Science China Earth Sciences

, Volume 63, Issue 1, pp 93–107 | Cite as

Paleoseismologic record of earthquakes along the Wuzunxiaoer section of the Altyn Tagh fault and its implication for cascade rupture behavior

  • Zhaode YuanEmail author
  • Jing Liu-ZengEmail author
  • You Zhou
  • Zhigang Li
  • Heng Wang
  • Wenqian Yao
  • Longfei Han
Research Paper


The Altyn Tagh fault is one of the few great active strike-slip faults in the world. The recurrence characteristics of paleoearthquakes on this fault are still poorly understood due to the lack of paleoseismic records recorded in high-resolution strata. We document a paleoseismic record in a pull-apart basin along the Wuzunxiaoer section of the central Altyn Tagh fault. The high-resolution strata recorded abundant seismic deformations and their sedimentary responses. Four earthquakes are identified based on event evidence in the form of open fissures, thickened strata, angular unconformities, and folds. The occurrence times of the four events were constrained using radiocarbon dating. Event W1 occurred at AD1220-1773, events W2 and W3 occurred between 407 and 215BC, and event W4 occurred slightly earlier at 1608-1462BC, indicating clustered recurrence characteristics. A comparison of the earthquake records along the Wuzunxiaoer section with other records along the Xorkoli section suggests that both sections ruptured during the most recent event.


Tibet Altyn Tagh fault Strike-slip fault Paleoearthquake Coseismic offset 



We thank two anonymous reviewers for their constructive reviews that improve the quality and clarity of the work, Wenying Fan for his help in excavating the trenches, and Dr. Alastair Sloan of the University of Cape Town for language editing. This research was supported by National Natural Science Foundation of China (Grant Nos. U1839203, 41761144065, 41802228), Central Public-Interest Scientific Institution Basal Research Fund (Grant No. IGCEA1814), and State Key Laboratory of Earthquake Dynamics of China (Grant No. LED2017A01).


  1. Biasi G P, Wesnousky S G. 2016. Steps and gaps in ground ruptures: Empirical bounds on rupture propagation. Bull Seismol Soc Am, 106: 1110–1124Google Scholar
  2. Biasi G P, Wesnousky S G. 2017. Bends and ends of surface ruptures. Bull Seismol Soc Am, 107: 2543–2560Google Scholar
  3. Chen B L, Cui L L, Bai Y F, Wang S X, Chen Z L, Li X Z, Qi W X, Liu R. 2010. A determining on the displacement of the Altun Tagh sinistral strike-slip fault, NW China: New evidence from the tectonic metallogenetic belt in the eastern part of Altun Tagh Mountain (in Chinese). Acta Petrol Sin, 26: 3387–3396Google Scholar
  4. Chen X H, Yin A, Gehrels E G, Jiang R B, Chen Z L, Bai Y F. 2009. Geothermochronology and tectonic evolution of Eastern Altyn Tagh Mountains, Northwestern China (in Chinese). Earth Sci Front, 16: 207–219Google Scholar
  5. Chen Y, Gilder S, Halim N, Cogné J P, Courtillot V. 2002. New paleomagnetic constraints on central Asian kinematics: Displacement along the Altyn Tagh fault and rotation of the Qaidam Basin. Tectonics, 21: 6–1–6–19Google Scholar
  6. Cheng F, Guo Z, Jenkins H S, Fu S, Cheng X. 2015. Initial rupture and displacement on the Altyn Tagh fault, northern Tibetan Plateau: Constraints based on residual Mesozoic to Cenozoic strata in the western Qaidam Basin. Geosphere, 11: 921–942Google Scholar
  7. Chinese State Bureau of Seismology. 1992. The Altyn Tagh active fault system (in Chinese). Beijing: Seismology Publishing House. 319Google Scholar
  8. Cowgill E, Arrowsmith J R, Yin A, Wang X F, Chen Z L. 2004. The Akato Tagh bend along the Altyn Tagh fault, northwest Tibet 2: Active deformation and the importance of transpression and strain hardening within the Altyn Tagh system. Geol Soc Am Bull, 116: 1443–1464Google Scholar
  9. Cowgill E, Gold R D, Xuanhua C, Xiao-Feng W, Arrowsmith J R, Southon J. 2009. Low Quaternary slip rate reconciles geodetic and geologic rates along the Altyn Tagh fault, northwestern Tibet. Geology, 37: 647–650Google Scholar
  10. Cui J W. 2011. Ductile shearing age of the south Altun fault and its tectonic implications (in Chinese). Acta Petrol Sin, 27: 3422–3434Google Scholar
  11. Ding G Y. 1995. Paleoearthquakes along the Altun active fault and its segmentation (in Chinese). Quat Sci, 15: 97–106Google Scholar
  12. Duan B, Oglesby D D. 2005. Multicycle dynamics of nonplanar strike-slip faults. J Geophys Res, 110: B03304Google Scholar
  13. Elliott A J, Oskin M E, Liu-Zeng J, Shao Y. 2015. Rupture termination at restraining bends: The last great earthquake on the Altyn Tagh fault. Geophys Res Lett, 42: 2164–2170Google Scholar
  14. Elliott A J, Oskin M E, Liu-Zeng J, Shao Y X. 2018. Persistent rupture terminations at a restraining bend from slip rates on the eastern Altyn Tagh fault. Tectonophysics, 733: 57–72Google Scholar
  15. Gao R, Li P W, Li Q S, Guan Y, Shi D N, Kong X R, Liu H B. 2001. Deep process of the collision and deformation on the northern margin of the Tibetan Plateau: Revelation from investigation of the deep seismic profiles. Sci China Ser D-Earth Sci, 44(Suppl): 71–78Google Scholar
  16. Gold R D, Cowgill E, Arrowsmith J R, Chen X, Sharp W D, Cooper K M, Wang X F. 2011. Faulted terrace risers place new constraints on the late Quaternary slip rate for the central Altyn Tagh fault, northwest Tibet. Geol Soc Am Bull, 123: 958–978Google Scholar
  17. Hamling I J, Hreinsdóttir S, Clark K, Elliott J, Liang C, Fielding E, Litchfield N, Villamor P, Wallace L, Wright T J, D’Anastasio E, Bannister S, Burbidge D, Denys P, Gentle P, Howarth J, Mueller C, Palmer N, Pearson C, Power W, Barnes P, Barrell D J A, Van Dissen R, Langridge R, Little T, Nicol A, Pettinga J, Rowland J, Stirling M. 2017. Complex multifault rupture during the 2016 M w7.8 Kaikoura earthquake, New Zealand. Science, 356: eaam7194Google Scholar
  18. He J K, Vernant P, Chéry J, Wang W M, Lu S J, Ku W F, Xia W H, Bilham R. 2013. Nailing down the slip rate of the Altyn Tagh fault. Geophys Res Lett, 40: 5382–5386Google Scholar
  19. Huntley D J, Lamothe M. 2001. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Can J Earth Sci, 38: 1093–1106Google Scholar
  20. Jiang X D, Yu J, Mcnutt M K. 2004. Lithospheric deformation beneath the Altyn Tagh and West Kunlun faults from recent gravity surveys. J Geophys Res, 109: B05406Google Scholar
  21. Li H B, Xu Z Q, Yang J S, Qi X X, Tapponnier P. 2007. The maximum cumulative strike-slip displacement of the Altyn Tagh fault—900 km (in Chinese)? Geol Bull China, 26: 1288–1298Google Scholar
  22. Li H B, Yang J S, Xu Z Q, Su Z M, Tapponnier P, Van Der Woerd J, Mériaux A S. 2006. The constraint of the Altyn Tagh fault system to the growth and rise of the northern Tibetan plateau (in Chinese). Earth Sci Front, 13: 59–79Google Scholar
  23. Li H B, Yang J S, Xu Z Q, Wu C L, Wan Y S, Shi R D, Liou J G, Tapponnier P, Ireland T R. 2001. Geological and chronological evidence of Indosinian strike-slip movement in the Altyn Tagh fault zone (in Chinese). Chin Sci Bull, 46: 1333–1338Google Scholar
  24. Li K, Xu X W, Luo H, Tapponnier P, Klinger Y, Gao M X. 2016. Paleoseismic events in Banguoba trench along Aksay segment of the Altyn Tagh fault zone (in Chinese). Seismol Geol, 38: 670–679Google Scholar
  25. Li Y C, Shan X J, Qu C Y, Liu Y H, Han N N. 2018. Crustal deformation of the Altyn Tagh fault based on GPS. J Geophys Res-Solid Earth, 123: 10309–10322Google Scholar
  26. Liu J, Xu X W, Li Y F, Ran Y K. 2007. On the completeness of paleoseismic records of strike-slip faults: An example from the Laohushan segment of the Haiyuan fault in Gansu, China, with a discussion of several problems in the paleoearthquake study (in Chinese). Geol Bull China, 26: 250–260Google Scholar
  27. Liu Y J, Neubauer F, Ge X H, Genser J, Yuan S H, Li W M, Gong Q L, Chen Y Z. 2007. Geochronology of the Altun fault zone and rising of the Altun Mountains (in Chinese). Chin J Geol, 42: 134–146Google Scholar
  28. Lozos J C, Oglesby D D, Duan B, Wesnousky S G. 2011. The Effects of double fault bends on rupture propagation: A geometrical parameter study. Bull Seismol Soc Am, 101: 385–398Google Scholar
  29. Mériaux A S, Tapponnier P, Ryerson F J, Xiwei X, King G, Van der Woerd J, Finkel R C, Haibing L, Caffee M W, Zhiqin X, Wenbin C. 2005. The Aksay segment of the northern Altyn Tagh fault: Tectonic geomorphology, landscape evolution, and Holocene slip rate. J Geophys Res, 110: B04404Google Scholar
  30. Mériaux A S, Van der Woerd J, Tapponnier P, Ryerson F J, Finkel R C, Lasserre C, Xu X W. 2012. The Pingding segment of the Altyn Tagh fault (91°E): Holocene slip-rate determination from cosmogenic radionuclide dating of offset fluvial terraces. J Geophys Res, 117: B09406Google Scholar
  31. Molnar P, Burchfiel B C, K’uangyi L, Ziyun Z. 1987. Geomorphic evidence for active faulting in the Altyn Tagh and northern Tibet and qualitative estimates of its contribution to the convergence of India and Eurasia. Geology, 15: 249–253Google Scholar
  32. Molnar P, Tapponnier P. 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. Science, 189: 419–426Google Scholar
  33. Peltzer G, Tapponnier P, Armijo R. 1989. Magnitude of late Quaternary left-lateral displacements along the north edge of Tibet. Science, 246: 1285–1289Google Scholar
  34. Ramsey C B, Lee S. 2013. Recent and planned developments of the program OxCal. Radiocarbon, 55: 720–730Google Scholar
  35. Ran Y K, Wang H, Li Y B, Chen L C. 2012. Key techniques and several cases analysis in paleoseismic studies in mainland China (1): Trenching sites, layouts and paleoseismic indicators on active strike-slip faults (in Chinese). Seismol Geol, 34: 197–210Google Scholar
  36. Reimer P J, Bard E, Bayliss A, Beck J W, Blackwell P G, Ramsey C B, Buck C E, Cheng H, Edwards R L, Friedrich M, Grootes P M, Guilderson T P, Haflidason H, Hajdas I, Hatté C, Heaton T J, Hoffmann D L, Hogg A G, Hughen K A, Kaiser K F, Kromer B, Manning S W, Niu M, Reimer R W, Richards D A, Scott E M, Southon J R, Staff R A, Turney C S M, van der Plicht J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50000 years cal BP. Radiocarbon, 55: 1869–1887Google Scholar
  37. Ritts B D, Biffi U. 2000. Magnitude of post-Middle Jurassic (Bajocian) displacement on the central Altyn Tagh fault system, northwest China. Geol Soc Am Bull, 112: 61–74Google Scholar
  38. Scharer K M, Weldon R J, Fumal T E, Biasi G P. 2007. Paleoearthquakes on the Southern San Andreas Fault, Wrightwood, California, 3000 to 1500 BC: A new method for evaluating paleoseismic evidence and earthquake horizons. Bull Seismol Soc Am, 97: 1054–1093Google Scholar
  39. Shao Y X, Liu-Zeng J, Oskin M E, Elliott A J, Wang P, Zhang J Y, Yuan Z D, Li Z G. 2018. Paleoseismic investigation of the Aksay restraining double bend, Altyn Tagh Fault, and its implication for barrier-Breaching ruptures. J Geophys Res-Solid Earth, 123: 4307–4330Google Scholar
  40. Sieh K, Jones L, Hauksson E, Hudnut K, Eberhart-Phillips D, Heaton T, Hough S, Hutton K, Kanamori H, Lilje A, Lindvall S, McGill S F, Mori J, Rubin C, Spotila J A, Stock J, Kie Thio H, Treiman J, Wernicke B, Zachariasen J. 1993. Near-field investigations of the Landers earthquake sequence, April to July 1992. Science, 260: 171–176Google Scholar
  41. Sobel E R, Arnaud N. 1999. A possible middle Paleozoic suture in the Altyn Tagh, NW China. Tectonics, 18: 64–74Google Scholar
  42. Sun Z M, Li H B, Pei J L, Xu W, Pan J W, Si J L, Zhao L S, Zhao Y. 2012. Strike-slip movement of theAltyn Tagh fault and implications for mountain formation inferred from paleomagnetic data in northeastern Tibetan Plateau (in Chinese). Acta Petrol Sin, 28: 1928–1936Google Scholar
  43. Tapponnier P, Zhiqin X, Roger F, Meyer B, Arnaud N, Wittlinger G, Jingsui Y. 2001. Oblique stepwise rise and growth of the Tibet plateau. Science, 294: 1671–1677Google Scholar
  44. Wang E. 1997. Displacement and timing along the northern strand of the Altyn Tagh fault zone, Northern Tibet. Earth Planet Sci Lett, 150: 55–64Google Scholar
  45. Wang F, Xu X W, Zheng R Z, Chen W B. 2004. Late Quaternary slip-rate on the Altun fault west to the Qarqan River (in Chinese). Seismol Geol, 26: 200–208Google Scholar
  46. Washburn Z, Arrowsmith J R, Dupont-Nivet G, Wang X F, Zhang Y, Chen Z L. 2003. Paleoseismology of the Xorxol segment of the central Altyn Tagh fault, Xinjiang, China (in Chinese). Ann Geophys, 46: 1015–1034Google Scholar
  47. Washburn Z, Arrowsmith J R, Forman S L, Cowgill E, Wang X F, Zhang Y, Chen Z L. 2001. Late Holocene earthquake history of the central Altyn Tagh fault, China. Geology, 29: 1051–1054Google Scholar
  48. Wells D L, Coppersmith K J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement (in Chinese). Bull Seismol Soc Am, 84: 974–1002Google Scholar
  49. Wesnousky S G. 2006. Predicting the endpoints of earthquake ruptures. Nature, 444: 358–360Google Scholar
  50. Wintle A G. 1973. Anomalous fading of thermo-luminescence in mineral samples. Nature, 245: 143–144Google Scholar
  51. Wittlinger G, Tapponnier P, Poupinet G, Mei J, Danian S, Herquel G, Masson F. 1998. Tomographic evidence for localized lithospheric shear along the Altyn Tagh fault. Science, 282: 74–76Google Scholar
  52. Wu L, Gong Q L, Qin S H. 2013. When did Cenozoic left-slip along the Altyn Tagh Fault initiate? A comprehensive approach (in Chinese). Acta Petrol Sin, 29: 2837–2850Google Scholar
  53. Wu L, Xiao A C, Wang L Q, Mao L G, Wang L, Dong Y P, Xu B. 2012. EW-trending uplifts along the southern side of the central segment of the Altyn Tagh Fault, NW China: Insight into the rising mechanism of the Altyn Mountain during the Cenozoic. Sci China Earth Sci, 55: 926–939Google Scholar
  54. Xiao Q, Yu G, Liu-Zeng J, Oskin M E, Shao G H. 2017. Structure and geometry of the Aksay restraining double bend along the Altyn Tagh fault, Northern Tibet, imaged using magnetotelluric method. Geophys Res Lett, 44: 4090–4097Google Scholar
  55. Xu X W, Wang F, Zheng R Z, Chen W B, Ma W T, Yu G H, Chen G H. 2005. Late Quaternary sinistral slip rate along the Altyn Tagh. Sci Chin Ser D-Earth Sci, 48: 384Google Scholar
  56. Xu X W, Yu G H, Chen G H, Li C X, Zhang L F, Klinger Y, Tapponnier P, Liu J. 2007. Near-surface character of permanent geologic deformation across the mega-strike-slip faults in the northern Tibetan Plateau (in Chinese). Seismol Geol, 29: 201–217Google Scholar
  57. Xu Z Q, Li H B, Tang Z M, Qi X X, Li H Q, Cai Z H. 2011. The transformation of the terrain structures of the Tibet Plateau through large-scale strike-slip faults (in Chinese). Acta Petrol Sin, 27: 3157–3170Google Scholar
  58. Yin A, Rumelhart P E, Butler R, Cowgill E, Harrison T M, Foster D A, Ingersoll R V, Zhang Q, Zhou X Q, Wang X F, Hanson A, Raza A. 2002. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation. Geol Soc Am Bull, 114: 1257–1295Google Scholar
  59. Yuan Z D, Liu J, Li Z F, Shao Y X, Li Z G, Wang P, Wang W, Yao W Q. 2016. Tecto-geomorphic analysis of paleoseismic trenching sites on active strike-slip faults (in Chinese). Geol Bull China, 35: 1807–1828Google Scholar
  60. Yuan Z D, Liu-Zeng J, Wang W, Weldon R J, Oskin M E, Shao Y X, Li Z G, Wang P, Zhang J Y. 2018. A 6000-year-long paleoseismologic record of earthquakes along the Xorkoli section of the Altyn Tagh fault, China. Earth Planet Sci Lett, 497: 193–203Google Scholar
  61. Yuan Z D. 2018. Long Paleoseismic record on the Wuzunxiaoer-Xorkoli section of the central Altyn Tagh fault (in Chinese). Doctoral Dissertation. Beijing: Institute of geology, China Earthquake AdministrationGoogle Scholar
  62. Yue Y J, Liou J G. 1999. Two-stage evolution model for the Altyn Tagh fault, China. Geology, 27: 227–230Google Scholar
  63. Zhang L T, Unsworth M, Jin S, Wei W B, Ye G F, Jones A G, Jing J E, Dong H, Xie C L, Pape F L, Vozar J. 2015. Structure of the Central Altyn Tagh Fault revealed by magnetotelluric data: New insights into the structure of the northern margin of the India-Asia collision. Earth Planet Sci Lett, 415: 67–79Google Scholar
  64. Zhang P Z, Molnar P, Xu X. 2007. Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan Plateau. Tectonics, 26: TC5010Google Scholar
  65. Zhao J M, Mooney W D, Zhang X K, Li Z C, Jin Z J, Okaya N. 2006. Crustal structure across the Altyn Tagh Range at the northern margin of the Tibetan Plateau and tectonic implications. Earth Planet Sci Lett, 241: 804–814Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Earthquake Dynamics, Institute of GeologyChina Earthquake AdministrationBeijingChina
  2. 2.Institute of GeomechanicsChinese Academy of Geological SciencesBeijingChina
  3. 3.School of Earth Sciences and EngineeringSun Yat-Sen UniversityGuangzhouChina

Personalised recommendations