Advertisement

Science China Earth Sciences

, Volume 63, Issue 1, pp 78–92 | Cite as

Theoretical and numerical studies of chorus waves: A review

  • Xin TaoEmail author
  • Fulvio Zonca
  • Liu Chen
  • Yifan Wu
Review
  • 63 Downloads

Abstract

Theoretical and numerical models of chorus waves are reviewed in this paper. Specifically, we focus on the nonlinear wave particle interactions and the current understanding of the frequency chirping of rising tone chorus waves. Various other related topics, such as the optimal excitation condition of chorus, the formation of subpackets, and the non-adiabaticity of the nonlinear interaction are also discussed. We end this review paper with a short list of questions of chorus waves that are still under research and debate.

Keywords

Chorus waves Frequency chirping Triggered emissions 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41631071, 41674174, and 41474142), and the Fundamental Research Funds for the Central Universities.

References

  1. Albert J M. 1993. Cyclotron resonance in an inhomogeneous magnetic field. Phys Fluids B-Plasma Phys, 5: 2744–2750Google Scholar
  2. Albert J M, Tao X, Bortnik J. 2012. Aspects of nonlinear wave-particle interactions. In: Summers D, Mann I R, Baker D N, Schulz M, eds. AGU Chapman Dynamics of the Earth’s Radiation Belts and Inner Magnetosphere. Geophys Monogr Ser, 199: 255–264, doi:  https://doi.org/10.1029/2012GM001324 Google Scholar
  3. Al’Tshul’ L M, Karpman V I. 1966. Theory of nonlinear oscillations in a collisionless plasma. J Exptl Theoret Phys, 22: 361–369Google Scholar
  4. Angelopoulos V. 2008. The THEMIS mission. Space Sci Rev, 141: 5–34Google Scholar
  5. Bortnik J, Thorne R M. 2007. The dual role of ELF/VLF chorus waves in the acceleration and precipitation of radiation belt electrons. J Atmos Sol-Terrestrial Phys, 69: 378–386Google Scholar
  6. Bortnik J, Thorne R M, Meredith N P. 2008a. The unexpected origin of plasmaspheric hiss from discrete chorus emissions. Nature, 452: 62–66Google Scholar
  7. Bortnik J, Thorne R M, Inan U S. 2008b. Nonlinear interaction of energetic electrons with large amplitude chorus. Geophys Res Lett, 35: L21102Google Scholar
  8. Bortnik J, Li W, Thorne R M, Angelopoulos V, Cully C, Bonnell J, Le Contel O, Roux A. 2009. An observation linking the origin of plasmaspheric hiss to discrete chorus emissions. Science, 324: 775–778Google Scholar
  9. Burtis W J, Helliwell R A. 1976. Magnetospheric chorus: Occurrence patterns and normalized frequency. Planet Space Sci, 24: 1007–1024Google Scholar
  10. Chen L. 1974. Theory of ULF modulation of VLF emissions. Geophys Res Lett, 1: 73–75Google Scholar
  11. Chen L, Zonca F. 2016. Physics of Alfvén waves and energetic particles in burning plasmas. Rev Mod Phys, 88: 015008Google Scholar
  12. Chen Y, Reeves G D, Friedel R H W. 2007. The energization of relativistic electrons in the outer Van Allen radiation belt. Nat Phys, 3: 614–617Google Scholar
  13. Coroniti F V, Kennel C F. 1970. Electron precipitation pulsations. J Geophys Res, 75: 1279–1289Google Scholar
  14. Cully C M, Angelopoulos V, Auster U, Bonnell J, Le Contel O. 2011. Observational evidence of the generation mechanism for rising-tone chorus. Geophys Res Lett, 38: L01106Google Scholar
  15. Demekhov A G, Taubenschuss U, Santolík O. 2017. Simulation of VLF chorus emissions in the magnetosphere and comparison with THEMIS spacecraft data. J Geophys Res Space Phys, 122: 166–184Google Scholar
  16. Dysthe K B. 1971. Some studies of triggered whistler emissions. J Geophys Res, 76: 6915–6931Google Scholar
  17. Gurnett D A, Kurth W S, Scarf F L. 1981. Plasma waves near saturn: Initial results from Voyager 1. Science, 212: 235–239Google Scholar
  18. Helliwell R A. 1967. A theory of discrete VLF emissions from the magnetosphere. J Geophys Res, 72: 4773–4790Google Scholar
  19. Helliwell R A. 1983. Controlled stimulation of VLF emissions from Siple Station, Antarctica. Radio Sci, 18: 801–814Google Scholar
  20. Hikishima M, Yagitani S, Omura Y, Nagano I. 2009. Full particle simulation of whistler-mode rising chorus emissions in the magnetosphere. J Geophys Res, 114: A01203Google Scholar
  21. Horne R B, Thorne R M. 1998. Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms. Geophys Res Lett, 25: 3011–3014Google Scholar
  22. Horne R B, Thorne R M, Shprits Y Y, Meredith N P, Glauert S A, Smith A J, Kanekal S G, Baker D N, Engebretson M J, Posch J L, Spasojevic M, Inan U S, Pickett J S, Decreau P M E. 2005. Wave acceleration of electrons in the Van Allen radiation belts. Nature, 437: 227–230Google Scholar
  23. Hospodarsky G B, Averkamp T F, Kurth W S, Gurnett D A, Menietti J D, Santolik O, Dougherty M K. 2008. Observations of chorus at Saturn using the Cassini Radio and Plasma Wave Science instrument. J Geophys Res, 113: A12206Google Scholar
  24. Hu G, Krommes J A. 1994. Generalized weighting scheme for δf particle-simulation method. Phys Plasmas, 1: 863–874Google Scholar
  25. Inan U S, Bell T F, Helliwell R A. 1978. Nonlinear pitch angle scattering of energetic electrons by coherent VLF waves in the magnetosphere. J Geophys Res, 83: 3235–3253Google Scholar
  26. Katoh Y, Omura Y. 2007. Computer simulation of chorus wave generation in the Earth’s inner magnetosphere. Geophys Res Lett, 34: L03102Google Scholar
  27. Katoh Y, Omura Y. 2011. Amplitude dependence of frequency sweep rates of whistler mode chorus emissions. J Geophys Res, 116: A07201Google Scholar
  28. Katoh Y, Omura Y. 2013. Effect of the background magnetic field inhomogeneity on generation processes of whistler-mode chorus and broadband hiss-like emissions. J Geophys Res-Space Phys, 118: 4189–4198Google Scholar
  29. Ke Y, Gao X, Lu Q, Wang X, Wang S. 2017. Generation of rising-tone chorus in a two-dimensional mirror field by using the general curvilinear PIC code. J Geophys Res-Space Phys, 122: 8154–8165Google Scholar
  30. Kennel C F, Petschek H E. 1966. Limit on stably trapped particle fluxes. J Geophys Res, 71: 1–28Google Scholar
  31. Kurita S, Katoh Y, Omura Y, Angelopoulos V, Cully C M, Le Contel O, Misawa H. 2012. THEMIS observation of chorus elements without a gap at half the gyrofrequency. J Geophys Res, 117: A11223Google Scholar
  32. Lampe M, Joyce G, Manheimer W M, Ganguli G. 2010. Nonlinear whistler instability driven by a beamlike distribution of resonant electrons. Phys Plasmas, 17: 022902Google Scholar
  33. Li W, Thorne R M, Bortnik J, Nishimura Y, Angelopoulos V. 2011. Modulation of whistler mode chorus waves: 1. Role of compressional Pc4–5 pulsations. J Geophys Res, 116: A06205Google Scholar
  34. Li W, Bortnik J, Thorne R M, Cully C M, Chen L, Angelopoulos V, Nishimura Y, Tao J B, Bonnell J W, Le Contel O. 2013. Characteristics of the Poynting flux and wave normal vectors of whistler-mode waves observed on THEMIS. J Geophys Res Space Phys, 118: 1461–1471Google Scholar
  35. Liu K, Gary S P, Winske D. 2011. Excitation of banded whistler waves in the magnetosphere. Geophys Res Lett, 38: L14108Google Scholar
  36. Lyons L R, Thorne R M. 1973. Equilibrium structure of radiation belt electrons. J Geophys Res, 78: 2142–2149Google Scholar
  37. Macúšová E, Santolík O, Décréau P, Demekhov A G, Nunn D, Gurnett D A, Pickett J S, Titova E E, Kozelov B V, Rauch J L, Trotignon J G. 2010. Observations of the relationship between frequency sweep rates of chorus wave packets and plasma density. J Geophys Res, 115: A12257Google Scholar
  38. Maeda K, Smith P H, Anderson R R. 1976. v.l.f. emission from ring-current electrons. Nature, 263: 37–41Google Scholar
  39. Menietti J D, Shprits Y Y, Horne R B, Woodfield E E, Hospodarsky G B, Gurnett D A. 2012. Chorus, ECH, and Z mode emissions observed at Jupiter and Saturn and possible electron acceleration. J Geophys Res, 117: A12214Google Scholar
  40. Meredith N P, Johnstone A D, Szita S, Horne R B, Anderson R R. 1999. “Pancake” electron distributions in the outer radiation belts. J Geophys Res, 104: 12431–12444Google Scholar
  41. Miyoshi Y, Katoh Y, Nishiyama T, Sakanoi T, Asamura K, Hirahara M. 2010. Time of flight analysis of pulsating aurora electrons, considering wave-particle interactions with propagating whistler mode waves. J Geophys Res, 115: A10312Google Scholar
  42. Morales G J, O’Neil T M. 1972. Nonlinear frequency shift of an electron plasma wave. Phys Rev Lett, 28: 417–420Google Scholar
  43. Ni B, Thorne R M, Zhang X, Bortnik J, Pu Z, Xie L, Hu Z, Han D, Shi R, Zhou C, Gu X. 2016. Origins of the Earth’s diffuse auroral precipitation. Space Sci Rev, 200: 205–259Google Scholar
  44. Nishimura Y, Bortnik J, Li W, Thorne R M, Lyons L R, Angelopoulos V, Mende S B, Bonnell J W, Le Contel O, Cully C, Ergun R, Auster U. 2010. Identifying the driver of pulsating aurora. Science, 330: 81–84Google Scholar
  45. Nunn D. 1971. A theory of VLF emissions. Planet Space Sci, 19: 1141–1167Google Scholar
  46. Nunn D. 1974. A self-consistent theory of triggered VLF emissions. Planet Space Sci, 22: 349–378Google Scholar
  47. Nunn D. 1990. The numerical simulation of VLF nonlinear wave-particle interactions in collision-free plasmas using the Vlasov hybrid simulation technique. Comput Phys Commun, 60: 1–25Google Scholar
  48. Nunn D, Omura Y. 2012. A computational and theoretical analysis of falling frequency VLF emissions. J Geophys Res, 117: A08228Google Scholar
  49. Nunn D, Omura Y, Matsumoto H, Nagano I, Yagitani S. 1997. The numerical simulation of VLF chorus and discrete emissions observed on the Geotail satellite using a Vlasov code. J Geophys Res, 102: 27083–27097Google Scholar
  50. Nunn D, Santolik O, Rycroft M, Trakhtengerts V. 2009. On the numerical modelling of VLF chorus dynamical spectra. Ann Geophys, 27: 2341–2359Google Scholar
  51. Omura Y, Matsumoto H. 1982. Computer simulations of basic processes of coherent whistler wave-particle interactions in the magnetosphere. J Geophys Res, 87: 4435–4444Google Scholar
  52. Omura Y, Nunn D. 2011. Triggering process of whistler mode chorus emissions in the magnetosphere. J Geophys Res, 116: A05205Google Scholar
  53. Omura Y, Matsumoto H, Nunn D, Rycroft M J. 1991. A review of observational, theoretical and numerical studies of VLF triggered emissions. J Atmos Terrestrial Phys, 53: 351–368Google Scholar
  54. Omura Y, Katoh Y, Summers D. 2008. Theory and simulation of the generation of whistler-mode chorus. J Geophys Res, 113: A04223Google Scholar
  55. Omura Y, Hikishima M, Katoh Y, Summers D, Yagitani S. 2009. Nonlinear mechanisms of lower-band and upper-band VLF chorus emissions in the magnetosphere. J Geophys Res, 114: A07217Google Scholar
  56. O’Neil T M, Winfrey J H, Malmberg J H. 1971. Nonlinear interaction of a small cold beam and a plasma. Phys Fluids, 14: 1204–1212Google Scholar
  57. Parker S E, Lee W W. 1993. A fully nonlinear characteristic method for gyrokinetic simulation. Phys Fluids B-Plasma Phys, 5: 77–86Google Scholar
  58. Reeves G D, Spence H E, Henderson M G, Morley S K, Friedel R H W, Funsten H O, Baker D N, Kanekal S G, Blake J B, Fennell J F, Claudepierre S G, Thorne R M, Turner D L, Kletzing C A, Kurth W S, Larsen B A, Niehof J T. 2013. Electron acceleration in the heart of the Van Allen radiation belts. Science, 341: 991–994Google Scholar
  59. Sagdeev R Z, Shapiro V D, Shevchenko V I. 1985. Mechanism of triggered emission in the magnetospheric plasma. Zh Eksp Teor Fiz, 89: 22–33Google Scholar
  60. Santolík O, Gurnett D A, Pickett J S, Parrot M, Cornilleau-Wehrlin N. 2004. A microscopic and nanoscopic view of storm-time chorus on 31 March 2001. Geophys Res Lett, 31: L02801Google Scholar
  61. Scarf F L, Gurnett D A, Kurth W S. 1979. Jupiter plasma wave observations: An initial Voyager 1 overview. Science, 204: 991–995Google Scholar
  62. Shprits Y Y, Menietti J D, Drozdov A Y, Horne R B, Woodfield E E, Groene J B, de Soria-Santacruz M, Averkamp T F, Garrett H, Paranicas C, Gurnett D A. 2018. Strong whistler mode waves observed in the vicinity of Jupiter’s moons. Nat Commun, 9: 3131Google Scholar
  63. Shue J H, Hsieh Y K, Tam S W Y, Wang K, Fu H S, Bortnik J, Tao X, Hsieh W C, Pi G. 2015. Local time distributions of repetition periods for rising tone lower band chorus waves in the magnetosphere. Geophys Res Lett, 42: 8294–8301Google Scholar
  64. Soto-Chavez A R, Wang G, Bhattacharjee A, Fu G Y, Smith H M. 2014. A model for falling-tone chorus. Geophys Res Lett, 41: 1838–1845Google Scholar
  65. Stix T H. 1992. Waves in Plasmas. Melville NY: American Institute of Physics PublishingGoogle Scholar
  66. Su Z, Zheng H, Wang S. 2009. Evolution of electron pitch angle distribution due to interactions with whistler mode chorus following sub-storm injections. J Geophys Res, 114: A08202Google Scholar
  67. Sudan R N, Ott E. 1971. Theory of triggered VLF emissions. J Geophys Res, 76: 4463–4476Google Scholar
  68. Tao X. 2014. A numerical study of chorus generation and the related variation of wave intensity using the DAWN code. J Geophys Res-Space Phys, 119: 3362–3372Google Scholar
  69. Tao X, Thorne R M, Li W, Ni B, Meredith N P, Horne R B. 2011. Evolution of electron pitch angle distributions following injection from the plasma sheet. J Geophys Res, 116: A04229Google Scholar
  70. Tao X, Li W, Bortnik J, Thorne R M, Angelopoulos V. 2012. Comparison between theory and observation of the frequency sweep rates of equatorial rising tone chorus. Geophys Res Lett, 39: L08106Google Scholar
  71. Tao X, Lu Q, Wang S, Dai L. 2014. Effects of magnetic field configuration on the day-night asymmetry of chorus occurrence rate: A numerical study. Geophys Res Lett, 41: 6577–6582Google Scholar
  72. Tao X, Zonca F, Chen L. 2017a. Investigations of the electron phase space dynamics in triggered whistler wave emissions using low noise Sf method. Plasma Phys Control Fusion, 59: 094001Google Scholar
  73. Tao X, Zonca F, Chen L. 2017b. Identify the nonlinear wave-particle interaction regime in rising tone chorus generation. Geophys Res Lett, 44: 3441–3446Google Scholar
  74. Taubenschuss U, Khotyaintsev Y V, Santolík O, Vaivads A, Cully C M, Contel O L, Angelopoulos V. 2014. Wave normal angles of whistler mode chorus rising and falling tones. J Geophys Res-Space Phys, 119: 9567–9578Google Scholar
  75. Teng S, Tao X, Li W, Qi Y, Gao X, Dai L, Lu Q, Wang S. 2018. A statistical study of the spatial distribution and source-region size of chorus waves using Van Allen Probes data. Ann Geophys, 36: 867–878Google Scholar
  76. Thorne R M, Ni B, Tao X, Horne R B, Meredith N P. 2010. Scattering by chorus waves as the dominant cause of diffuse auroral precipitation. Nature, 467: 943–946Google Scholar
  77. Thorne R M, Li W, Ni B, Ma Q, Bortnik J, Chen L, Baker D N, Spence H E, Reeves G D, Henderson M G, Kletzing C A, Kurth W S, Hospodarsky G B, Blake J B, Fennell J F, Claudepierre S G, Kanekal S G. 2013. Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus. Nature, 504: 411–414Google Scholar
  78. Trakhtengerts V Y. 1995. Magnetosphere cyclotron maser: Backward wave oscillator generation regime. J Geophys Res, 100: 17205–17210Google Scholar
  79. Tsurutani B T, Smith E J. 1974. Postmidnight chorus: A substorm phenomenon. J Geophys Res, 79: 118–127Google Scholar
  80. Vomvoridis J L, Denavit J. 1979. Test particle correlation by a whistler wave in a nonuniform magnetic field. Phys Fluids, 22: 367–377Google Scholar
  81. Vomvoridis J L, Denavit J. 1980. Nonlinear evolution of a monochromatic whistler wave in a nonuniform magnetic field. Phys Fluids, 23: 174–183Google Scholar
  82. Vomvoridis J L, Crystal T L, Denavit J. 1982. Theory and computer simulations of magnetospheric very low frequency emissions. J Geophys Res, 87: 1473–1489Google Scholar
  83. Watt C E J, Degeling A W, Rankin R, Murphy K R, Rae I J, Singer H J. 2011. Ultralow-frequency modulation of whistler-mode wave growth. J Geophys Res, 116: A10209Google Scholar
  84. Zonca F, Chen L, Briguglio S, Fogaccia G, Vlad G, Wang X. 2015. Nonlinear dynamics of phase space zonal structures and energetic particle physics in fusion plasmas. New J Phys, 17: 013052Google Scholar
  85. Zonca F, Tao X, Chen L. 2017. Nonlinear wave-particle dynamics in chorus excitation. Belfast: 44th EPS Conference on Plasma PhysicsGoogle Scholar
  86. Zonca F, Tao X, Chen L. 2019. A theoretical framework of chorus excitation. to be submitted to Geophysical Research LetterGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary SciencesUniversity of Science and Technology of ChinaHefeiChina
  2. 2.CAS Center for Excellence in Comparative PlanetologyHefeiChina
  3. 3.ENEA Centro Ricerche FrascatiFrascatiItaly
  4. 4.Institute of Fusion Theory and Simulation and Department of PhysicsZhejiang UniversityHangzhouChina
  5. 5.Department of Physics and AstronomyUniversity of CaliforniaIrvineUSA

Personalised recommendations