Deep carbon cycle in subduction zones

  • Yongsheng LiuEmail author
  • Chunfei Chen
  • Detao He
  • Wei Chen


The carbon cycle between the deep Earth and the atmosphere (i.e., the deep carbon cycle) can significantly affect the global climate on both long and short time scales. Although carbon in the deep Earth can be released to the atmosphere in many ways, plate subduction is the only pathway for the return of carbon from the surface to the deep Earth. Owing to diversity in the forms of carbon and the special physicochemical property of carbonates, the behavior of carbon and carbonates in subduction zones significantly affects the products of subduction processes, the oxygen fugacity in subduction zones, and the activation and migration of elements during the crust-mantle interaction. Therefore, the carbon cycle in subduction zones plays an important role in maintaining a habitable climate by regulating the atmospheric CO2 concentration, which significantly affects the global climate, and in causing fundamental changes in the physical and chemical properties of the mantle that result in a heterogeneous mantle. In this study, we review and discuss previous studies and scientific problems regarding the carbon cycle in subduction zones from four aspects: observation and tracing of the carbon cycle, migration and variation of carbon during subduction, carbon flux, and the effect of the carbon cycle.


Subduction Deep carbon cycle Carbon flux Carbonate Carbonatite Crust-mantle interaction Global climate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors sincerely thank the two anonymous reviewers for their constructive comments on the manuscript. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41530211 & 41125013) and the National Key Laboratory of Geological Processes and Mineral Resources (Grant No. MSFGPMR01).


  1. Ague J J, Nicolescu S. 2014. Carbon dioxide released from subduction zones by fluid-mediated reactions. Nat Geosci, 7: 355–360CrossRefGoogle Scholar
  2. Aiuppa A, Fischer T P, Plank T, Robidoux P, Di Napoli R. 2017. Along-arc, inter-arc and arc-to-arc variations in volcanic gas CO2/ST ratios reveal dual source of carbon in arc volcanism. Earth-Sci Rev, 168: 24–47CrossRefGoogle Scholar
  3. Alt J C, Garrido C J, Shanks III W C, Turchyn A, Padrón-Navarta J A, López Sánchez-Vizcaíno V, Gómez Pugnaire M T, Marchesi C. 2012. Recycling of water, carbon, and sulfur during subduction of serpentinites: A stable isotope study of Cerro del Almirez, Spain. Earth Planet Sci Lett, 327–328: 50–60CrossRefGoogle Scholar
  4. Alt J C, Teagle D A H. 1999. The uptake of carbon during alteration of ocean crust. Geochim Cosmochim Acta, 63: 1527–1535CrossRefGoogle Scholar
  5. Ammannati E, Jacob D E, Avanzinelli R, Foley S F, Conticelli S. 2016. Low Ni olivine in silica-undersaturated ultrapotassic igneous rocks as evidence for carbonate metasomatism in the mantle. Earth Planet Sci Lett, 444: 64–74CrossRefGoogle Scholar
  6. Athy L F. 1930. Density, porosity, and compaction of sedimentary rocks. AAPG Bull, 14: 1–24Google Scholar
  7. Baker M B, Stolper E M. 1994. Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim Cosmochim Acta, 58: 2811–2827CrossRefGoogle Scholar
  8. Ballhaus C, Berry R F, Green D H. 1990. Oxygen fugacity controls in the Earth’s upper mantle. Nature, 348: 437–440CrossRefGoogle Scholar
  9. Becker H, Altherr R. 1992. Evidence from ultra-high-pressure marbles for recycling of sediments into the mantle. Nature, 358: 745–748CrossRefGoogle Scholar
  10. Behn M D, Kelemen P B, Hirth G, Hacker B R, Massonne H J. 2011. Diapirs as the source of the sediment signature in arc lavas. Nat Geosci, 4: 641–646CrossRefGoogle Scholar
  11. Bell K, Simonetti A. 2010. Source of parental melts to carbonatites-critical isotopic constraints. Miner Petrol, 98: 77–89CrossRefGoogle Scholar
  12. Blättler C L, Higgins J A. 2017. Testing Urey’s carbonate-silicate cycle using the calcium isotopic composition of sedimentary carbonates. Earth Planet Sci Lett, 479: 241–251CrossRefGoogle Scholar
  13. Blundy J, Dalton J. 2000. Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonate and silicate systems, and implications for mantle metasomatism. Contrib Mineral Petrol, 139: 356–371CrossRefGoogle Scholar
  14. Brenker F E, Vollmer C, Vincze L, Vekemans B, Szymanski A, Janssens K, Szaloki I, Nasdala L, Joswig W, Kaminsky F. 2007. Carbonates from the lower part of transition zone or even the lower mantle. Earth Planet Sci Lett, 260: 1–9CrossRefGoogle Scholar
  15. Brey G P, Bulatov V K, Girnis A V, Lahaye Y. 2008. Experimental melting of carbonated peridotite at 6–10 GPa. J Petrol, 49: 797–821CrossRefGoogle Scholar
  16. Brune S, Williams S E, Müller R D. 2017. Potential links between continental rifting, CO2 degassing and climate change through time. Nat Geosci, 10: 941–946CrossRefGoogle Scholar
  17. Bulanova G P, Walter M J, Smith C B, Kohn S C, Armstrong L S, Blundy J, Gobbo L. 2010. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: Subducted protoliths, carbonated melts and primary kimberlite magmatism. Contrib Mineral Petrol, 160: 489–510CrossRefGoogle Scholar
  18. Carlson R W, Irving A J. 1994. Depletion and enrichment history of sub-continental lithospheric mantle: An Os, Sr, Nd and Pb isotopic study of ultramafic xenoliths from the northwestern Wyoming Craton. Earth Planet Sci Lett, 126: 457–472CrossRefGoogle Scholar
  19. Carlson R W, Irving A J, Schulze D J, Hearn Jr B C. 2004. Timing of Precambrian melt depletion and Phanerozoic refertilization events in the lithospheric mantle of the Wyoming Craton and adjacent Central Plains Orogen. Lithos, 77: 453–472CrossRefGoogle Scholar
  20. Cartigny P. 2005. Stable isotopes and the origin of diamond. Elements, 1: 79–84CrossRefGoogle Scholar
  21. Cartigny P, Harris J W, Javoy M. 1998. Eclogitic diamond formation at Jwaneng: No room for a recycled component. Science, 280: 1421–1424CrossRefGoogle Scholar
  22. Castorina F, Stoppa F, Cundari A, Barbieri M. 2000. An enriched mantle source for Italy’s melilitite-carbonatite association as inferred by its Nd-Sr isotope signature. Mineral mag, 64: 625–639CrossRefGoogle Scholar
  23. Chakhmouradian A R. 2006. High-field-strength elements in carbonatitic rocks: Geochemistry, crystal chemistry and significance for constraining the sources of carbonatites. Chem Geol, 235: 138–160CrossRefGoogle Scholar
  24. Chakhmouradian A R, Mumin A H, Demény A, Elliott B. 2008. Post-orogenic carbonatites at Eden Lake, Trans-Hudson Orogen (northern Manitoba, Canada): Geological setting, mineralogy and geochemistry. Lithos, 103: 503–526CrossRefGoogle Scholar
  25. Chen C F, Dai W, Wang Z C, Liu Y S, Li M, Becker H, Foley S F. 2019. Calcium isotope fractionation during magmatic processes in the upper mantle. Geochim Cosmochim Acta, 249: 121–137CrossRefGoogle Scholar
  26. Chen C F, Liu Y S, Feng L, Foley S F, Zhou L, Ducea M N, Hu Z C. 2018. Calcium isotope evidence for subduction-enriched lithospheric mantle under the northern North China Craton. Geochim Cosmochim Acta, 238: 55–67CrossRefGoogle Scholar
  27. Chen C F, Liu Y S, Foley S F, Ducea M N, Geng X L, Zhang W, Xu R, Hu Z C, Zhou L, Wang Z C. 2017. Carbonated sediment recycling and its contribution to lithospheric refertilization under the northern North China Craton. Chem Geol, 466: 641–653CrossRefGoogle Scholar
  28. Chen C F, Liu Y S, Foley S F, Ducea M N, He D T, Hu Z C, Chen W, Zong K Q. 2016. Paleo-Asian oceanic slab under the North China craton revealed by carbonatites derived from subducted limestones. Geology, 44: 1039–1042CrossRefGoogle Scholar
  29. Chen L H, Zeng G, Jiang S Y, Hofmann A W, Xu X S, Pan M B. 2009. Sources of Anfengshan basalts: Subducted lower crust in the Sulu UHP belt, China. Earth Planet Sci Lett, 286: 426–435CrossRefGoogle Scholar
  30. Chen W, Lu J, Jiang S Y, Ying Y C, Liu Y S. 2018. Radiogenic Pb reservoir contributes to the rare earth element (REE) enrichment in South Qinling carbonatites. Chem Geol, 494: 80–95CrossRefGoogle Scholar
  31. Chen W, Simonetti A. 2015. Isotopic (Pb, Sr, Nd, C, O) evidence for plume-related sampling of an ancient, depleted mantle reservoir. Lithos, 216–217: 81–92CrossRefGoogle Scholar
  32. Cheng Z, Zhang Z, Hou T, Santosh M, Chen L, Ke S, Xu L. 2017. Decoupling of Mg-C and Sr-Nd-O isotopes traces the role of recycled carbon in magnesiocarbonatites from the Tarim Large Igneous Province. Geochim Cosmochim Acta, 202: 159–178CrossRefGoogle Scholar
  33. Chepurov A I, Sonin V M, Zhimulev E I, Chepurov A A, Tomilenko A A. 2011. On the formation of element carbon during decomposition of CaCO3 at high P-T parameters under reducing conditions. Dokl Earth Sci, 441: 1738–1741CrossRefGoogle Scholar
  34. Connolly J A D. 2005. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett, 236: 524–541CrossRefGoogle Scholar
  35. Conticelli S, Avanzinelli R, Ammannati E, Casalini M. 2015. The role of carbon from recycled sediments in the origin of ultrapotassic igneous rocks in the Central Mediterranean. Lithos, 232: 174–196CrossRefGoogle Scholar
  36. Conticelli S, Avanzinelli R, Poli G, Braschi E, Giordano G. 2013. Shift from lamproite-like to leucititic rocks: Sr-Nd-Pb isotope data from the Monte Cimino volcanic complex vs. the Vico stratovolcano, Central Italy. Chem Geol, 353: 246–266CrossRefGoogle Scholar
  37. Conticelli S, Guarnieri L, Farinelli A, Mattei M, Avanzinelli R, Bianchini G, Boari E, Tommasini S, Tiepolo M, Prelevic D, Venturelli G. 2009. Trace elements and Sr-Nd-Pb isotopes of K-rich, shoshonitic, and calc-alkaline magmatism of the Western Mediterranean Region: Genesis of ultrapotassic to calc-alkaline magmatic associations in a post-collisional geodynamic setting. Lithos, 107: 68–92CrossRefGoogle Scholar
  38. Currie C A, Beaumont C, Huismans R S. 2007. The fate of subducted sediments: A case for backarc intrusion and underplating. Geology, 35: 1111–1114CrossRefGoogle Scholar
  39. D’Orazio M, Innocenti F, Tonarini S, Doglioni C. 2007. Carbonatites in a subduction system: The Pleistocene alvikites from Mt. Vulture (southern Italy). Lithos, 98: 313–334CrossRefGoogle Scholar
  40. Dai J G, Wang C S, Liu S A, Qian X Y, Zhu D C, Ke S. 2016. Deep carbon cycle recorded by calcium-silicate rocks (rodingites) in a subduction-related ophiolite. Geophys Res Lett, 43: 11,635–11,643CrossRefGoogle Scholar
  41. Dasgupta R. 2013. Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev Mineral Geochem, 75: 183–229CrossRefGoogle Scholar
  42. Dasgupta R, Hirschmann M M, Dellas N. 2005. The effect of bulk composition on the solidus of carbonated eclogite from partial melting experiments at 3 GPa. Contrib Mineral Petrol, 149: 288–305CrossRefGoogle Scholar
  43. Dasgupta R, Hirschmann M M. 2006. Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature, 440: 659–662CrossRefGoogle Scholar
  44. Dasgupta R, Hirschmann M M. 2010. The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett, 298: 1–13CrossRefGoogle Scholar
  45. Dasgupta R, Hirschmann M M, Smith N D. 2007. Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of Alkalic Ocean Island Basalts. J Petrol, 48: 2093–2124CrossRefGoogle Scholar
  46. Dasgupta R, Hirschmann M M, Withers A C. 2004. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet Sci Lett, 227: 73–85CrossRefGoogle Scholar
  47. Dasgupta R, Mallik A, Tsuno K, Withers A C, Hirth G, Hirschmann M M. 2013. Carbon-dioxide-rich silicate melt in the Earth’s upper mantle. Nature, 493: 211–215CrossRefGoogle Scholar
  48. Debret B, Bouilhol P, Pons M L, Williams H. 2018. Carbonate transfer during the onset of slab devolatilization: New insights from Fe and Zn stable isotopes. J Petrol, 59: 1145–1166CrossRefGoogle Scholar
  49. Deines P. 1968. The carbon and oxygen isotopic composition of carbonates from a mica peridotite dike near Dixonville, Pennsylvania. Geochim Cosmochim Acta, 32: 613–625CrossRefGoogle Scholar
  50. Deng L X, Liu Y S, Zong K Q, Zhu L Y, Xu R, Hu Z C, Gao S. 2017. Trace element and Sr isotope records of multi-episode carbonatite metasomatism on the eastern margin of the North China Craton. Geochem Geophys Geosyst, 18: 220–237CrossRefGoogle Scholar
  51. Doucelance R, Hammouda T, Moreira M, Martins J C. 2010. Geochemical constraints on depth of origin of oceanic carbonatites: The Cape Verde case. Geochim Cosmochim Acta, 74: 7261–7282CrossRefGoogle Scholar
  52. Eldholm O, Thomas E. 1993. Environmental impact of volcanic margin formation. Earth Planet Sci Lett, 117: 319–329CrossRefGoogle Scholar
  53. Falkowski P, Scholes R J, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder S, Mackenzie F T, Moore III B, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W. 2000. The global carbon cycle: A test of our knowledge of Earth as a system. Science, 290: 291–296CrossRefGoogle Scholar
  54. Falloon T J, Danyushevsky L V. 2000. Melting of Refractory Mantle at 1.5, 2 and 2.5 GPa under Anhydrous and H2O-undersaturated Conditions: Implications for the Petrogenesis of High-Ca Boninites and the Influence of Subduction Components on Mantle Melting. J Petrol, 41: 257–283CrossRefGoogle Scholar
  55. Falloon T J, Green D H, Danyushevsky L V, Faul U H. 1999. Peridotite melting at 1.0 and 1.5 GPa: An experimental evaluation of techniques using diamond aggregates and mineral mixes for determination of near-solidus melts. J Petrol, 40: 1343–1375CrossRefGoogle Scholar
  56. Fantle M S, Tipper E T. 2014. Calcium isotopes in the global biogeo-chemical Ca cycle: Implications for development of a Ca isotope proxy. Earth-Sci Rev, 129: 148–177CrossRefGoogle Scholar
  57. Fischer T P. 2008. Fluxes of volatiles (H2O, CO2, N2, Cl, F) from arc volcanoes. Geochem J, 42: 21–38CrossRefGoogle Scholar
  58. Foley S F. 2008. Rejuvenation and erosion of the cratonic lithosphere. Nat Geosci, 1: 503–510CrossRefGoogle Scholar
  59. Foley S F. 2011. A reappraisal of redox melting in the Earth’s mantle as a function of tectonic setting and time. J Petrol, 52: 1363–1391CrossRefGoogle Scholar
  60. Foley S F, Pintér Z. 2018. Chapter 1—Primary Melt Compositions in the Earth’s Mantle. In: Kono Y, Sanloup C, eds. Magmas Under Pressure. Elsevier. 3–42Google Scholar
  61. Foley S F, Yaxley G M, Rosenthal A, Buhre S, Kiseeva E S, Rapp R P, Jacob D E. 2009. The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos, 112: 274–283CrossRefGoogle Scholar
  62. Frezzotti M L, Selverstone J, Sharp Z D, Compagnoni R. 2011. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nat Geosci, 4: 703–706CrossRefGoogle Scholar
  63. Fujii T, Moynier F, Blichert-Toft J, Albarède F. 2014. Density functional theory estimation of isotope fractionation of Fe, Ni, Cu, and Zn among species relevant to geochemical and biological environments. Geochim Cosmochim Acta, 140: 553–576CrossRefGoogle Scholar
  64. Gaetani G A, Grove T L. 1998. The influence of water on melting of mantle peridotite. Contrib Mineral Petrol, 131: 323–346CrossRefGoogle Scholar
  65. Galvez M E, Beyssac O, Martinez I, Benzerara K, Chaduteau C, Malvoisin B, Malavieille J. 2013. Graphite formation by carbonate reduction during subduction. Nat Geosci, 6: 473–477CrossRefGoogle Scholar
  66. Gervasoni F, Klemme S, Rohrbach A, Grützner T, Berndt J. 2017. Experimental constraints on mantle metasomatism caused by silicate and carbonate melts. Lithos, 282–283: 173–186CrossRefGoogle Scholar
  67. Gleason G C, Tullis J. 1995. A flow law for dislocation creep of quartz aggregates determined with the molten salt cell. Tectonophysics, 247: 1–23CrossRefGoogle Scholar
  68. Gorman P J, Kerrick D M, Connolly J A D. 2006. Modeling open system metamorphic decarbonation of subducting slabs. Geochem Geophys Geosyst, 7: Q04007CrossRefGoogle Scholar
  69. Grassi D, Schmidt M W. 2011a. Melting of carbonated pelites at 8–13 GPa: Generating K-rich carbonatites for mantle metasomatism. Contrib Mineral Petrol, 162: 169–191CrossRefGoogle Scholar
  70. Grassi D, Schmidt M W. 2011b. The melting of carbonated pelites from 70 to 700 km depth. J Petrol, 52: 765–789CrossRefGoogle Scholar
  71. Lev O, Sheintuch M, Pisemen L M, Yarnitzkyt C. 1988. Mantle metasomatism by ephemeral carbonatite melts. Nature, 336: 459–462CrossRefGoogle Scholar
  72. Grotzinger J P, Fike D A, Fischer W W. 2011. Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history. Nat Geosci, 4: 285–292CrossRefGoogle Scholar
  73. Grove T L, Parman S W. 2004. Thermal evolution of the Earth as recorded by komatiites. Earth Planet Sci Lett, 219: 173–187CrossRefGoogle Scholar
  74. Hacker B R. 2008. H2O subduction beyond arcs. Geochem Geophys Geosyst, 9: Q03001CrossRefGoogle Scholar
  75. Hagen-Peter G, Cottle J M. 2016. Synchronous alkaline and subalkaline magmatism during the late Neoproterozoic-early Paleozoic Ross orogeny, Antarctica: Insights into magmatic sources and processes within a continental arc. Lithos, 262: 677–698CrossRefGoogle Scholar
  76. Hammouda T. 2003. High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth Planet Sci Lett, 214: 357–368CrossRefGoogle Scholar
  77. Hammouda T, Keshav S. 2015. Melting in the mantle in the presence of carbon: Review of experiments and discussion on the origin of carbonatites. Chem Geol, 418: 171–188CrossRefGoogle Scholar
  78. Hammouda T, Laporte D. 2000. Ultrafast mantle impregnation by carbonatite melts. Geology, 28: 283–285CrossRefGoogle Scholar
  79. Hansen J, Lacis A, Ruedy R, Sato M. 1992. Potential climate impact of Mount Pinatubo eruption. Geophys Res Lett, 19: 215–218CrossRefGoogle Scholar
  80. Hart S R, Dunn T. 1993. Experimental cpx/melt partitioning of 24 trace elements. Contr Mineral Petrol, 113: 1–8CrossRefGoogle Scholar
  81. Hazen R M, Schiffries C M. 2013. Why deep carbon? Rev Mineral Geochem, 75: 1–6CrossRefGoogle Scholar
  82. He D T, Liu Y S, Gao C G, Chen C F, Hu Z C, Gao S. 2017. SiC-dominated ultra-reduced mineral assemblage in carbonatitic xenoliths from the Dalihu basalt, Inner Mongolia, China. Am Miner, 102: 312–320CrossRefGoogle Scholar
  83. Hilton D R, Fischer T P, Marty B. 2002. Noble gases and volatile recycling at subduction zones. Rev Mineral Geochem, 47: 319–370CrossRefGoogle Scholar
  84. Hirose K. 1997. Melting experiments on lherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts. Geology, 25: 42–44CrossRefGoogle Scholar
  85. Hirose K, Kushiro I. 1993. Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet Sci Lett, 114: 477–489CrossRefGoogle Scholar
  86. Hirth G, Kohlstedt D L. 2003. Rheology of the upper mantle and the mantle wedge: A view from the experimentalists. In: Eiler J, ed. Inside the Subduction Factory. Washington D C: Geophys Monogr Seri AGU. 83–105CrossRefGoogle Scholar
  87. Hoernle K, Tilton G, Le Bas M J, Duggen S, Garbe-Schönberg D. 2002. Geochemistry of oceanic carbonatites compared with continental carbonatites: Mantle recycling of oceanic crustal carbonate. Contrib Mineral Petrol, 142: 520–542CrossRefGoogle Scholar
  88. Hoffman P F, Kaufman A J, Halverson G P, Schrag D P. 1998. A Neoproterozoic snowball Earth. Science, 281: 1342–1346CrossRefGoogle Scholar
  89. Hou Z, Tian S, Yuan Z, Xie Y, Yin S, Yi L, Fei H, Yang Z. 2006. The Himalayan collision zone carbonatites in western Sichuan, SW China: Petrogenesis, mantle source and tectonic implication. Earth Planet Sci Lett, 244: 234–250CrossRefGoogle Scholar
  90. Hu Y, Teng F Z, Zhang H F, Xiao Y, Su B X. 2016. Metasomatism-induced mantle magnesium isotopic heterogeneity: Evidence from pyroxenites. Geochim Cosmochim Acta, 185: 88–111CrossRefGoogle Scholar
  91. Huang J, Ke S, Gao Y, Xiao Y, Li S. 2015a. Magnesium isotopic compositions of altered oceanic basalts and gabbros from IODP site 1256 at the East Pacific Rise. Lithos, 231: 53–61CrossRefGoogle Scholar
  92. Huang J, Li S G, Xiao Y, Ke S, Li W Y, Tian Y. 2015b. Origin of low δ 26Mg Cenozoic basalts from South China Block and their geodynamic implications. Geochim Cosmochim Acta, 164: 298–317CrossRefGoogle Scholar
  93. Huang S, Farkaš J, Jacobsen S B. 2011. Stable calcium isotopic compositions of Hawaiian shield lavas: Evidence for recycling of ancient marine carbonates into the mantle. Geochim Cosmochim Acta, 75: 4987–4997CrossRefGoogle Scholar
  94. Hulett S R W, Simonetti A, Rasbury E T, Hemming N G. 2016. Recycling of subducted crustal components into carbonatite melts revealed by boron isotopes. Nat Geosci, 9: 904–908CrossRefGoogle Scholar
  95. Huybers P, Langmuir C. 2009. Feedback between deglaciation, volcanism, and atmospheric CO2. Earth Planet Sci Lett, 286: 479–491CrossRefGoogle Scholar
  96. Iacono Marziano G, Gaillard F, Pichavant M. 2007. Limestone assimilation and the origin of CO2 emissions at the Alban Hills (Central Italy): Constraints from experimental petrology. J Volcanol Geotherm Res, 166: 91–105CrossRefGoogle Scholar
  97. Iacono Marziano G, Gaillard F, Pichavant M. 2008. Limestone assimilation by basaltic magmas: An experimental re-assessment and application to Italian volcanoes. Contrib Mineral Petrol, 155: 719–738CrossRefGoogle Scholar
  98. Jin Z M, Zhang J, GreenII H W, Jin S. 2001. Eclogite rheology: Implications for subducted lithosphere. Geology, 29: 667–670CrossRefGoogle Scholar
  99. John T, Gussone N, Podladchikov Y Y, Bebout G E, Dohmen R, Halama R, Klemd R, Magna T, Seitz H M. 2012. Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs. Nat Geosci, 5: 489–492CrossRefGoogle Scholar
  100. John T, Scambelluri M, Frische M, Barnes J D, Bach W. 2011. Dehydration of subducting serpentinite: Implications for halogen mobility in subduction zones and the deep halogen cycle. Earth Planet Sci Lett, 308: 65–76CrossRefGoogle Scholar
  101. Johnson K T M. 1994. Experimental cpx/ and garnet/melt partitioning of REE and other trace elements at high pressures: Petrogenetic implications. Mineral Mag, 58: 454–455CrossRefGoogle Scholar
  102. Jones A P, Genge M, Carmody L. 2013. Carbonate melts and carbonatites. Rev Mineral Geochem, 75: 289–322CrossRefGoogle Scholar
  103. Jull M, Kelemen P B. 2001. On the conditions for lower crustal convective instability. J Geophys Res, 106: 6423–6446CrossRefGoogle Scholar
  104. Kang J T, Ionov D A, Liu F, Zhang C L, Golovin A V, Qin L P, Zhang Z F, Huang F. 2017. Calcium isotopic fractionation in mantle peridotites by melting and metasomatism and Ca isotope composition of the Bulk Silicate Earth. Earth Planet Sci Lett, 474: 128–137CrossRefGoogle Scholar
  105. Kato Y, Fujinaga K, Nakamura K, Takaya Y, Kitamura K, Ohta J, Toda R, Nakashima T, Iwamori H. 2011. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nat Geosci, 4: 535–539CrossRefGoogle Scholar
  106. Kawamoto T, Yoshikawa M, Kumagai Y, Mirabueno M H T, Okuno M, Kobayashi T. 2013. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab. Proc Natl Acad Sci USA, 110: 9663–9668CrossRefGoogle Scholar
  107. Ke S, Teng F Z, Li S G, Gao T, Liu S A, He Y, Mo X. 2016. Mg, Sr, and O isotope geochemistry of syenites from northwest Xinjiang, China: Tracing carbonate recycling during Tethyan oceanic subduction. Chem Geol, 437: 109–119CrossRefGoogle Scholar
  108. Kelemen P B, Hanghoj K, Greene A R. 2003. One view of the geochemistry of subduction-related magmatic arcs, with emphasis on primitive andesite and lower crust. In: Rudnick R L, ed. The Crust: Treatise on Geochemistry. Elsevier. 593–659Google Scholar
  109. Kelemen P B, Manning C E. 2015. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc Natl Acad Sci USA, 112: E3997–E4006CrossRefGoogle Scholar
  110. Kelemen P B, Matter J, Streit E E, Rudge J F, Curry W B, Blusztajn J. 2011. Rates and Mechanisms of Mineral Carbonation in Peridotite: Natural Processes and Recipes for Enhanced, in situ CO2 Capture and Storage. Annu Rev Earth Planet Sci, 39: 545–576CrossRefGoogle Scholar
  111. Kerrick D M. 2001. Present and past nonanthropogenic CO2 degassing from the solid earth. Rev Geophys, 39: 565–585CrossRefGoogle Scholar
  112. Kerrick D M, Connolly J A D. 2001. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle. Nature, 411: 293–296CrossRefGoogle Scholar
  113. Kiseeva E S, Litasov K D, Yaxley G M, Ohtani E, Kamenetsky V S. 2013. Melting and phase relations of carbonated eclogite at 9–21 GPa and the petrogenesis of alkali-rich melts in the deep mantle. J Petrol, 54: 1555–1583CrossRefGoogle Scholar
  114. Kiseeva E S, Yaxley G M, Hermann J, Litasov K D, Rosenthal A, Kamenetsky V S. 2012. An experimental study of carbonated eclogite at 3.5–5.5 GPa—Implications for silicate and carbonate metasomatism in the cratonic mantle. J Petrol, 53: 727–759CrossRefGoogle Scholar
  115. Klemme S, van der Laan S R, Foley S F, Günther D. 1995. Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper mantle conditions. Earth Planet Sci Lett, 133: 439–448CrossRefGoogle Scholar
  116. Kogiso T, Tatsumi Y, Nakano S. 1997. Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts. Earth Planet Sci Lett, 148: 193–205CrossRefGoogle Scholar
  117. Kumar A, Charan S N, Gopalan K, Macdougall J D. 1998. A long-lived enriched mantle source for two Proterozoic carbonatite complexes from Tamil Nadu, Southern India. Geochim Cosmochim Acta, 62: 515–523CrossRefGoogle Scholar
  118. Laporte D, Toplis M J, Seyler M, Devidal J M. 2004. A new experimental technique for extracting liquids from peridotite at very low degrees of melting: Application to partial melting of depleted peridotite. Contrib Mineral Petrol, 146: 463–484CrossRefGoogle Scholar
  119. Lee C T A, Shen B, Slotnick B S, Liao K, Dickens G R, Yokoyama Y, Lenardic A, Dasgupta R, Jellinek M, Lackey J S, Schneider T, Tice M M. 2013. Continental arc-island arc fluctuations, growth of crustal carbonates, and long-term climate change. Geosphere, 9: 21–36CrossRefGoogle Scholar
  120. Li S. 2015. Tracing deep carbon recycling by Mg isotopes. Earth Sci Front, 22: 143–159Google Scholar
  121. Li S, Wang Y. 2018. Formation time of the big mantle wedge beneath eastern China and a new lithospheric thinning mechanism of the North China craton—Geodynamic effects of deep recycled carbon. Sci China Earth Sci, 61: 853–868CrossRefGoogle Scholar
  122. Li S G, Yang W, Ke S, Meng X N, Tian H C, Xu L J, He Y S, Huang J, Wang X C, Xia Q K, Sun W D, Yang X Y, Ren Z Y, Wei H Q, Liu Y S, Meng F C, Yan J. 2016. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. Natl Sci Rev, 4: 111–120Google Scholar
  123. Liu D, Zhao Z, Zhu D C, Niu Y, Widom E, Teng F Z, DePaolo D J, Ke S, Xu J F, Wang Q, Mo X. 2015. Identifying mantle carbonatite metasomatism through Os-Sr-Mg isotopes in Tibetan ultrapotassic rocks. Earth Planet Sci Lett, 430: 458–469CrossRefGoogle Scholar
  124. Liu S A, Wang Z Z, Li S G, Huang J, Yang W. 2016. Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China. Earth Planet Sci Lett, 444: 169–178CrossRefGoogle Scholar
  125. Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q, Wang D B. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-north china orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J Petrol, 51: 537–571CrossRefGoogle Scholar
  126. Liu Y S, Gao S, Lee C T A, Hu S H, Liu X M, Yuan H L. 2005. Meltperidotite interactions: Links between garnet pyroxenite and high-Mg# signature of continental crust. Earth Planet Sci Lett, 234: 39–57CrossRefGoogle Scholar
  127. Liu Y S, He D, Gao C G, Foley S, Gao S, Hu Z C, Zong K Q, Chen H H. 2015. First direct evidence of sedimentary carbonate recycling in sub-duction-related xenoliths. Sci Rep, 5: 11547CrossRefGoogle Scholar
  128. Lofgren G E, Huss G R, Wasserburg G J. 2006. An experimental study of trace-element partitioning between Ti-Al-clinopyroxene and melt: Equilibrium and kinetic effects including sector zoning. Am Miner, 91: 1596–1606CrossRefGoogle Scholar
  129. Mackenzie F T, Morse J W. 1992. Sedimentary carbonates through Phanerozoic time. Geochim Cosmochim Acta, 56: 3281–3295CrossRefGoogle Scholar
  130. Malusà M G, Frezzotti M L, Ferrando S, Brandmayr E, Romanelli F, Panza G F. 2018. Active carbon sequestration in the Alpine mantle wedge and implications for long-term climate trends. Sci Rep, 8: 4740CrossRefGoogle Scholar
  131. Marschall H R, Schumacher J C. 2012. Arc magmas sourced from mélange diapirs in subduction zones. Nat Geosci, 5: 862–867CrossRefGoogle Scholar
  132. Mason E, Edmonds M, Turchyn A V. 2017. Remobilization of crustal carbon may dominate volcanic arc emissions. Science, 357: 290–294CrossRefGoogle Scholar
  133. McDonough W F, Sun S S. 1995. The composition of the earth. Chem Geol, 120: 223–253CrossRefGoogle Scholar
  134. Miyazaki T, Miyazaki T, Kagami H, Shuto K, Morikiyo T, Mohan V R, Rajasekaran K C. 2000. Rb-Sr geochronology, Nd-Sr isotopes and whole rock geochemistry of yelagiri and sevattur syenites, Tamil Nadu, South India. Gondwana Res, 3: 39–53CrossRefGoogle Scholar
  135. Molina J F, Poli S. 2000. Carbonate stability and fluid composition in subducted oceanic crust: An experimental study on H2O-CO2-bearing basalts. Earth Planet Sci Lett, 176: 295–310CrossRefGoogle Scholar
  136. Moynier F, Vance D, Fujii T, Savage P. 2017. The isotope geochemistry of zinc and copper. Rev Mineral Geochem, 82: 543–600CrossRefGoogle Scholar
  137. Müller R D, Dutkiewicz A. 2018. Oceanic crustal carbon cycle drives 26-million-year atmospheric carbon dioxide periodicities. Sci Adv, 4: eaaq0500CrossRefGoogle Scholar
  138. Ogasawara Y, Ohta M, Fukasawa K, Katayama I, Maruyama S. 2000. Diamond-bearing and diamond-free metacarbonate rocks from Kumdy-Kol in the Kokchetav Massif, northern Kazakhstan. Isl Arc, 9: 400–416CrossRefGoogle Scholar
  139. Pan D, Spanu L, Harrison B, Sverjensky D A, Galli G. 2013. Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth. Proc Natl Acad Sci USA, 110: 6646–6650CrossRefGoogle Scholar
  140. Pandit M K, Sial A N, Sukumaran G B, Pimentel M M, Ramasamy A K, Ferreira V P. 2002. Depleted and enriched mantle sources for Paleo- and Neoproterozoic carbonatites of southern India: Sr, Nd, C-O isotopic and geochemical constraints. Chem Geol, 189: 69–89CrossRefGoogle Scholar
  141. Parman S W, Grove T L. 2004. Harzburgite melting with and without H2O: Experimental data and predictive modeling. J Geophys Res, 109: 1–20CrossRefGoogle Scholar
  142. Pearson D G, Shirey S B, Carlson R W, Boyd F R, Pokhilenko N P, Shimizu N. 1995. Re-Os, Sm-Nd, and Rb-Sr isotope evidence for thick Archaean lithospheric mantle beneath the Siberian craton modified by multistage metasomatism. Geochim Cosmochim Acta, 59: 959–977Google Scholar
  143. Pichat S, Douchet C, Albarède F. 2003. Zinc isotope variations in deep-sea carbonates from the eastern equatorial Pacific over the last 175 ka. Earth Planet Sci Lett, 210: 167–178CrossRefGoogle Scholar
  144. Pickering-Witter J, Johnston A D. 2000. The effects of variable bulk composition on the melting systematics of fertile peridotitic assemblages. Contrib Mineral Petrol, 140: 190–211CrossRefGoogle Scholar
  145. Planavsky N J, Rouxel O J, Bekker A, Lalonde S V, Konhauser K O, Reinhard C T, Lyons T W. 2010. The evolution of the marine phosphate reservoir. Nature, 467: 1088–1090CrossRefGoogle Scholar
  146. Plank T, Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol, 145: 325–394CrossRefGoogle Scholar
  147. Poli S. 2015. Carbon mobilized at shallow depths in subduction zones by carbonatitic liquids. Nat Geosci, 8: 633–636CrossRefGoogle Scholar
  148. Poli S, Franzolin E, Fumagalli P, Crottini A. 2009. The transport of carbon and hydrogen in subducted oceanic crust: An experimental study to 5 GPa. Earth Planet Sci Lett, 278: 350–360CrossRefGoogle Scholar
  149. Ravna E K, Zozulya D, Kullerud K, Corfu F, Nabelek P I, Janák M, Slagstad T, Davidsen B, Selbekk R S, Schertl H P. 2017. Deep-seated carbonatite intrusion and metasomatism in the UHP Tromsø Nappe, Northern Scandinavian Caledonides—A natural example of generation of carbonatite from carbonated eclogite. J Petrol, 58: 2403–2428CrossRefGoogle Scholar
  150. Rea D K, Zachos J C, Owen R M, Gingerich P D. 1990. Global change at the Paleocene-Eocene boundary: Climatic and evolutionary con-sequences of tectonic events. Palaeogeogr Palaeoclimatol Palaeoecol, 79: 117–128CrossRefGoogle Scholar
  151. Richardson S H, Erlank A J, Hart S R. 1985. Kimberlite-borne garnet peridotite xenoliths from old enriched subcontinental lithosphere. Earth Planet Sci Lett, 75: 116–128CrossRefGoogle Scholar
  152. Rivalenti G, Vannucci R, Rampone E, Mazzucchelli M, Piccardo G B, Piccirillo E M, Bottazzi P, Ottolini L. 1996. Peridotite clinopyroxene chemistry reflects mantle processes rather than continental versus oceanic settings. Earth Planet Sci Lett, 139: 423–437CrossRefGoogle Scholar
  153. Robinson J A C, Wood B J, Blundy J D. 1998. The beginning of melting of fertile and depleted peridotite at 1.5 GPa. Earth Planet Sci Lett, 155: 97–111CrossRefGoogle Scholar
  154. Rohrbach A, Schmidt M W. 2011. Redox freezing and melting in the Earth’s deep mantle resulting from carbon-iron redox coupling. Nature, 472: 209–212CrossRefGoogle Scholar
  155. Salters V J M, Stracke A. 2004. Composition of the depleted mantle. Geochem Geophys Geosyst, 5: Q05004CrossRefGoogle Scholar
  156. Sánchez-Román M, McKenzie J A, de Luca Rebello Wagener A, Romanek C S, Sánchez-Navas A, Vasconcelos C. 2011. Experimentally determined biomediated Sr partition coefficient for dolomite: Significance and implication for natural dolomite. Geochim Cosmochim Acta, 75: 887–904CrossRefGoogle Scholar
  157. Schertl H P, Okay A I. 1994. A coesite inclusion in dolomite in Dabie Shan, China: Petrological and rheological significance. European J Mineral, 6: 995–1000CrossRefGoogle Scholar
  158. Schleicher H, Kramm U, Pernicka E, Schidlowski M, Schmidt F, Sub-ramanian V, Todt W, Viladkar S G. 1998. Enriched subcontinental upper mantle beneath southern India: Evidence from Pb, Nd, Sr, and C O isotopic studies on Tamil Nadu Carbonatites. J Petrol, 39: 1765–1785CrossRefGoogle Scholar
  159. Schwab B E, Johnston A D. 2001. Melting systematics of modally variable, compositionally intermediate peridotites and the effects of mineral fertility. J Petrol, 42: 1789–1811CrossRefGoogle Scholar
  160. Schwarzenbach E M, Früh-Green G L, Bernasconi S M, Alt J C, Plas A. 2013. Serpentinization and carbon sequestration: A study of two ancient peridotite-hosted hydrothermal systems. Chem Geol, 351: 115–133CrossRefGoogle Scholar
  161. Shi W, Li C, Algeo T J. 2017. Quantitative model evaluation of organic carbon oxidation hypotheses for the Ediacaran Shuram carbon isotopic excursion. Sci China Earth Sci, 60: 2118–2127CrossRefGoogle Scholar
  162. Shinohara H. 2013. Volatile flux from subduction zone volcanoes: Insights from a detailed evaluation of the fluxes from volcanoes in Japan. J Volcanol Geotherm Res, 268: 46–63CrossRefGoogle Scholar
  163. Shirey S B, Cartigny P, Frost D J, Keshav S, Nestola F, Nimis P, Pearson D G, Sobolev N V, Walter M J. 2013. Diamonds and the geology of mantle carbon. Rev Mineral Geochem, 75: 355–421CrossRefGoogle Scholar
  164. Sleep N H, Zahnle K. 2001. Carbon dioxide cycling and implications for climate on ancient Earth. J Geophys Res, 106: 1373–1399CrossRefGoogle Scholar
  165. Smith M P, Moore K, Kavecsánszki D, Finch A A, Kynicky J, Wall F. 2016. From mantle to critical zone: A review of large and giant sized deposits of the rare earth elements. Geosci Front, 7: 315–334CrossRefGoogle Scholar
  166. Song S, Su L, Niu Y, Lai Y, Zhang L. 2009. CH4 inclusions in orogenic harzburgite: Evidence for reduced slab fluids and implication for redox melting in mantle wedge. Geochim Cosmochim Acta, 73: 1737–1754CrossRefGoogle Scholar
  167. Sossi P A, Nebel O, O’Neill H S C, Moynier F. 2018. Zinc isotope composition of the Earth and its behaviour during planetary accretion. Chem Geol, 477: 73–84CrossRefGoogle Scholar
  168. Stagno V, Frost D J. 2010. Carbon speciation in the asthenosphere: Experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages. Earth Planet Sci Lett, 300: 72–84CrossRefGoogle Scholar
  169. Stagno V, Frost D J, McCammon C A, Mohseni H, Fei Y. 2015. The oxygen fugacity at which graphite or diamond forms from carbonate-bearing melts in eclogitic rocks. Contrib Mineral Petrol, 169: 16CrossRefGoogle Scholar
  170. Stagno V, Ojwang D O, McCammon C A, Frost D J. 2013. The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature, 493: 84–88CrossRefGoogle Scholar
  171. Stoppa F, Woolley A R. 1997. The Italian carbonatites: Field occurrence, petrology and regional significance. Mineral Petrol, 59: 43–67CrossRefGoogle Scholar
  172. Storey M, Duncan R A, Swisher C C. 2007. Paleocene-Eocene thermal maximum and the opening of the northeast Atlantic. Science, 316: 587–589CrossRefGoogle Scholar
  173. Strauss H. 1986. Carbon and sulfur isotopes in Precambrian sediments from the Canadian Shield. Geochim Cosmochim Acta, 50: 2653–2662CrossRefGoogle Scholar
  174. Suito K, Namba J, Horikawa T, Taniguchi Y, Sakurai N, Kobayashi M, Onodera A, Shimomura O, Kikegawa T. 2001. Phase relations of CaCO3 at high pressure and high temperature. Am Miner, 86: 997–1002CrossRefGoogle Scholar
  175. Sun Y, Teng F Z, Ying J F, Su B X, Hu Y, Fan Q C, Zhou X H. 2017. Magnesium isotopic evidence for ancient subducted oceanic crust in Lomu-like potassium-rich volcanic rocks. J Geophys Res-Solid Earth, 122: 7562–7572CrossRefGoogle Scholar
  176. Tao R, Zhang L, Tian M, Zhu J, Liu X, Liu J, Höfer H E, Stagno V, Fei Y. 2018. Formation of abiotic hydrocarbon from reduction of carbonate in subduction zones: Constraints from petrological observation and experimental simulation. Geochim Cosmochim Acta, 239: 390–408CrossRefGoogle Scholar
  177. Thomsen T B, Schmidt M W. 2008. Melting of carbonated pelites at 2.5–5.0 GPa, silicate-carbonatite liquid immiscibility, and potassium-carbon metasomatism of the mantle. Earth Planet Sci Lett, 267: 17–31CrossRefGoogle Scholar
  178. Thomson A R, Walter M J, Kohn S C, Brooker R A. 2016. Slab melting as a barrier to deep carbon subduction. Nature, 529: 76–79CrossRefGoogle Scholar
  179. Tian H C, Yang W, Li S G, Ke S, Chu Z Y. 2016. Origin of low δ 26Mg basalts with EM-I component: Evidence for interaction between enriched lithosphere and carbonated asthenosphere. Geochim Cosmochim Acta, 188: 93–105CrossRefGoogle Scholar
  180. Tsuno K, Dasgupta R. 2011. Melting phase relation of nominally anhydrous, carbonated pelitic-eclogite at 2.5–3.0 GPa and deep cycling of sedimentary carbon. Contrib Mineral Petrol, 161: 743–763CrossRefGoogle Scholar
  181. Tsuno K, Dasgupta R, Danielson L, Righter K. 2012. Flux of carbonate melt from deeply subducted pelitic sediments: Geophysical and geo-chemical implications for the source of Central American volcanic arc. Geophys Res Lett, 39: L16307CrossRefGoogle Scholar
  182. Tumiati S, Tiraboschi C, Sverjensky D A, Pettke T, Recchia S, Ulmer P, Miozzi F, Poli S. 2017. Silicate dissolution boosts the CO2 concentrations in subduction fluids. Nat Commun, 8: 616CrossRefGoogle Scholar
  183. van Keken P E, Hacker B R, Syracuse E M, Abers G A. 2011. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J Geophys Res, 116: B01401CrossRefGoogle Scholar
  184. Vitale Brovarone A, Martinez I, Elmaleh A, Compagnoni R, Chaduteau C, Ferraris C, Esteve I. 2017. Massive production of abiotic methane during subduction evidenced in metamorphosed ophicarbonates from the Italian Alps. Nat Commun, 8: 14134CrossRefGoogle Scholar
  185. Walker A N, Rutter E H, Brodie K H. 1990. Experimental study of grain-size sensitive flow of synthetic, hot-pressed calcite rocks. Geol Soc Lond Spec Publ, 54: 259–284CrossRefGoogle Scholar
  186. Walker J C G, Hays P B, Kasting J F. 1981. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J Geophys Res, 86: 9776–9782CrossRefGoogle Scholar
  187. Walker R J, Carlson R W, Shirey S B, Boyd F R. 1989. Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths: Implications for the chemical evolution of subcontinental mantle. Geochim Cosmochim Acta, 53: 1583–1595CrossRefGoogle Scholar
  188. Walter M J. 1998. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol, 39: 29–60CrossRefGoogle Scholar
  189. Walter M J, Bulanova G P, Armstrong L S, Keshav S, Blundy J D, Gudfinnsson G, Lord O T, Lennie A R, Clark S M, Smith C B, Gobbo L. 2008. Primary carbonatite melt from deeply subducted oceanic crust. Nature, 454: 622–625CrossRefGoogle Scholar
  190. Walter M J, Kohn S C, Araujo D, Bulanova G P, Smith C B, Gaillou E, Wang J, Steele A, Shirey S B. 2011. Deep mantle cycling of oceanic crust: Evidence from diamonds and their mineral inclusions. Science, 334: 54–57CrossRefGoogle Scholar
  191. Wang C Y, Liu Y S, Min N, Zong K Q, Hu Z C, Gao S. 2016. Paleo-Asian oceanic subduction-related modification of the lithospheric mantle under the North China Craton: Evidence from peridotite xenoliths in the Datong basalts. Lithos, 261: 109–127CrossRefGoogle Scholar
  192. Wang S J, Teng F Z, Li S G. 2014a. Tracing carbonate-silicate interaction during subduction using magnesium and oxygen isotopes. Nat Commun, 5: 5328CrossRefGoogle Scholar
  193. Wang S J, Teng F Z, Li S G, Hong J A. 2014b. Magnesium isotopic systematics of mafic rocks during continental subduction. Geochim Cosmochim Acta, 143: 34–48CrossRefGoogle Scholar
  194. Wang S J, Teng F Z, Li S G, Zhang L F, Du J X, He Y S, Niu Y. 2017. Tracing subduction zone fluid-rock interactions using trace element and Mg-Sr-Nd isotopes. Lithos, 290–291: 94–103CrossRefGoogle Scholar
  195. Wang S J, Teng F Z, Rudnick R L, Li S G. 2015. The behavior of magnesium isotopes in low-grade metamorphosed mudrocks. Geochim Cosmochim Acta, 165: 435–448CrossRefGoogle Scholar
  196. Wang S J, Teng F Z, Scott J M. 2016. Tracing the origin of continental HIMU-like intraplate volcanism using magnesium isotope systematics. Geochim Cosmochim Acta, 185: 78–87CrossRefGoogle Scholar
  197. Wang X J, Chen L H, Hofmann A W, Hanyu T, Kawabata H, Zhong Y, Xie L W, Shi J H, Miyazaki T, Hirahara Y, Takahashi T, Senda R, Chang Q, Vaglarov B S, Kimura J I. 2018. Recycled ancient ghost carbonate in the Pitcairn mantle plume. Proc Natl Acad Sci USA, 115: 8682–8687CrossRefGoogle Scholar
  198. Wang X J, Chen L H, Hofmann A W, Mao F G, Liu J Q, Zhong Y, Xie L W, Yang Y H. 2017. Mantle transition zone-derived EM1 component beneath NE China: Geochemical evidence from Cenozoic potassic basalts. Earth Planet Sci Lett, 465: 16–28CrossRefGoogle Scholar
  199. Wang Y F, Zhang J F, Jin Z M, GreenII H W. 2012. Mafic granulite rheology: Implications for a weak continental lower crust. Earth Planet Sci Lett, 353–354: 99–107CrossRefGoogle Scholar
  200. Wang Z Z, Liu S A, Chen L H, Li S G, Zeng G. 2018. Compositional transition in natural alkaline lavas through silica-undersaturated melt-lithosphere interaction. Geology, 46: 771–774CrossRefGoogle Scholar
  201. Wasylenki L E, Baker M, Kent A, Stolper E. 2003. Near-solidus melting of the shallow upper mantle: Partial melting experiments on depleted peridotite. J Petrol, 44: 1163–1191CrossRefGoogle Scholar
  202. Wignall P B, Newton R. 2003. Contrasting deep-water records from the upper permian and lower triassic of south tibet and british columbia: Evidence for a diachronous mass extinction. Palaios, 18: 153–167CrossRefGoogle Scholar
  203. Woodland A B, Koch M. 2003. Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, Southern Africa. Earth Planet Sci Lett, 214: 295–310CrossRefGoogle Scholar
  204. Woolley A R, Bailey D K. 2012. The crucial role of lithospheric structure in the generation and release of carbonatites: Geological evidence. Mineral Mag, 76: 259–270CrossRefGoogle Scholar
  205. Workman R K, Hart S R. 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett, 231: 53–72CrossRefGoogle Scholar
  206. Wu D, Liu Y S, Chen C F, Xu R, Ducea M N, Hu Z C, Zong K Q. 2017. Insitu trace element and Sr isotopic compositions of mantle xenoliths constrain two-stage metasomatism beneath the northern North China Craton. Lithos, 288–289: 338–351CrossRefGoogle Scholar
  207. Wyllie P J, Huang W L. 1976. Carbonation and melting reactions in the system CaO-MgO-SiO2-CO2 at mantle pressures with geophysical and petrological applications. Contr Mineral Petrol, 54: 79–107CrossRefGoogle Scholar
  208. Wyllie P J, Tuttle O F. 1960. The system CaO-CO2-H2O and the origin of carbonatites. J Petrol, 1: 1–46CrossRefGoogle Scholar
  209. Xu C, Chakhmouradian A R, Taylor R N, Kynicky J, Li W, Song W, Fletcher I R. 2014. Origin of carbonatites in the South Qinling orogen: Implications for crustal recycling and timing of collision between the South and North China Blocks. Geochim Cosmochim Acta, 143: 189–206CrossRefGoogle Scholar
  210. Xu C, Kynický J, Smith M P, Kopriva A, Brtnický M, Urubek T, Yang Y, Zhao Z, He C, Song W. 2017a. Origin of heavy rare earth mineralization in South China. Nat Commun, 8: 14598CrossRefGoogle Scholar
  211. Xu C, Kynický J, Song W, Tao R, Lü Z, Li Y, Yang Y, Pohanka M, Galiova M V, Zhang L, Fei Y. 2018. Cold deep subduction recorded by remnants of a Paleoproterozoic carbonated slab. Nat Commun, 9: 2790CrossRefGoogle Scholar
  212. Xu C, Kynický J, Tao R, Liu X, Zhang L, Pohanka M, Song W, Fei Y. 2017b. Recovery of an oxidized majorite inclusion from Earth’s deep asthenosphere. Sci Adv, 3: e1601589CrossRefGoogle Scholar
  213. Yang W, Teng F Z, Zhang H F, Li S G. 2012. Magnesium isotopic systematics of continental basalts from the North China craton: Implications for tracing subducted carbonate in the mantle. Chem Geol, 328: 185–194CrossRefGoogle Scholar
  214. Yaxley G M, Brey G P. 2004. Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: Implications for petrogenesis of carbonatites. Contrib Mineral Petrol, 146: 606–619CrossRefGoogle Scholar
  215. Yaxley G M, Green D H. 1994. Experimental demonstration of refractory carbonate-bearing eclogite and siliceous melt in the subduction regime. Earth Planet Sci Lett, 128: 313–325CrossRefGoogle Scholar
  216. Ying J, Zhou X, Zhang H. 2004. Geochemical and isotopic investigation of the Laiwu-Zibo carbonatites from western Shandong Province, China, and implications for their petrogenesis and enriched mantle source. Lithos, 75: 413–426CrossRefGoogle Scholar
  217. Ying Y, Chen W, Lu J, Jiang S Y, Yang Y. 2017. In situ U-Th-Pb ages of the Miaoya carbonatite complex in the South Qinling orogenic belt, central China. Lithos, 290–291: 159–171CrossRefGoogle Scholar
  218. Zack T, Brumm R. 1998. Ilmenite/liquid partition coefficients of 26 trace elements determined through ilmenite/clinopyroxene partitioning in garnet pyroxene. Proceedings of the 7th International Kimberlite Conference. 986–988Google Scholar
  219. Zhang H F. 2009. Peridotite-melt interaction: A key point for the destruction of cratonic lithospheric mantle. Sci Bull, 54: 3417–3437CrossRefGoogle Scholar
  220. Zhang J, Wang C, Wang Y. 2012. Experimental constraints on the destruction mechanism of the North China Craton. Lithos, 149: 91–99CrossRefGoogle Scholar
  221. Zong K, Liu Y. 2018. Carbonate metasomatism in the lithospheric mantle: Implications for cratonic destruction in North China. Sci China Earth Sci, 61: 711–729CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yongsheng Liu
    • 1
    • 2
    Email author
  • Chunfei Chen
    • 1
  • Detao He
    • 1
  • Wei Chen
    • 2
  1. 1.School of Earth SciencesChina University of GeosciencesWuhanChina
  2. 2.State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesWuhanChina

Personalised recommendations