paleoaltimetry reconstructions of the Tibetan Plateau: Progress and contradictions. Natl Sci Rev, 2: 417–437CrossRefGoogle Scholar
  6. Deng T, Li Q, Tseng Z J, Takeuchi G T, Wang Y, Xie G P, Wang S Q, Hou S K, Wang X M. 2012. Locomotive implication of a Pliocene three-toed horse skeleton from Tibet and its paleo-altimetry significance. Proc Natl Acad Sci USA, 109: 7374–7378CrossRefGoogle Scholar
  7. Deng T, Wang X M, Fortelius M, Li Q, Wang Y, Tseng Z J, Takeuchi G T, Saylor J E, Säilä L K, Xie G P. 2011. Out of Tibet: Pliocene woolly rhino suggests high-plateau origin of Ice Age megaherbivores. Science, 333: 1285–1288CrossRefGoogle Scholar
  8. Deng T, Wang X M, Wang S Q, Li Q, Hou S K. 2015. Evolution of the Chinese Neogene mammalian faunas and its relationship to uplift of the Tibetan Plateau (in Chinese). Adv Earth Sci, 30: 407–415Google Scholar
  9. Dodds W K, Gido K, Whiles M R, Daniels M D, Grudzinski B P. 2014. The stream biome gradient concept: Factors controlling lotic systems across broad biogeographic scales. Freshwater Sci, 34: 1–19CrossRefGoogle Scholar
  10. Dupont-Nivet G, Hoorn C, Konert M. 2008. Tibetan uplift prior to the Eocene-Oligocene climate transition: Evidence from pollen analysis of the Xining Basin. Geology, 36: 987–990CrossRefGoogle Scholar
  11. Fang X M, Wu F L, Han W X, Wang Y D, Zhang Y Z, Zhang W L. 2008. Plio-Pleistocene drying process of Asian inland-sporopollen and salinity records from Yahu section in the central Qaidam Basin (in Chinese). Quat Sci, 28: 874–882Google Scholar
  12. Guo S X. 1980. Miocene flora in Zekog County of Qinghai (in Chinese). Act Palaeontol Sin, 19: 406–411, 441Google Scholar
  13. Jacobs B F. 1999. Estimation of rainfall variables from leaf characters in tropical Africa. Palaeogeogr Palaeoclimatol Palaeoecol, 145: 231–250CrossRefGoogle Scholar
  14. Jia L B, Su T, Huang Y J, Wu F X, Deng T, Zhou Z K. 2018. First fossil record of Cedrelospermum (Ulmaceae) from the Qinghai-Tibetan Plateau: Implications for morphological evolution and biogeography. Jnl Sytematics Evol, 57: 94–104CrossRefGoogle Scholar
  15. Kempf O, Blisniuk P M, Wang S F, Fang X M, Wrozyna C, Schwalb A. 2009. Sedimentology, sedimentary petrology, and paleoecology of the monsoon-driven, fluvio-lacustrine Zhada Basin, SW-Tibet. Sediment Geol, 222: 27–41CrossRefGoogle Scholar
  16. Li H M, Guo S X. 1976. The Miocene flora from Namling of Xizang (in Chinese). Act Palaeontol Sin, 15: 598–609Google Scholar
  17. Li J G, Zhou Y. 2001. Pliocene palynoflora from the Zanda Basin west Xizang (Tibet), and the palaeoenvironment (in Chinese). Act Micropalaeontol Sin, 18: 89–96Google Scholar
  18. Li J J, Fang X M. 1999. Uplift of the Tibetan Plateau and environmental changes. Chin Sci Bull, 44: 2117–2124CrossRefGoogle Scholar
  19. Li X C, Xiao L, Lin Z C, He W, Yang Q, Yao Y Z, Ren D, Guo J F, Guo S X. 2016. Fossil fruits of Koelreuteria (Sapindaceae) from the Miocene of northeastern Tibetan Plateau and their palaeoenvironmental, phytogeographic and phylogenetic implications. Rev Palaeobot Palynol, 234: 125–135CrossRefGoogle Scholar
  20. Liu J, Su T, Spicer R A, Tang H, Deng W Y D, Wu F X, Srivastava G, Spicer T, Van Do T, Deng T, Zhou Z K. 2019. Biotic interchange through lowlands of Tibetan Plateau suture zones during Paleogene. Palaeogeogr Palaeoclimatol Palaeoecol, 524: 33–40CrossRefGoogle Scholar
  21. Liu S W, Pan J T, Zhang H Z. 1979. Flora of Ngari, Tibet (in Chinese). In: Qinghai Province Institute of Biology, ed. Beijing: Science Press. 73–78Google Scholar
  22. Meng X G, Zhu D G, Shao Z G, Yang C, Sun L Q, Wang J P, Han T L, Du J J, Han J E, Yu J. 2004. Discovery of rhinoceros fossils in the Pliocene in the Zanda Basin, Ngari, Tibet (in Chinese). Geol Bull Chin, 23: 609–611Google Scholar
  23. Meng X G, Zhu D G, Shao Z G, Yang C B, Han J E, Yu J, Meng Q W. 2005. Discovery of fossil teeth of Pliocene Ochotona in the Zanda Basin, Ngari, Tibet, China (in Chinese). Geol Bull Chin, 24: 1175–1178Google Scholar
  24. Miao Y F, Fang X M, Wu F L, Cai M T, Song C H, Meng Q Q, Xu L. 2013. Late Cenozoic continuous aridification in the western Qaidam Basin: Evidence from sporopollen records. Clim Past, 9: 1863–1877CrossRefGoogle Scholar
  25. Miao Y F, Herrmann M, Wu F L, Yan X L, Yang S L. 2012. What controlled Mid-Late Miocene long-term aridification in Central Asia?—Global cooling or Tibetan Plateau uplift: A review. Earth-Sci Rev, 112: 155–172CrossRefGoogle Scholar
  26. Pan J T, Zhang H Z, Liu S W. 1979. Vegetation of Ngari, Tibet (in Chinese). In: Qinghai Province Institute of Biology, ed. Beijing: Science Press. 73–78Google Scholar
  27. Peppe D J, Royer D L, Cariglino B, Oliver S Y, Newman S, Leight E, Enikolopov G, Fernandez-Burgos M, Herrera F, Adams J M, Correa E, Currano E D, Erickson J M, Hinojosa L F, Hoganson J W, Iglesias A, Jaramillo C A, Johnson K R, Jordan G J, Kraft N J B, Lovelock E C, Lusk C H, Niinemets U, Peñuelas J, Rapson G, Wing S L, Wright I J. 2011. Sensitivity of leaf size and shape to climate: Global patterns and paleoclimatic applications. New Phytol, 190: 724–739CrossRefGoogle Scholar
  28. Qian F. 1999. Study on magnetostratigraphy in Qinghai-Tibetan Plateau in late Cenozoic (in Chinese). J Geomech, 5: 22–34Google Scholar
  29. Raymo M E, Ruddiman W F. 1992. Tectonic forcing of late Cenozoic climate. Nature, 359: 117–122CrossRefGoogle Scholar
  30. Ruddiman W F, Kutzbach J E. 1989. Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American West. J Geophys Res, 94: 18409–18427CrossRefGoogle Scholar
  31. Saylor J, DeCelles P G, Quade J. 2010. Climate-driven environmental change in the Zhada Basin, southwestern Tibetan Plateau. Geosphere, 6: 74–92CrossRefGoogle Scholar
  32. Saylor J, DeCelles P G, Gehrels G. 2007. Origin of the Zhada Basin, SW Tibet: a tectonically dammed paleo-river valley. 2007 GSA Denver Annual Meeting. 39: 437Google Scholar
  33. Saylor J E, Quade J, Dettman D L, DeCelles P G, Kapp P A, Ding L. 2009. The late Miocene through present paleoelevation history of southwestern Tibet. Am J Sci, 309: 1–42CrossRefGoogle Scholar
  34. Spicer R A, Harris N B W, Widdowson M, Herman A B, Guo S X, Valdes P J, Wolfe J A, Kelley S P. 2003. Constant elevation of southern Tibet over the past 15 million years. Nature, 421: 622–624CrossRefGoogle Scholar
  35. Spicer R A, Valdes P J, Spicer T E V, Craggs H J, Srivastava G, Mehrotra R C, Yang J. 2009. New developments in CLAMP: Calibration using global gridded meteorological data. Palaeogeogr Palaeoclimatol Palaeoecol, 283: 91–98CrossRefGoogle Scholar
  36. Su T, Farnsworth A, Spicer R A, Huang J, Wu F X, Liu J, Li S F, Xing Y W, Huang Y J, Deng W Y D, Tang H, Xu C L, Zhao F, Srivastava G, Valdes P J, Deng T, Zhou Z K. 2019. No high Tibetan Plateau until the Neogene. Sci Adv, 5: eaav2189CrossRefGoogle Scholar
  37. Su T, Spicer R A, Li S H, Xu H, Huang J, Sherlock S, Huang Y J, Li S F, Wang L, Jia L B, Deng W Y D, Liu J, Deng C L, Zhang S T, Valdes P J, Zhou Z K. 2018. Uplift, climate and biotic changes at the Eocene-Oligocene transition in south-eastern Tibet. Natl Sci Rev, 6: 495–504CrossRefGoogle Scholar
  38. Sun J M, Liu W G, Liu Z H, Deng T, Windley B F, Fu B H. 2017. Extreme aridification since the beginning of the Pliocene in the Tarim Basin, western China. Palaeogeogr Palaeoclimatol Palaeoecol, 485: 189–200CrossRefGoogle Scholar
  39. Tao J R. 1988. Plant fossils from Liuqu formation in Lhaze County, Xizang and their paleoclimatological significances (in Chinese). Memoirs of the Institute of Geology, Chinese Academy of Sciences, 3: 223–238Google Scholar
  40. Tao J R, Zhou Z K, Liu Y S. 2000. The Evolution of the Late Cretaceous-Cenozoic Floras in China (in Chinese). Beijing: Science Press. 56–57Google Scholar
  41. Wang S F, Zhang W L, Fang X M, Dai S, Kempf O. 2008. Magnetostratigraphy of the Zanda Basin in southwest Tibet Plateau and its tectonic implications. Chin Sci Bull, 53: 1393–1400Google Scholar
  42. Wang X M, Li Q, Xie G P, Saylor J E, Tseng Z J, Takeuchi G T, Deng T, Wang Y, Hou S K, Liu J, Zhang C, Wang N, Wu F. 2013. Mio-Pleistocene Zanda Basin biostratigraphy and geochronology, pre-Ice Age fauna, and mammalian evolution in western Himalaya. Palaeogeogr Palaeoclimatol Palaeoecol, 374: 81–95CrossRefGoogle Scholar
  43. Wang X M, Wang Y, Li Q, Tseng Z J, Takeuchi G T, Deng T, Xie G P, Chang M M, Wang N. 2015. Cenozoic vertebrate evolution and paleoenvironment in Tibetan Plateau: Progress and prospects. Gondwana Res, 27: 1335–1354CrossRefGoogle Scholar
  44. Wang Y, Deng T, Biasatti D. 2006. Ancient diets indicate significant uplift of southern Tibet after ca. 7 Ma. Geology, 34: 309CrossRefGoogle Scholar
  45. Whittaker R H. 1975. Communities and Ecosystems. New York: Mac-Millan Publishing Company, IncGoogle Scholar
  46. Woodward F I, Lomas M R, Kelly C K. 2004. Global climate and the distribution of plant biomes. Philos Trans R Soc Lond B Biol Sci, 359: 1465–1476CrossRefGoogle Scholar
  47. Wu F L, Herrmann M, Fang X M. 2014. Early Pliocene paleo-altimetry of the Zanda Basin indicated by a sporopollen record. Palaeogeogr Palaeoclimatol Palaeoecol, 412: 261–268CrossRefGoogle Scholar
  48. Wu Z Y. 1987. Flora of Tibet (in Chinese). Beijing: Science PressGoogle Scholar
  49. Xu C L, Su T, Huang J, Huang Y J, Li S F, Zhao Y S, Zhou Z K. 2019. Occurrence of Christella (Thelypteridaceae) in Southwest China and its indications of the paleoenvironment of the Qinghai-Tibetan Plateau and adjacent areas. Jnl Sytemat Evol, 57: 169–179CrossRefGoogle Scholar
  50. Xu H, Su T, Zhang S T, Deng M, Zhou Z K. 2016. The first fossil record of ring-cupped oak (Quercus L. subgenus Cyclobalanopsis (Oersted) Schneider) in Tibet and its paleoenvironmental implications. Palaeogeogr Palaeoclimatol Palaeoecol, 442: 61–71CrossRefGoogle Scholar
  51. Xu R. 1973. On the discovery of some plant fossils from the Mt. Jolmo Lungma region, southern Tibet, and its significance (in Chinese). Act Bot Sin, 15: 254–258Google Scholar
  52. Xu R, Tao J R, Sun X J. 1973. On the discovery of a Quercus semicarpifolia bed at Mount Shisha Pangma and its significance in botany and geology (in Chinese). Act Bot Sin, 15: 103–114Google Scholar
  53. Yang J, Spicer R A, Spicer T E V, Li C S. 2011. ‘CLAMP Online’: A new web-based palaeoclimate tool and its application to the terrestrial Paleogene and Neogene of North America. Palaeobio Palaeoenv, 91: 163–183CrossRefGoogle Scholar
  54. Yu J, Luo P, Han J E, Meng Q W, Lu R P, Meng X G, Zhu D G, Shao Z G. 2007. Sporopollen records from the Guge section of the Zanda Basin, Tibet, and paleoenvironmental information reflected by it (in Chinese). Geol Chin, 34: 55–60Google Scholar
  55. Zhang J W, Li B S, Wang J T, Chen W L. 1988. Vegetation of Tibet (in Chinese). Beijing: Science Press. 1–589Google Scholar
  56. Zhang M L, Fritsch P W. 2010. Evolutionary response of Caragana (Fabaceae) to Qinghai-Tibetan Plateau uplift and Asian interior aridification. Plant Syst Evol, 288: 191–199CrossRefGoogle Scholar
  57. Zhang Q S, Wang F B, Ji H X, Huang W B. 1981. Pliocene strata in the Zanda Basin, Tibet (in Chinese). J Stratigr, (3): 62–66Google Scholar
  58. Zhang X S. 1991. Indirect gradient analysis, quantitative classification and environmental interpretation of plant communities in Ngari, Xizang (Tibet) (in Chinese). Act Phytoecol Geobot Sin, 15: 101–113Google Scholar
  59. Zhou Y, Ding L, Deng W M, Zhang J J. 2000. Tectonic cyclothems in the Zanda Basin and its significance (in Chinese). Chin J Geol, (3): 305–315Google Scholar
  60. Zhou Z K, Yang Q S, Xia K. 2007. Fossils of Quercus sect. Heterobalanus can help explain the uplift of the Himalayas (in Chinese). Chin Sci Bull, 52: 238CrossRefGoogle Scholar
  61. Zhu D G, Meng X G, Shao Z G, Yang C B, Sun L Q, Wang J P, Han T L, Han J E, Du J J, Yu J. 2004. Features of Pliocene- Lower Pleistocene sedimentary facies and tectonic evolution in the Zanda Basin, Ngari area, Tibet (in Chinese). J Geomech, 10: 245–252Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jian Huang
    • 1
    • 2
  • Tao Su
    • 1
    • 2
  • Shufeng Li
    • 1
    • 2
  • Feixiang Wu
    • 2
    • 4
    • 5
  • Tao Deng
    • 2
    • 4
    • 5
  • Zhekun Zhou
    • 1
    • 2
    • 3
    Email author
  1. 1.CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesXishuangbannaChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
  4. 4.Institute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
  5. 5.Center for Excellence in Life and PaleoenvironmentChinese Academy of SciencesBeijingChina

Personalised recommendations