Science China Earth Sciences

, Volume 62, Issue 11, pp 1805–1818 | Cite as

Elastic anisotropy and its influencing factors in organic-rich marine shale of southern China

  • Zichun Liu
  • Feng ZhangEmail author
  • Xiangyang Li
Research Paper


Shale is observed to have strong anisotropy due to its unique mineralogy and microstructure, and this anisotropy property has significant impact on seismic and well-log data. The organic-rich marine shale in the southern and eastern Sichuan Basin is one of the most important shale-gas reservoir formations in China. To investigate the elastic anisotropy of this shale and its influencing factors, we performed ultrasonic velocity measurements, X-ray diffraction analysis, rock-eval pyrolysis and vitrinite reflectance measurement on the samples from the Upper Ordovician Wufeng Formation and the Lower Silurian Longmaxi Formation. The experimental results show the that: (1) the velocity anisotropy of the Wufeng-Longmaxi (WL) shale varies from 10% to 50%, and most samples have strong anisotropy; (2) the P- and S-wave anisotropy parameters (Thomsen’s ε and γ) increase with clay contents, but this relationship can be greatly affected by the clay orientation index; (3) organic matter content (OMC) is found to have little influence in seismic anisotropy for the over mature WL shale, whereas the OMC determines the magnitude of anisotropy of immature/mature shales (e.g. the Bakken shale or the Bazhenov shale) according to the published literatures, because organic matters in shales of different maturity have different morphologies and distributions; (4) the OMC of WL shale has positive correlation with quartz content, and this weakens the correlation between OMC and the magnitude of anisotropy to a certain extent. The results of this study provide an important rock-physics basis and data support for seismic anisotropy exploration, quantitative interpretation and resource evaluation of the organic-rich marine shales in southern China.


Seismic rock physics Elastic anisotropy Shale Organic matter Clay mineral 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Science and Technology Major Project (Grant No. 2017ZX05018005), the National Natural Science Foundation of China (Grant Nos. 41474096, 41574108) and the CNPC Science Research and Technology Development Project (Grant No. 2019A-3308).

Supplementary material


  1. Backus G E. 1962. Long-wave elastic anisotropy produced by horizontal layering. J Geophys Res, 67: 4427–4440CrossRefGoogle Scholar
  2. Bai Z Q, Liu S G, Sun W, Ran B, Luo C, Yang D, Wang S Y, Zhang X. 2013. Reservoir characteristics of Wufeng Formation-Longmaxi Formation in southwest of Sichuan Basin, China (in Chinese). J Chengdu Univ Technol, 40: 521–523Google Scholar
  3. Bandyopadhyay K. 2009. Seismic anisotropy-geological causes and its implications to reservoir geophysics. Dissertation for Doctoral Degree. Palo Alto: Stanford UniversityGoogle Scholar
  4. Bi H, Jiang Z X, Li P, Cheng L J, Zeng C L, Xu Y, Zhang Y Y. 2014. Adsorption characteristic and influence factors of Longmaxi shale in southeastern Chongqing (in Chinese). Nat Gas Geosci, 25: 302–310Google Scholar
  5. Carcione J M. 2000. A model for seismic velocity and attenuation in petroleum source rocks. Geophysics, 65: 1080–1092CrossRefGoogle Scholar
  6. Chen H Z, Yin X Y, Gao J H, Liu B Y, Zhang G Z. 2015. Seismic inversion for underground fractures detection based on effective anisotropy and fluid substitution. Sci China Earth Sci, 58: 805–814CrossRefGoogle Scholar
  7. Chen X, Fan J X, Wang W H, Wang H Y, Nie H K, Shi X W, Wen Z D, Chen D Y, Li W J. 2017. Stage-progressive distribution pattern of the Lungmachi black graptolitic shales from Guizhou to Chongqing, Central China. Sci China Earth Sci, 60: 1133–1146CrossRefGoogle Scholar
  8. Chen X, Chen Q, Zhen Y Y, Wang H Y, Zhang L N, Zhang J P, Wang W H, Xiao Z H. 2018. Circumjacent distribution pattern of the Lungmachian graptolitic black shale (early Silurian) on the Yichang Uplift and its peripheral region. Sci China Earth Sci, 61: 1195–1203CrossRefGoogle Scholar
  9. Curtis J B. 2002. Fractured shale-gas systems. AAPG Bull, 86: 1921–1938Google Scholar
  10. Dai J, Zou C, Liao S, Dong D, Ni Y, Huang J, Wu W, Gong D, Huang S, Hu G. 2014. Geochemistry of the extremely high thermal maturity Longmaxi shale gas, southern Sichuan Basin. Org Geochem, 74: 3–12CrossRefGoogle Scholar
  11. Deng J, Shen H, Xu Z, Ma Z, Zhao Q, Li C. 2014. Dynamic elastic properties of the Wufeng-Longmaxi formation shale in the southeast margin of the Sichuan Basin. J Geophys Eng, 11: 035004CrossRefGoogle Scholar
  12. Deng J X, Shi G, Liu R X, Yu J. 2004, Analysis of the velocity anisotropy and its affection factors in shale and mudstone (in Chinese). Chin J Geophys, 47: 862–868CrossRefGoogle Scholar
  13. Deng J X, Wang H, Zhou H, Liu Z H, Song L T, Wang X B. 2015. Microtexture, seismic rock physical properties and modeling of Longmaxi Formation shale (in Chinese). Chin J Geophys, 58: 2123–2136Google Scholar
  14. Dong D Z, Gao G K, Huang J L, Guan Q Z, Wang S F, Wang Y M. 2014. A discussion on the shale gas exploration and development prospect in the Sichuan Basin (in Chinese). Nat Gas Indust, 34: 1–15Google Scholar
  15. Gao Z, Hu Q. 2018. Pore structure and spontaneous imbibition characteristics of marine and continental shales in China. AAPG Bull, 102: 1941–1961CrossRefGoogle Scholar
  16. Guo X S, Li Y P, Liu R B, Wang Q B. 2014. Characteristics and controlling factors of micro-pore structures of Longmaxi Shale Play in the Jiaoshiba area, Sichuan Basin (in Chinese). Nat Gas Indust, 34: 9–16Google Scholar
  17. Gregory A R. 1976. Fluid saturation effects on dynamic elastic properties of sedimentary rocks. Geophysics, 41: 895–921CrossRefGoogle Scholar
  18. Guo Z, Li X Y, Liu C. 2014. Anisotropy parameters estimate and rock physics analysis for the Barnett Shale. J Geophys Eng, 11: 065006CrossRefGoogle Scholar
  19. Guo Z, Liu X. 2018. Seismic rock physics characterization of anisotropic shale—A Longmaxi Shale case study. J Geophys Eng, 15: 512–526CrossRefGoogle Scholar
  20. Hearmon R F S. 1961. An Introduction to Applied Anisotropic Elasticity. London: Oxford University PressCrossRefGoogle Scholar
  21. Heng S, Guo Y T, Yang C H, Daemen J J K, Li Z. 2015. Experimental and theoretical study of the anisotropic properties of shale. Int J Rock Mech Min Sci, 74: 58–68CrossRefGoogle Scholar
  22. Hornby B E, Schwartz L M, Hudson J A. 1994. Anisotropic effective-medium modeling of the elastic properties of shales. Geophysics, 59: 1570–1583CrossRefGoogle Scholar
  23. Jarvie D M, Hill R J, Ruble T E, Pollastro R M. 2007. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull, 91: 475–499CrossRefGoogle Scholar
  24. Jiang Y Q, Dong D Z, Qi L, Shen Y F, Jiang C, He F W. 2010. Basic features and evaluation of shale gas reservoirs (in Chinese). Nat Gas Indust, 30: 7–12Google Scholar
  25. Johnston J E, Christensen N I. 1995. Seismic anisotropy of shales. J Geophys Res, 100: 5991–6003CrossRefGoogle Scholar
  26. Jones L E A, Wang H F. 1981. Ultrasonic velocities in Cretaceous shales from the Williston basin. Geophysics, 46: 288–297CrossRefGoogle Scholar
  27. Kaarsberg E A. 1959. Introductory studies of natural and artificial argillaceous aggregates by sound-propagation and X-ray diffraction methods. J Geol, 67: 447–472CrossRefGoogle Scholar
  28. Lerche I, Yarzab R F, Kendall C G S C. 1984. Determination of paleoheat flux from vitrinite reflectance data. AAPG Bull, 68: 1704–1717Google Scholar
  29. Liang C, Jiang Z, Cao Y, Wu M, Guo L, Zhang C. 2016. Deep-water depositional mechanisms and significance for unconventional hydrocarbon exploration: A case study from the lower Silurian Longmaxi shale in the southeastern Sichuan Basin. AAPG Bull, 100: 773–794CrossRefGoogle Scholar
  30. Liang C, Jiang Z X, Yang J T, Wei X J. 2012. Characteristics of shale lithofacies and reservoir space of the Wufeng-Longmaxi Formation, Sichuan Basin (in Chinese). Petrol Explor Develop, 39: 691–698Google Scholar
  31. Lin C, He J, Li X, Wan X, Zheng B. 2017. An experimental investigation into the effects of the anisotropy of shale on hydraulic fracture propagation. Rock Mech Rock Eng, 50: 543–554CrossRefGoogle Scholar
  32. Liu S G, Ma W X, Luba J, Huang W M, Zeng X L, Zhang C J. 2011. Characteristics of the shale gas reservoir rocks in the Lower Silurian Longmaxi Formation, East Sichuan basin, China (in Chinese). Acta Petrol, 27: 2239–2252Google Scholar
  33. Liu X, Zhang J, Liu Y, Huang H, Liu Z. 2018. Main factors controlling the wettability of gas shales: A case study of over-mature marine shale in the Longmaxi Formation. J Nat Gas Sci Eng, 56: 18–28CrossRefGoogle Scholar
  34. Lucier A M, Hofmann R, Bryndzia LT. 2011. Evaluation of variable gas saturation on acoustic log data from the Haynesville shale gas play, NW Louisiana, USA. Leading Edge, 30: 300–311CrossRefGoogle Scholar
  35. Lonardelli I, Wenk H R, Ren Y. 2007. Preferred orientation and elastic anisotropy in shales. Geophysics, 72: D33–D40CrossRefGoogle Scholar
  36. Loucks R G, Reed R M, Ruppel S C, Daniel M, Jarvie D M. 2009. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale. J Sediment Res, 79: 848–861CrossRefGoogle Scholar
  37. Meng Y L, Xiao L H, Yang J S, Wang J G, Sun Y L. 1999. Influences of weathering on organic matter of outcrop and correcting methods in Xining Basin (in Chinese). Geochimica, 28: 42–50Google Scholar
  38. Pan X P, Zhang G Z, Yin X Y. 2018. Azimuthally pre-stack seismic inversion for orthorhombic anisotropy driven by rock physics. Sci China Earth Sci, 61: 425–440CrossRefGoogle Scholar
  39. Qian K, Zhang F, Chen S, Li X, Zhang H. 2016. A rock physics model for analysis of anisotropic parameters in a shale reservoir in Southwest China. J Geophys Eng, 13: 19–34CrossRefGoogle Scholar
  40. Qin X, Han D H, Zhao L. 2014. Rock physics modeling of organic-rich shales with different maturity levels. In: 84th SEG Annual International Meeting, Extended Abstract. 2952–2957Google Scholar
  41. Sarout J, Guéguen Y. 2008. Anisotropy of elastic wave velocities in deformed shales: Part 1—Experimental results. Geophysics, 73: D75–D89CrossRefGoogle Scholar
  42. Sayers C M. 1994. The elastic anisotrophy of shales. J Geophys Res, 99: 767–774CrossRefGoogle Scholar
  43. Sayers C M. 2013. The effect of kerogen on the elastic anisotropy of organic-rich shales. Geophysics, 78: D65–D74CrossRefGoogle Scholar
  44. Sima L Q, Li Q, Yan J P, Wang M. 2013. Analysis on the differences of rock fabrics in shale gas reservoir and its significance (in Chinese). J Oil Gas Technol, 35: 29–33Google Scholar
  45. Sone H, Zoback M D. 2013. Mechanical properties of shale-gas reservoir rocks—Part 1: Static and dynamic elastic properties and anisotropy. Geophysics, 78: D381–D392CrossRefGoogle Scholar
  46. Thomsen L. 1986. Weak elastic anisotropy. Geophysics, 51: 1954–1966CrossRefGoogle Scholar
  47. Vernik L, Nur A. 1992. Ultrasonic velocity and anisotropy of hydrocarbon source rocks. Geophysics, 57: 727–735CrossRefGoogle Scholar
  48. Vernik L, Landis C. 1996. Elastic anisotropy of source rocks: Implications for hydrocarbon generation and primary migration. AAPG Bull, 80: 531–544Google Scholar
  49. Wang J, Xie L, Xie H, Ren L, He B, Li C, Yang Z, Gao C. 2016. Effect of layer orientation on acoustic emission characteristics of anisotropic shale in Brazilian tests. J Nat Gas Sci Eng, 36: 1120–1129CrossRefGoogle Scholar
  50. Wang Y M, Dong D Z, Yang H, He L, Wang S Q, Huang J L, Pu B L, Wang S F. 2014. Quantitative characterization of reservoir space in the Lower Silurian Longmaxi Shale, southern Sichuan, China. Sci China Earth Sci, 57: 313–322CrossRefGoogle Scholar
  51. Wei W, Shen J H, Miao C, Liu H, Li G, Nie D X. 2012. Influence analysis of weathering and altering for physical and mechanical characteristics of granite-porphyry (in Chinese). J Eng Geol, 20: 599–606Google Scholar
  52. Wenk H R, Lonardelli I, Franz H, Nihei K, Nakagawa S. 2007. Preferred orientation and elastic anisotropy of illite-rich shale. Geophysics, 72: E69–E75CrossRefGoogle Scholar
  53. Wu G C, Zhao X L, Tang J, Du Z Y. 2017. First-order perturbation approximation for rock elastic moduli in transversely isotropic media. Sci China Earth Sci, 60: 1645–1654CrossRefGoogle Scholar
  54. Xu F, Yang C H, Guo Y T, Wang L, Hou Z K, Li H R, Hu X M, Wang T T. 2017. Effect of bedding planes on wave velocity and AE characteristics of the Longmaxi shale in China. Arab J Geosci, 10: 141–151CrossRefGoogle Scholar
  55. Xu H, Zhou W, Zhang R, Liu S, Zhou Q. 2019. Characterizations of pore, mineral and petrographic properties of marine shale using multiple techniques and their implications on gas storage capability for Sichuan Longmaxi gas shale field in China. Fuel, 241: 360–371CrossRefGoogle Scholar
  56. Yan F, Han D. 2013. Measurement of elastic properties ofkerogen. In: 83rd SEG Annual International Meeting, Extended Abstract. 2778–2782Google Scholar
  57. Yang R, Hu Q, He S, Hao F, Guo X, Yi J, Sun M. 2018. Wettability and connectivity of overmature shales in the Fuling gas field, Sichuan Basin (China). AAPG Bull, 103: 653–689CrossRefGoogle Scholar
  58. Yenugu M R. 2014. Elastic, microstructural and geochemical characterization of kerogen maturity for shales. Dissertation for Doctoral Degree. Houston: Houston UniversityGoogle Scholar
  59. Yin X Y, Zong Z Y, Wu G C. 2015. Research on seismic fluid identification driven by rock physics. Sci China Earth Sci, 58: 159–171CrossRefGoogle Scholar
  60. Yue F, Jiao W W, Guo S J. 2015. Controlling factors offracture distribution of shale in Lower Cambrian Niutitang Formation in southeast Chongqing (in Chinese). Coal Geol Explor, 6: 39–44Google Scholar
  61. Zargari S, Prasad M, Mba K C, Mattson E D. 2013. Organic maturity, elastic properties, and textural characteristics of self resourcing reservoirs. Geophysics, 78: D223–D235CrossRefGoogle Scholar
  62. Zargari S, Wilkinson T M, Packard C E, Prasad M. 2016. Effect of thermal maturity on elastic properties of kerogen. Geophysics, 81: M1–M6CrossRefGoogle Scholar
  63. Zhao J H, Jin Z J, Jin Z K, Wen X, Geng Y K, Yan C N. 2016. The genesis of quartz in Wufeng-Longmaxi gas shales, Sichuan Basin (in Chinese). Nat Gas Geosci, 27: 377–386Google Scholar
  64. Zhao L, Qin X, Han D H, Geng J H, Yang Z F, Cao H. 2016. Rock-physics modeling for the elastic properties of organic shale at different maturity stages. Geophysics, 81: D527–D541CrossRefGoogle Scholar
  65. Zhang F. 2017. Estimation of anisotropy parameters for shales based on an improved rock physics model, part 2: Case study. J Geophys Eng, 14: 238–254CrossRefGoogle Scholar
  66. Zhang F. 2019. A modified rock physics model of overmature organic-rich shale: Application to anisotropy parameter prediction from well logs. J Geophys Eng, 16: 92–104CrossRefGoogle Scholar
  67. Zhang F, Li X. 2013. Generalized approximations of reflection coefficients in orthorhombic media. J Geophys Eng, 10: 054004CrossRefGoogle Scholar
  68. Zhang F, Li X Y. 2016. Exact elastic impedance matrices for transversely isotropic medium. Geophysics, 81: C1–C15CrossRefGoogle Scholar
  69. Zhang F, Li X, Qian K. 2017. Estimation ofanisotropy parameters for shale based on an improved rock physics model, part 1: Theory. J Geophys Eng, 14: 143–158CrossRefGoogle Scholar
  70. Zhang J C, Nie H K, Xu B, Jiang S L, Zhang P X, Wang Z Y. 2008. Geological condition of shale gas accumulation in Sichuan Basin (in Chinese). Nat Gas Indust, 28: 151–156Google Scholar
  71. Zheng Y, Liao Y, Wang Y, Xiong Y, Peng P. 2018. Organic geochemical characteristics, mineralogy, petrophysical properties, and shale gas prospects of the Wufeng-Longmaxi shales in Sanquan Town of the Nanchuan District, Chongqing. AAPG Bull, 102: 2239–2265CrossRefGoogle Scholar
  72. Zhubayev A, Houben M E, Smeulders D M J, Barnhoorn A. 2016. Ultrasonic velocity and attenuation anisotropy of shales, Whitby, United Kingdom. Geophysics, 81: D45–D56CrossRefGoogle Scholar
  73. Zou C N, Dong D Z, Wang S J, Li J Z, Li X J, Wang Y M, Li D H, Cheng K P. 2010. Geological characteristics and resource potential of shale gas in China. Pet Explor Dev, 37: 641–653CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of GeophysicsChina University of Petroleum (Beijing)BeijingChina

Personalised recommendations