Advertisement

Science China Earth Sciences

, Volume 63, Issue 1, pp 132–144 | Cite as

Human exploitation of carnivores in Pleistocene China: A case study of the faunal remains from Shuidonggou Locality 7

  • Shuangquan ZhangEmail author
  • Yue Zhang
  • Shuwen Pei
  • Xing Gao
Research Paper

Abstract

Hominin-animal interactions at Pleistocene archaeological sites have been the main subject of research during human evolution. However, in contrast to that of ungulates, little is known about the evidence of human processing of carnivore species in this time interval of China. In this paper, we present the first case report of an interactive relationship between carnivore species and hunter-gathers in Pleistocene China, based mainly on a detailed taphonomic study of the faunal remains from Shuidonggou Locality 7. It seems highly probable that hominins butchered some individuals of carnivores and roasted bone elements with adhering meat at the site; whereas it’s equally feasible that these animals were exploited by hominins mainly for their pelt or fur. In either way, evidence from the site indicates novel strategies in adaptive behaviors adopted by Late Pleistocene foragers in harsh environments of Northwest China.

Keywords

Shuidonggou locality 7 (SDG7) Upper Palaeolithic Cut marks Burned bones Taphonomy Northwest China 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We are grateful to all the participants in SDG7 fieldwork. We also thank Dr. Mingshi Suo from the Reco System Integration Limited Company (Beijing) for his assistance in taking the micro-photos with Olympus OLS 5500. We also thank two anonymous reviewers for their helpful comments on an earlier draft of the manuscript. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41672023 & 41772025).

References

  1. Andrews P. 1990. Owls, Caves, and Fossils: Predation, Preservation, and Accumulation of Small Mammal Bones in Caves, with An Analysis of the Pleistocene Cave faunas from Westbury-sub-Mendip, Somerset, UK. Chicago: University of Chicago PressGoogle Scholar
  2. Barba R, Domínguez-Rodrigo M. 2005. The taphonomic relevance of the analysis of bovid long limb bone shaft features and their application to element identification: Study of bone thickness and morphology of the medullary cavity. J Taphonomy, 3: 29–42Google Scholar
  3. Barkai R, Rosell J, Blasco R, Gopher A. 2017. Fire for a reason: Barbecue at Middle Pleistocene Qesem Cave, Israel. Curr Anthrop, 58: S314–S328Google Scholar
  4. Behrensmeyer A K. 1978. Taphonomic and ecologic information from bone weathering. Paleobiology, 4: 150–162Google Scholar
  5. Behrensmeyer A K. 1982. Time resolution in fluvial vertebrate assemblages. Paleobiology, 8: 211–227Google Scholar
  6. Behrensmeyer A K, Gordon K D, Yanagi G T. 1986. Trampling as a cause of bone surface damage and pseudo-cutmarks. Nature, 319: 768–771Google Scholar
  7. Bello S M, Soligo C. 2008. A new method for the quantitative analysis of cutmark micromorphology. J Archaeol Sci, 35: 1542–1552Google Scholar
  8. Binford L R. 1978. Nunamiut Ethnoarchaeology. New York: Academic PressGoogle Scholar
  9. Binford L R. 1981. Bones: Ancient Men and Modern Myth. New York: Academic PressGoogle Scholar
  10. Blasco R, Fernáis J. 2012. A uniquely broad spectrum diet during the Middle Pleistocene at Bolomor Cave (Valencia, Spain). Quat Int, 252: 16–31Google Scholar
  11. Blumenschine R J, Marean C W, Capaldo S D. 1996. Blind tests of interanalyst correspondence and accuracy in the identification of cut marks, percussion marks, and carnivore tooth marks on bone surfaces. J Archaeol Sci, 23: 493–507Google Scholar
  12. Blumenschine R J, Selvaggio M M. 1988. Percussion marks on bone surfaces as a new diagnostic of hominid behaviour. Nature, 333: 763–765Google Scholar
  13. Blumenschine R J. 1995. Percussion marks, tooth marks, and experimental determinations of the timing of hominid and carnivore access to long bones at FLK Zinjanthropus, Olduvai Gorge, Tanzania. J Hum Evol, 29: 21–51Google Scholar
  14. Brain C K. 1993. The occurrence of burnt bones at Swartkrans and their implications for the control offire by early hominids. In: Brain C K, ed. Swartkrans: A Cave’s Chronicle of Early Man. Pretoria: Transvaal Museum. 229–242Google Scholar
  15. Buikstra J E, Swegle M. 1989. Bone modification due to burning: Experimental evidence. In: Bonnichsen R, Sorg M H, eds. Bone Modification. Maine: Centre for the Study of the First Americans, Institute for Quaternary Studies, University of Maine. 247–258Google Scholar
  16. Bunn H T. 1981. Archaeological evidence for meat-eating by Plio-Pleistocene hominids from Koobi Fora and Olduvai Gorge. Nature, 291: 574–577Google Scholar
  17. Bunn H T III. 1982. Meat-eating and human evolution: Studies on the diet and subsistence patterns of Plio-Pleistocene hominids in East Africa. Dissertation for Doctoral Degree. California: University of CaliforniaGoogle Scholar
  18. Bunn H T, Kroll E M, Ambrose S H, Behrensmeyer A K, Binford L R, Blumenschine R J, Klein R G, McHenry H M, O’Brien C J, Wymer J J. 1986. Systematic butchery by Plio/Pleistocene hominids at Olduvai Gorge, Tanzania. Curr Anthrop, 27: 431–452Google Scholar
  19. Cain C. 2006. Human activity suggested by the taphonomy of 60 ka and 50 ka faunal remains from Sibudu Cave. South Afr Humanit, 18: 241–260Google Scholar
  20. Charles R. 1997. The exploitation of carnivores and other fur-bearing mammals during the North-western European Late and Upper Paleolithic and Mesolithic. Oxford J Archaeol, 16: 253–277Google Scholar
  21. Cochard D, Brugal J P, Morin E, Meignen L. 2012. Evidence of small fast game exploitation in the Middle Paleolithic of Les Canalettes Aveyron, France. Quat Int, 264: 32–51Google Scholar
  22. Crezzini J, Boschin F, Boscato P, Wierer U. 2014. Wild cats and cut marks: Exploitation of Felis silvestris in the Mesolithic of Galgenbühel/Dos de la Forca (South Tyrol, Italy). Quat Int, 330: 52–60Google Scholar
  23. Domínguez-Rodrigo M. 1997. Meat-eating by early hominids at the FLK 22 Zinjanthropus site, Olduvai Gorge (Tanzania): An experimental approach using cut-mark data. J Hum Evol, 33: 669–690Google Scholar
  24. Domínguez-Rodrigo M. 1999. Flesh availability and bone modifications in carcasses consumed by lions: Palaeoecological relevance in hominid foraging patterns. Palaeogeogr Palaeoclimatol Palaeoecol, 149: 373–388Google Scholar
  25. Domínguez-Rodrigo M. 2008. Conceptual premises in experimental design and their bearing on the use of analogy: An example from experiments on cut marks. World Archaeol, 40: 67–82Google Scholar
  26. Domínguez-Rodrigo M, Barba R. 2007. Five more arguments to invalidate the passive scavenging version of the carnivore-hominid-carnivore model: A reply to Blumenschine et al. (2007a). J Hum Evol, 53: 427–433Google Scholar
  27. Domínguez-Rodrigo M, Barba R. 2005. A study of cut marks on small-sized carcasses and its application to the study of cut-marked bones from small mammals at the FLK Zinj site. J Taphonomy, 3: 121–134Google Scholar
  28. Domínguez-Rodrigo M, Barba R. 2006. New estimates of tooth mark and percussion mark frequencies at the FLK Zinj site: The carnivore-hominid-carnivore hypothesis falsified. J Hum Evol, 50: 170–194Google Scholar
  29. Domínguez-Rodrigo M, Barba R, Egeland C P. 2007. Deconstructing Olduvai: A Taphonomic Study of the Bed I Sites. New York: SpringerGoogle Scholar
  30. Domínguez-Rodrigo M, de Juana S, Galán A B, Rodríguez M. 2009. A new protocol to differentiate trampling marks from butchery cut marks. J Archaeol Sci, 36: 2643–2654Google Scholar
  31. Domínguez-Rodrigo M, Pickering T R, Bunn H T. 2010. Configurational approach to identifying the earliest hominin butchers. Proc Natl Acad Sci USA, 107: 20929–20934Google Scholar
  32. Domínguez-Rodrigo M, Pickering T R, Bunn H T. 2012. Experimental study of cut marks made with rocks unmodified by human flaking and its bearing on claims of ~3.4-million-year-old butchery evidence from Dikika, Ethiopia. J Archaeol Sci, 39: 205–214Google Scholar
  33. Domínguez-Rodrigo M, Saladié P, Cáceres I, Huguet R, Yravedra J, Rodríguez-Hidalgo A, Martín P, Pineda A, Marín J, Gené C, Aramendi J, Cobo-Sánchez L. 2017. Use and abuse of cut mark analyses: The Rorschach effect. J Archaeol Sci, 86: 14–23Google Scholar
  34. Dong W, Fu R Y, Huang W W. 2010. Age and paleoenvironment of Xiaogushan fauna at Haicheng, Liaoning Province. Chin Sci Bull, 55: 2704–2708Google Scholar
  35. Eickhoff S, Herrmann B. 1985. Surface marks on bones from a neolithic collective grave (odagsen, lower saxony). A Study on differential diagnosis. J Hum Evol, 14: 263–274Google Scholar
  36. Fairnell E H. 2008. 101 ways to skin a fur-bearing animal: The implications for zooarchaeological interpretation. In: Cunningham P, Heeb J, Paardekooper R, eds. Experiencing Archaeology by Experiment. Oxford: OxbowGoogle Scholar
  37. Faith J T. 2008. Eland, buffalo, and wild pigs: Were Middle Stone Age humans ineffective hunters? J Hum Evol, 55: 24–36Google Scholar
  38. Fernandez P, Legendre S. 2003. Mortality curves for horses from the Middle Palaeolithic site of Bau de l’Aubesier (Vaucluse, France): Methodological, palaeo-ethnological, and palaeo-ecological approaches. J Archaeol Sci, 30: 1577–1598Google Scholar
  39. Fernández-Jalvo Y, Andrews P. 2003. Experimental effects of water abrasion on bone fragments. J Taphonomy, 1: 147–163Google Scholar
  40. Fernández-Jalvo Y, Andrews P. 2016. Atlas of Taphonomic Identifications: 1001+ Images of Fossil and Recent Mammal Bone Modification. Netherlands: SpringerGoogle Scholar
  41. Fernández-Jalvo Y, Avery D M. 2015. Pleistocene micromammals and their predators at Wonderwerk Cave, South Africa. Afr Archaeol Rev, 32: 751–]791Google Scholar
  42. Fernández-Jalvo Y, Tormo L, Andrews P, Marin-Monfort M D. 2018. Taphonomy of burnt bones from Wonderwerk Cave (South Africa). Quat Int, 495: 19–29Google Scholar
  43. Fisher Jr J W. 1995. Bone surface modifications in zooarchaeology. J Archaeol Method Theor, 2: 7–68Google Scholar
  44. Gabucio M J, Cáceres I, Rodríguez-Hidalgo A, Rosell J, Saladié P. 2014. A wildcat (Felis silvestris) butchered by Neanderthals in Level O of the Abric Romani site (Capellades, Barcelona, Spain). Quat Int, 326–327: 307–318Google Scholar
  45. Gao X, Wang H, Pei S, Chen F. 2013. Shuidonggou—Excavation and Research (2003–2007) Report. Beijing: Science PressGoogle Scholar
  46. Gaudzinski-Windheuser S, Kindler L, Rabinovich R, Goren-Inbar N. 2010. Testing heterogeneity in faunal assemblages from archaeological sites. Tumbling and trampling experiments at the early-Middle Pleistocene site of Gesher Benot Ya’aqov (Israel). J Archaeol Sci, 37: 3170–3190Google Scholar
  47. Gifford-Gonzalez D P. 1989. Ethnographic analogues for interpreting modified bones: Some cases from East African. In: Bonnichsen R, Sorg M H, eds. Bone Modification. Orono: University of Maine Center for the Study of the First Americans. 179–246Google Scholar
  48. Gifford-Gonzalez D. 2018. An Introduction to Zooarchaeology. Switzerland: SpringerGoogle Scholar
  49. Gilligan I. 2019. Climate, Clothing, and Agriculture in Prehistory: Linking Evidence, Causes, and Effects. Cambridge: Cambridge University PressGoogle Scholar
  50. Haynes G. 1983. A guide for differentiating mammalian carnivore taxa responsible for gnaw damage to herbivore limb bones. Paleobiology, 9: 164–172Google Scholar
  51. de Heinzelin J, Clark J D, White T, Hart W, Renne P, WoldeGabriel G, Beyene Y, Vrba E. 1999. Environment and behavior of 2.5-million-year-old Bouri Hominids. Science, 284: 625–629Google Scholar
  52. Hoffecker J F, Holliday V T, Stepanchuk V N, Lisitsyn S N. 2018. The hunting of horse and the problem of the Aurignacian on the central plain of Eastern Europe. Quat Int, 492: 53–63Google Scholar
  53. Johnson E. 2007. Along the ice margin—The cultural taphonomy of Late Pleistocene mammoth in southeastern Wisconsin (USA). Quat Int, 169–170: 64–83Google Scholar
  54. Karkanas P, Shahack-Gross R, Ayalon A, Bar-Matthews M, Barkai R, Frumkin A, Gopher A, Stiner M C. 2007. Evidence for habitual use of fire at the end of the Lower Paleolithic: Site-formation processes at Qesem Cave, Israel. J Hum Evol, 53: 197–212Google Scholar
  55. Klein R G. 1978. Stone age predation on large African bovids. J Archaeol Sci, 5: 195–217Google Scholar
  56. Krasinski K E. 2018. Multivariate evaluation of criteria for differentiating cut marks created from steel and lithic implements. Quat Int, 466: 145–156Google Scholar
  57. Li F, Gao X, Chen F, Pei S, Zhang Y, Zhang X, Liu D, Zhang S, Guan Y, Wang H, Kuhn S L. 2015. The development of Upper Palaeolithic China: New results from the Shuidonggou site. Antiquity, 87: 368–383Google Scholar
  58. Li J, Bunn H T, Zhang S, Xing G. 2017. Equid prey acquisition and Archaic Homo adaptability at the early Late Pleistocene site of Xujiayao, China. Int J Osteoarchaeol, 28Google Scholar
  59. Lupo K D, O’Connell J F. 2002. Cut and tooth mark distributions on large animal bones: Ethnoarchaeological data from the Hadza and their implications for current ideas about early human carnivory. J Archaeol Sci, 29: 85–109Google Scholar
  60. Lupo K D. 2006. What explains the carcass field processing and transport decisions of contemporary hunter-gatherers? Measures of economic anatomy and zooarchaeological skeletal part representation. J Archaeol Method Theor, 13: 19–66Google Scholar
  61. Lyman R L. 1994. Vertebrate Taphonomy. Cambridge: Cambridge University PressGoogle Scholar
  62. Madsen D B, Chen F H, Gao X. 2011. Late Quaternary Climate Change and Human Adaptation in Arid China. Amsterdam: ElsevierGoogle Scholar
  63. Marean C W, Abe Y, Frey C J, Randall R C. 2000. Zooarchaeological and taphonomic analysis of the Die Kelders Cave 1 Layers 10 and 11 Middle Stone Age larger mammal fauna. J Hum Evol, 38: 197–233Google Scholar
  64. McPherron S P, Alemseged Z, Marean C W, Wynn J G, Reed D, Geraads D, Bobe R, Béarat H A. 2010. Evidence for stone-tool-assisted consumption of animal tissues before 3.39 million years ago at Dikika, Ethiopia. Nature, 466: 857–860Google Scholar
  65. Morin E. 2010. Taphonomic implications of the use of bone as fuel. Paletnologie, 2: 209–217Google Scholar
  66. Munro N D. 2004. Zooarchaeological measures of hunting pressure and occupation intensity in the Natufian: Implications for agricultural origins. Curr Anthrop, 45: S5–S34Google Scholar
  67. Munro N D. 2009. Epipaleolithic subsistence intensification in the Southern Levant: The faunal evidence. In: Hublin J J, Richards M P, eds. The Evolution of Hominin Diets: Integrating Approaches to the Study of Palaeolithic Subsistence. Berlin: Springer Science & Business Media. 141–155Google Scholar
  68. Nicholson R A. 1993. A morphological investigation of burnt animal bone and an evaluation of its utility in archaeology. J Archaeol Sci, 20: 411–428Google Scholar
  69. Niu D, Pei S, Zhang S, Zhou Z, Wang H, Gao X. 2016. The Initial Upper Palaeolithic in Northwest China: New evidence of cultural variability and change from Shuidonggou locality 7. Quat Int, 400: 111–119Google Scholar
  70. Njau J K, Blumenschine R J. 2006. A diagnosis of crocodile feeding traces on larger mammal bone, with fossil examples from the Plio-Pleistocene Olduvai Basin, Tanzania. J Hum Evol, 50: 142–162Google Scholar
  71. Norton C J, Gao X. 2008. Hominin-carnivore interactions during the Chinese Early Paleolithic: Taphonomic perspectives from Xujiayao. J Hum Evol, 55: 164–178Google Scholar
  72. Olsen S L, Shipman P. 1988. Surface modification on bone: Trampling versus butchery. J Archaeol Sci, 15: 535–553Google Scholar
  73. Olympus. 2019. Industrial Microscopes OLS5000-Get reliable data quickly. https://www.olympus-ims.com.cn/en/metrology/ols5000/#!cms[tab]=%2Fmetrology%2Fols5000%2Fspecifications. Accessed on 2019-03-10
  74. Overton N J. 2016. More than skin deep: Reconsidering isolated remains of ‘fur-bearing species’ in the British and European Mesolithic. Camb Archaeol J, 26: 561–578Google Scholar
  75. Patou-Mathis M. 1997. Les grands mammifères de la couche 5 de Mutzig I (Bas-Rhin). Anthropozoologica, 25: 363–374Google Scholar
  76. Pei S W, Gao X, Wang H M, Kuman K, Bae C J, Chen F Y, Guan Y, Zhang Y, Zhang X L, Peng F, Li X L. 2012. The Shuidonggou site complex: New excavations and implications for the earliest Late Paleolithic in North China. J Archaeol Sci, 39: 3610–3626Google Scholar
  77. Pei S W, Niu D W, Guan Y, Nian X M, Kuman K, Bae C J, Gao X. 2014. The earliest Late Paleolithic in North China: Site formation processes at Shuidonggou Locality 7. Quat Int, 347: 122–132Google Scholar
  78. Pei W C. 1940. The upper cave fauna of Choukoutien. Palaeontol Sin New Ser C, 10: 1–84Google Scholar
  79. Pérez J V M, Serra A S, Margalef C R, Ripoll M P, Tortosa J E A, Bonilla V V. 2012. Evidences of interaction Homo-Cuon in three Upper Pleistocene sites of the Iberian Mediterranean central region. J Taphonomy, 10: 463–505Google Scholar
  80. Pickering T R, Domínguez-Rodrigo M, Egeland C P, Brain C K. 2010. The contribution of limb bone fracture patterns to reconstructing early hominid behaviour at Swartkrans Cave (South Africa): Archaeological application of a new analytical method. Int J Osteoarchaeol, 15: 247–260Google Scholar
  81. Pineda A, Cáceres I, Saladié P, Huguet R, Morales J I, Rosas A, Vallverdú J. 2019. Tumbling effects on bone surface modifications (BSM): An experimental application on archaeological deposits from the Barranc de la Boella site (Tarragona, Spain). J Archaeol Sci, 102: 35–47Google Scholar
  82. Pineda A, Saladié P, Vergès J M, Huguet R, Cáceres I, Vallverdú J. 2014. Trampling versus cut marks on chemically altered surfaces: An experimental approach and archaeological application at the Barranc de la Boella site (la Canonja, Tarragona, Spain). J Archaeol Sci, 50: 84–93Google Scholar
  83. Potts R, Shipman P. 1981. Cutmarks made by stone tools on bones from Olduvai Gorge, Tanzania. Nature, 291: 577–580Google Scholar
  84. Qu T L, Gu W F, Wang S Z, Chen Y C, Wang Y P. 2018. Subsistence in the Middle Upper Pleistocene of Zhengzhou area: Analysis of archaeofauna from the Laonainaimiao site (in Chinese). Acta Anthropol Sin, 37: 70–78Google Scholar
  85. Ripoll M P, Pérez J V M. 2008. Estudio tafonómico de un conjunto actual de huesos de Vulpes vulpes y su aplicacación en la Zooarqueología. In: Carlos D J, ed. Zooarqueología Hoy: Encuentos Hispano-argentinos. Burgos: Servicio de Publicaciones. 179–189Google Scholar
  86. Ripoll M P, Morales Pérez J V, Sanchis Serra A, Aura Tortosa J E, Montañana I S. 2010. Presence of the genus Cuon in upper Pleistocene and initial Holocene sites of the Iberian Peninsula: New remains identified in archaeological contexts of the Mediterranean region. J Archaeol Sci, 37: 437–450Google Scholar
  87. Robb J, Elster E S, Isetti E, Knüsel C J, Tafuri M A, Traverso A. 2015. Cleaning the dead: Neolithic ritual processing of human bone at Scaloria Cave, Italy. Antiquity, 89: 39–54Google Scholar
  88. Rosell J, Blasco R. 2019. The early use of fire among Neanderthals from a zooarchaeological perspective. Quat Sci Rev, 217: 268–283Google Scholar
  89. Sahle Y, El Zaatari S, White T D. 2017. Hominid butchers and biting crocodiles in the African Plio-Pleistocene. Proc Natl Acad Sci USA, 114: 13164–13169Google Scholar
  90. Sahnouni M, Parés J M, Duval M, Cáceres I, Harichane Z, van der Made J, Pérez-González A, Abdessadok S, Kandi N, Derradji A, Medig M, Boulaghraif K, Semaw S. 2018. 1.9-million- and 2.4-million-year-old artifacts and stone tool-cutmarked bones from Ain Boucherit, Algeria. Science, 362: 1297–1301Google Scholar
  91. Schiegl S, Goldberg P, Pfretzschner H U, Conard N J. 2003. Paleolithic burnt bone horizons from the Swabian Jura: Distinguishing between in situ fireplaces and dumping areas. Geoarchaeology, 18: 541–565Google Scholar
  92. Shahack-Gross R, Bar-Yosef O, Weiner S. 1997. Black-coloured bones in Hayonim Cave, Israel: Differentiating between burning and oxide staining. J Archaeol Sci, 24: 439–446Google Scholar
  93. Shipman P, Foster G, Schoeninger M. 1984. Burnt bones and teeth: An experimental study of color, morphology, crystal structure and shrinkage. J Archaeol Sci, 11: 307–325Google Scholar
  94. Shipman P, Rose J. 1983. Early hominid hunting, butchering, and carcass-processing behaviors: Approaches to the fossil record. J Anthropol Archaeol, 2: 57–98Google Scholar
  95. Soulier M C, Costamagno S. 2017. Let the cutmarks speak! Experimental butchery to reconstruct carcass processing. J Archaeol Sci-Rep, 11: 782–802Google Scholar
  96. Speth J, Clark J. 2006. Hunting and overhunting in the Levantine late Middle Palaeolithic. Before Farming, 5: 1–42Google Scholar
  97. Steele T E. 2002. Red deer: Their ecology and how they were hunted by late pleistocene hominids in Western Europe. Dissertation for Doctoral Degree. Stanford: Stanford UniversityGoogle Scholar
  98. Stiner M C, Gopher A, Barkai R. 2011. Hearth-side socioeconomics, hunting and paleoecology during the late Lower Paleolithic at Qesem Cave, Israel. J Hum Evol, 60: 213–233Google Scholar
  99. Stiner M C, Kuhn S L, Weiner S, Bar-Yosef O. 1995. Differential burning, recrystallization, and fragmentation of archaeological bone. J Archaeol Sci, 22: 223–237Google Scholar
  100. Stiner, Munro, Surovell, Tchernov, Bar-Yosef. 1999. Paleolithic population growth pulses evidenced by small animal exploitation. Science, 283: 190–194Google Scholar
  101. Stiner M C, Munro N D, Surovell T A. 2000. The tortoise and the hare: Small-game use, the broad-spectrum revolution, and Paleolithic demography. Curr Anthrop, 41: 39–79Google Scholar
  102. Stiner M C. 1993. Small animal exploitation and its relation to hunting, scavenging, and gathering in the Italian Mousterian. Arch Papers Am Ant Assoc, 4: 107–125Google Scholar
  103. Stiner M C. 1994. Honor Among Thieves: A Zooarchaeological Study of Neandertal Ecology. Princeton: Princeton University PressGoogle Scholar
  104. Stiner M C. 2001. Thirty years on the “Broad Spectrum Revolution” and Paleolithic demography. Proc Natl Acad Sci USA, 98: 6993–6996Google Scholar
  105. Valensi P, Psathi E. 2004. Faunal exploitation during the Middle Palaeolithic in south-eastern France and north-western Italy. Int J Osteoarchaeol, 14: 256–272Google Scholar
  106. Villa P, Mahieu E. 1991. Breakage patterns of human long bones. J Hum Evol, 21: 27–48Google Scholar
  107. Voorhies M R. 1969. Taphonomy and population dynamics of an early Pliocene vertebrate fauna, Knox County, Nebraska. Contributions Geol (Spec Paper), 1: 1–69Google Scholar
  108. Voormolen B. 2008. Ancient hunters, modern butchers: Schningen 13II-4, a kill-butchery site dating from the northwest European Lower Palaeolithic. J Taphonomy, 6: 71–247Google Scholar
  109. Walker P L, Long J C. 1977. An experimental study of the morphological characteristics of tool marks. Am Antiq, 42: 605–616Google Scholar
  110. Wang X M, Guan Y, Cai H Y, Costamagno S, Zhang L M, Xu C H, Gao X. 2016. Diet breadth and mortality patterns from Laoya Cave: A primary profile of MIS 3/2 hunting strategies in the Yunnan-Guizhou Plateau, southwest China. Sci China Earth Sci, 59: 1642–1651Google Scholar
  111. Yeshurun R, Bar-Oz G, Weinstein-Evron M. 2009. The role of foxes in the Natufian economy: A view from Mount Carmel, Israel. Before Farming, 8: 1–15Google Scholar
  112. Yravedra J, Diez-Martín F, Egeland C P, Maté-González M A, Palomeque-González J F, Arriaza M C, Aramendi J, García V E, Estaca-Gómez V, Sánchez P, Fraile C, Duque J, Rodríguez S d F, González-Aguilera D, Uribelarrea D, Mabulla A, Baquedano E, Domınguez-Rodrigo M. 2017. FLK West (Lower Bed II, Olduvai Gorge, Tanzania): A new early Acheulean site with evidence for human exploitation of fauna. Boreas, 46: 816–830Google Scholar
  113. Zhang S Q, Pei S, Zhang Y, Wang H M, Gao X. 2014. A preliminary study of the faunal remains from the Shuidonggou Locality 7 (in Chinese). Acta Anthropol Sin, 33: 343–354Google Scholar
  114. Zhang S Q, Peng F, Zhang Y, Guo J L, Wang H M, Huang C, Dai J W, Zhang Y Z, Gao X. 2019b. Taphonomic observation of the faunal remains from Locality 10 of the Gezishan site, Ningxia, China (in Chinese). Acta Anthropol Sin, 38: 207–220Google Scholar
  115. Zhang S Q, Li Z Y, Zhang Y, Gao X. 2012. Skeletal element distributions of the large herbivores from the Lingjing site, Henan Province, China. Sci China Earth Sci, 55: 246–253Google Scholar
  116. Zhang S Q, Song Y H, Zhang Y, Xu L, Li L, Shi J M. 2019a. A zooarchaeological analysis of the burned bone from the Shizitan site, Shanxi, China (in Chinese). Acta Anthropol Sin, 38: 1–13Google Scholar
  117. Zhang Y, Stiner M C, Dennell R, Wang C, Zhang S, Gao X. 2010. Zooarchaeological perspectives on the Chinese Early and Late Paleolithic from the Ma’anshan site (Guizhou, South China). J Archaeol Sci, 37: 2066–2077Google Scholar
  118. Zhang Z H, Fu R Y, Chen B F, Liu J Y, Zhu M Y, Wu H K, Huang W W. 1985. A preliminary report on the excavation of Paleolithic site at Xiaogushan of Haicheng, Liaoning Province (in Chinese). Acta Anthropol Sin, 4: 78–92Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shuangquan Zhang
    • 1
    • 2
    • 3
    Email author
  • Yue Zhang
    • 1
    • 2
  • Shuwen Pei
    • 1
    • 2
  • Xing Gao
    • 1
    • 2
    • 3
  1. 1.Key Laboratory for Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
  2. 2.CAS Center for Excellence in Life and PaleoenvironmentBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations