Ocean contributes to the melting of the Jakobshavn Glacier front

  • Kaijia Wang
  • Xiao ChengEmail author
  • Zhuoqi ChenEmail author
  • Fengming Hui
  • Yan Liu
  • Ying Tian
Research Paper


The Jakobshavn Glacier (JG) in Greenland is one of the most active glaciers in the world. It was close to balance before 1997 but this was followed by a sudden transition to rapid thinning. The reason for the change remains unclear. In this study, The NASA Pre-IceBridge ice thickness data are collected to monitor the melting of JG front. The surface elevation decreased by around 90 m from 1995 to 2002 on the floating front. A distributed energy balance model is developed to estimate the energy balance of JG front in the past 30 years (1986–2016). The results indicate that multi-year average energy fluxes absorbed by the floating front of JG from the ocean were about 500 W m−2 from 1986 to 2016. This is approximately two times of the energy fluxes from atmosphere during the same period. The energy fluxes from the ocean increased from 200 to 600 W m−2 during the period from 1990 to 1998 while energy fluxes from the atmosphere remained stable at about 250 W m−2. These results demonstrate that ocean contributes more to the melting of the JG front, and suggest that bottom surface melting must have a profound influence on marine terminating glacier dynamics.


Jakobshavn Glacier Front thinning Energy balance Greenland glaciers Ocean forcing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Key R&D Program of China (Grant No. 2018YFC1406101) and the Fundamental Research Funds for the Central Universities.


  1. Amundson J M, Fahnestock M, Truffer M, Brown J, Lüthi M P, Motyka R J. 2010. Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland. J Geophys Res, 115: F01005CrossRefGoogle Scholar
  2. Berrisford P, Dee D P, Poli P, Brugge R, Fielding M, Fuentes M, Kallberg P W, Kobayashi S, Uppala S, Simmons A. 2011. The ERA-Interim archive Version 2.0 ERA Report Series. Shinfield Park, Reading: ECMWF. 23Google Scholar
  3. Bougamont M, Bamber J L, Greuell W. 2005. A surface mass balance model for the Greenland Ice Sheet. J Geophys Res, 110: F04018CrossRefGoogle Scholar
  4. Cassotto R, Fahnestock M, Amundson J M, Truffer M, Joughin I. 2015. Seasonal and interannual variations in ice melange and its impact on terminus stability, Jakobshavn Isbræ, Greenland. J Glaciol, 61: 76–88CrossRefGoogle Scholar
  5. Chernos M, Koppes M, Moore R D. 2016. Ablation from calving and surface melt at lake-terminating Bridge Glacier, British Columbia, 1984–2013. Cryosphere, 10: 87–102CrossRefGoogle Scholar
  6. Enderlin E M, Howat I M, Jeong S, Noh M J, van Angelen J H, van den Broeke M R. 2014. An improved mass budget for the Greenland ice sheet. Geophys Res Lett, 41: 866–872CrossRefGoogle Scholar
  7. Fenty I, Willis J, Khazendar A, Dinardo S, Forsberg R, Fukumori I, Holland D, Jakobsson M, Moller D, Morison J, Münchow A, Rignot E, Schodlok M, Thompson A, Tinto K, Rutherford M, Trenholm N. 2016. Oceans melting Greenland: Early results from NASA’s ocean-ice mission in Greenland. Oceanography, 29: 72–83CrossRefGoogle Scholar
  8. Gladish C V, Holland D M, Rosing-Asvid A, Behrens J W, Boje J. 2015. Oceanic boundary conditions for Jakobshavn Glacier. Part I: Variability and renewal of ilulissat icefjord waters, 2001–14. J Phys Oceanogr, 45: 3–32CrossRefGoogle Scholar
  9. Herzfeld U C, McDonald B, Wallin B F, Krabill W, Manizade S, Sonntag J, Mayer H, Yearsley W A, Chen P A, Weltman A. 2014. Elevation changes and dynamic provinces of Jakobshavn Isbræ, Greenland, derived using generalized spatial surface roughness from ICESat GLAS and ATM data. J Glaciol, 60: 834–848CrossRefGoogle Scholar
  10. Holland D M, Holland D. 2016. Air temperature, relative humidity, and others collected from Automatic Weather Station installed on rock outcrop in Jakobshavn Glacier Ice Front from 2007-10-13 to 2016-02-14.Version 1.1 NCEI Accession 0148760: NOAA National Centers for Environmental InformationGoogle Scholar
  11. Holland D M, Jenkins A. 1999. Modeling thermodynamic ice-ocean interactions at the base of an ice shelf. J Phys Oceanogr, 29: 1787–1800CrossRefGoogle Scholar
  12. Holland D M, Thomas R H, De Young B, Ribergaard M H, Lyberth B. 2008. Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nat Geosci, 1: 659–664CrossRefGoogle Scholar
  13. Joughin I, Smith B E, Howat I M, Floricioiu D, Alley R B, Truffer M, Fahnestock M. 2012. Seasonal to decadal scale variations in the surface velocity of Jakobshavn Isbrae, Greenland: Observation and modelbased analysis. J Geophys Res, 117: F02030CrossRefGoogle Scholar
  14. Kehrl L M, Joughin I, Shean D E, Floricioiu D, Krieger L. 2017. Seasonal and interannual variabilities in terminus position, glacier velocity, and surface elevation at Helheim and Kangerlussuaq Glaciers from 2008 to 2016. J Geophys Res-Earth Surf, 122: 1635–1652CrossRefGoogle Scholar
  15. Khan S A, Kjær K H, Bevis M, Bamber J L, Wahr J, Kjeldsen K K, Bjørk A A, Korsgaard N J, Stearns L A, van den Broeke M R, Liu L, Larsen N K, Muresan I S. 2014. Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming. Nat Clim Change, 4: 292–299CrossRefGoogle Scholar
  16. Krabill W, Abdalati W, Frederick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R, Wright W, Yungel J. 2000. Greenland ice sheet: High-elevation balance and peripheral thinning. Science, 289: 428–430CrossRefGoogle Scholar
  17. Krabill W, Hanna E, Huybrechts P, Abdalati W, Cappelen J, Csatho B, Frederick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R, Yungel J. 2004. Greenland ice sheet: Increased coastal thinning. Geophys Res Lett, 31: L24402CrossRefGoogle Scholar
  18. McPhee M G, Morison J H, Nilsen F. 2008. Revisiting heat and salt exchange at the ice-ocean interface: Ocean flux and modeling considerations. J Geophys Res, 113: C06014CrossRefGoogle Scholar
  19. McPhee M G. 1992. Turbulent heat flux in the upper ocean under sea ice. J Geophys Res, 97: 5365–5379CrossRefGoogle Scholar
  20. McPhee M G, Kikuchi T, Morison J H, Stanton T P. 2003. Ocean-to-ice heat flux at the North Pole environmental observatory. Geophys Res Lett, 30: 2274CrossRefGoogle Scholar
  21. McPhee M G, Kottmeier C, Morison J H. 1999. Ocean heat flux in the central Weddell Sea during winter. J Phys Oceanogr, 29: 1166–1179CrossRefGoogle Scholar
  22. McPhee M G, Maykut G A, Morison J H. 1987. Dynamics and thermodynamics of the ice/upper ocean system in the marginal ice zone of the Greenland Sea. J Geophys Res, 92: 7017–7031CrossRefGoogle Scholar
  23. Moon T, Joughin I, Smith B. 2015. Seasonal to multiyear variability of glacier surface velocity, terminus position, and sea ice/ice mélange in northwest Greenland. J Geophys Res-Earth Surf, 120: 818–833CrossRefGoogle Scholar
  24. Moon T, Joughin I, Smith B, Howat I. 2012. 21st-century evolution of Greenland outlet glacier velocities. Science, 336: 576–578CrossRefGoogle Scholar
  25. Morlighem M, Williams C N, Rignot E, An L, Arndt J E, Bamber J L, Catania G, Chauché N, Dowdeswell J A, Dorschel B, Fenty I, Hogan K, Howat I, Hubbard A, Jakobsson M, Jordan T M, Kjeldsen K K, Millan R, Mayer L, Mouginot J, Noël B P Y, O’Cofaigh C, Palmer S, Rysgaard S, Seroussi H, Siegert M J, Slabon P, Straneo F, van den Broeke M R, Weinrebe W, Wood M, Zinglersen K B. 2017. BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophys Res Lett, 44: 11051–11061CrossRefGoogle Scholar
  26. Motyka R J, Truffer M, Fahnestock M, Mortensen J, Rysgaard S, Howat I. 2011. Submarine melting of the 1985 Jakobshavn Isbræ floating tongue and the triggering of the current retreat. J Geophys Res, 116: F01007CrossRefGoogle Scholar
  27. Nick F M, Luckman A, Vieli A, van der Veen C J, van As D, van de Wal R S W, Pattyn F, Hubbard A L, Floricioiu D. 2012. The response of Petermann Glacier, Greenland, to large calving events, and its future stability in the context of atmospheric and oceanic warming. J Glaciol, 58: 229–239CrossRefGoogle Scholar
  28. Nick F M, Vieli A, Howat I M, Joughin I. 2009. Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nat Geosci, 2: 110–114CrossRefGoogle Scholar
  29. Nick F M, Luckman A, Vieli A, Van Der Veen C J. 2017. The response of petermann glacier, greenland, to large calving events, and its future stability in the context of atmospheric and oceanic warming. J Glaciol, 58: 229–239CrossRefGoogle Scholar
  30. Paden J, Li J, Leuschen C, Rodriguez-Morales F, Hale R. 2011. Pre-Ice-Bridge MCoRDS L2 Ice Thickness, Version 1. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: Google Scholar
  31. Podrasky D, Truffer M, Lüthi M, Fahnestock M. 2014. Quantifying velocity response to ocean tides and calving near the terminus of Jakobshavn Isbræ, Greenland. J Glaciol, 60: 609–621CrossRefGoogle Scholar
  32. Rignot E, Koppes M, Velicogna I. 2010. Rapid submarine melting of the calving faces of West Greenland glaciers. Nat Geosci, 3: 187–191CrossRefGoogle Scholar
  33. Rosenau R, Schwalbe E, Maas H G, Baessler M, Dietrich R. 2013. Grounding line migration and high-resolution calving dynamics of Jakobshavn Isbræ, West Greenland. J Geophys Res-Earth Surf, 118: 382–395CrossRefGoogle Scholar
  34. Shannon S R, Payne A J, Bartholomew I D, van den Broeke M R, Edwards T L, Fettweis X, Gagliardini O, Gillet-Chaulet F, Goelzer H, Hoffman M J, Huybrechts P, Mair D W F, Nienow P W, Perego M, Price S F, Smeets C J P P, Sole A J, van de Wal R S W, Zwinger T. 2013. Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise. Proc Natl Acad Sci USA, 110: 14156–14161CrossRefGoogle Scholar
  35. Shepherd A, Ivins E R A G, Barletta V R, Bentley M J, Bettadpur S, Briggs K H, Bromwich D H, Forsberg R, Galin N, Horwath M, Jacobs S, Joughin I, King M A, Lenaerts J T M, Li J, Ligtenberg S R M, Luckman A, Luthcke S B, McMillan M, Meister R, Milne G, Mouginot J, Muir A, Nicolas J P, Paden J, Payne A J, Pritchard H, Rignot E, Rott H, Sørensen L S, Scambos T A, Scheuchl B, Schrama E J O, Smith B, Sundal A V, van Angelen J H, van de Berg W J, van den Broeke M R, Vaughan D G, Velicogna I, Wahr J, Whitehouse P L, Wingham D J, Yi D, Young D, Zwally H J. 2012. A reconciled estimate of ice-sheet mass balance. Science, 338: 1183–1189CrossRefGoogle Scholar
  36. Sole A, Payne T, Bamber J, Nienow P, Krabill W. 2008. Testing hypotheses of the cause of peripheral thinning of the Greenland Ice Sheet: Is land-terminating ice thinning at anomalously high rates? Cryosphere, 2: 205–218CrossRefGoogle Scholar
  37. Straneo F, Curry R G, Sutherland D A, Hamilton G S, Cenedese C, Våge K, Stearns L A. 2011. Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nat Geosci, 4: 322–327CrossRefGoogle Scholar
  38. Thomas R H, Abdalati W, Frederick E, Krabill W B, Manizade S, Steffen K. 2003. Investigation of surface melting and dynamic thinning on Jakobshavn Isbræ, Greenland. J Glaciol, 49: 231–239CrossRefGoogle Scholar
  39. Tiwari M, Nagoji S, Kumar V, Tripathi S, Behera P. 2018. Oxygen isotope-salinity relation in an Arctic fjord (Kongsfjorden): Implications to hydrographic variability. Geosci Front, 9: 1937–1943CrossRefGoogle Scholar
  40. Van Der Veen C J, Plummer J C, Stearns L A. 2011. Controls on the recent speed-up of Jakobshavn Isbræ, West Greenland. J Glaciol, 57: 770–782CrossRefGoogle Scholar
  41. Walsh K M, Howat I M, Ahn Y, Enderlin E M. 2012. Changes in the marine-terminating glaciers of central east Greenland, 2000–2010. Cryosphere, 6: 211–220CrossRefGoogle Scholar
  42. Wettlaufer J S. 1991. Heat flux at the ice-ocean interface. J Geophys Res, 96: 7215–7236CrossRefGoogle Scholar
  43. Yu Y, Rothrock D A. 1996. Thin ice thickness from satellite thermal imagery. J Geophys Res, 101: 25753–25766CrossRefGoogle Scholar
  44. Zika J D, Skliris N, Blaker A T, Marsh R, Nurser A J G, Josey S A. 2018. Improved estimates of water cycle change from ocean salinity: The key role of ocean warming. Environ Res Lett, 13: 074036CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Global Change and Earth System ScienceBeijing Normal UniversityBeijingChina
  2. 2.School of Geospatial Engineering and ScienceSun Yat-Sen University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)ZhuhaiChina
  3. 3.University Corporation for Polar ResearchBeijingChina

Personalised recommendations