Science China Earth Sciences

, Volume 62, Issue 7, pp 1053–1075 | Cite as

Continental drift, plateau uplift, and the evolutions of monsoon and arid regions in Asia, Africa, and Australia during the Cenozoic

  • Xiaodong LiuEmail author
  • Buwen Dong
  • Zhi-Yong Yin
  • Robin S. Smith
  • Qingchun Guo
Research Paper


Monsoon and arid regions in the Asia-Africa-Australia (A-A-A) realm occupy more than 60% of the total area of these continents. Geological evidence showed that significant changes occurred to the A-A-A environments of the monsoon and arid regions, the land-ocean configuration in the Eastern Hemisphere, and the topography of the Tibetan Plateau (TP) in the Cenozoic. Motivated by this background, numerical experiments for 5 typical geological periods during the Cenozoic were conducted using a coupled ocean-atmosphere general circulation model to systemically explore the formations and evolutionary histories of the Cenozoic A-A-A monsoon and arid regions under the influences of continental drift and plateau uplift. Results of the numerical experiments indicate that the timings and causes of the formations of monsoon and arid regions in the A-A-A realm were very different. The northern and southern African monsoons existed during the mid-Paleocene, while the South Asian monsoon appeared in the Eocene after the Indian Subcontinent moved into the tropical Northern Hemisphere. In contrast, the East Asian monsoon and northern Australian monsoon were established much later in the Miocene. The establishment of the tropical monsoons in northern and southern Africa, South Asia, and Australia were determined by both the continental drift and seasonal migration of the Inter-Tropical Convergence Zone (ITCZ), while the position and height of the TP were the key factor for the establishment of the East Asian monsoon. The presence of the subtropical arid regions in northern and southern Africa, Asia, and Australia depended on the positions of the continents and the control of the planetary scale subtropical high pressure zones, while the arid regions in the Arabian Peninsula and West Asia were closely related to the retreat of the Paratethys Sea. The formation of the mid-latitude arid region in the Asian interior, on the other hand, was the consequence of the uplift of the TP. These results from this study provide insight to the important roles played by the earth’s tectonic boundary conditions in the formations and evolutions of regional climates during geological times.


Cenozoic Monsoon region Arid region Continental drift Tibetan Plateau uplift Climate simulation 



The authors sincerely thank the anonymous reviewers who provided valuable comments and suggestions that helped revision of the manuscript. This work was jointly supported by the National Natural Science Foundation of China (Grant Nos. 41690115 & 41572150) and the Strategic Priority Research Program (A) of Chinese Academy of Sciences (Grant No. XDA20070103). B Dong and R S Smith were supported by the U.K. National Centre for Atmospheric Science-Climate (NCAS-Climate) at the University of Reading. Z Y Yin was in part supported by the University of San Diego (FRG # 2017-18).


  1. Alaei Kakhki N, Aliabadian M, Schweizer M. 2016. Out of Africa: Biogeographic history of the open-habitat chats (Aves, Muscicapidae: Saxicolinae) across arid areas of the old world. Zool Scr, 45: 237–251CrossRefGoogle Scholar
  2. An Z, Kutzbach J E, Prell W L, Porter S C. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 411: 62–66CrossRefGoogle Scholar
  3. An Z. 2000. The history and variability of the East Asian paleomonsoon climate. Quat Sci Rev, 19: 171–187CrossRefGoogle Scholar
  4. Beerling D J, Royer D L. 2011. Convergent Cenozoic CO2 history. Nat Geosci, 4: 418–420CrossRefGoogle Scholar
  5. Berry G, Reeder M J. 2014. Objective identification of the intertropical convergence zone: Climatology and trends from the ERA-Interim. J Clim, 27: 1894–1909CrossRefGoogle Scholar
  6. Besse J, Courtillot V, Pozzi J P, Westphal M, Zhou Y X. 1984. Palaeomagnetic estimates of crustal shortening in the Himalayan thrusts and Zangbo suture. Nature, 311: 621–626CrossRefGoogle Scholar
  7. Bobe R. 2006. The evolution of arid ecosystems in eastern Africa. J Arid Environ, 66: 564–584CrossRefGoogle Scholar
  8. Bosboom R, Dupont-Nivet G, Grothe A, Brinkhuis H, Villa G, Mandic O, Stoica M, Huang W, Yang W, Guo Z, Krijgsman W. 2014. Linking Tarim Basin sea retreat (west China) and Asian aridification in the late Eocene. Basin Res, 26: 621–640CrossRefGoogle Scholar
  9. Bowler J M, Wyrwoll K H, Lu Y. 2001. Variations of the northwest Australian summer monsoon over the last 300,000 years: The paleohydrological record of the Gregory (Mulan) Lakes System. Quat Int, 83–85: 63–80CrossRefGoogle Scholar
  10. Caley T, Malaizé B, Revel M, Ducassou E, Wainer K, Ibrahim M, Shoeaib D, Migeon S, Marieu V. 2011. Orbital timing of the Indian, East Asian and African boreal monsoons and the concept of a ‘global monsoon’. Quat Sci Rev, 30: 3705–3715CrossRefGoogle Scholar
  11. Carrapa B, Huntington K W, Clementz M, Quade J, Bywater-Reyes S, Schoenbohm L M, Canavan R R. 2014. Uplift of the Central Andes of NW Argentina associated with upper crustal shortening, revealed by multiproxy isotopic analyses. Tectonics, 33: 1039–1054CrossRefGoogle Scholar
  12. Caves J K, Moragne D Y, Ibarra D E, Bayshashov B U, Gao Y, Jones M M, Zhamangara A, Arzhannikova A V, Arzhannikov S G, Chamberlain C P. 2016. The Neogene de-greening of Central Asia. Geology, 44: 887–890CrossRefGoogle Scholar
  13. Chatterjee S, Goswami A, Scotese C R. 2013. The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Res, 23: 238–267CrossRefGoogle Scholar
  14. Chiang J C H, Bitz C M. 2005. Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Clim Dyn, 25: 477–496CrossRefGoogle Scholar
  15. Colin C, Siani G, Liu Z, Blamart D, Skonieczny C, Zhao Y, Bory A, Frank N, Duchamp-Alphonse S, Thil F, Richter T, Kissel C, Gargani J. 2014. Late Miocene to early Pliocene climate variability off NW Africa (ODP Site 659). Palaeogeogr Palaeoclimatol Palaeoecol, 401: 81–95CrossRefGoogle Scholar
  16. DeCelles P G, Quade J, Kapp P, Fan M, Dettman D L, Ding L. 2007. High and dry in central Tibet during the Late Oligocene. Earth Planet Sci Lett, 253: 389–401CrossRefGoogle Scholar
  17. deMenocal P B. 1995. Plio-pleistocene African climate. Science, 270: 53–59CrossRefGoogle Scholar
  18. Dettman D L, Fang X, Garzione C N, Li J. 2003. Uplift-driven climate change at 12 Ma: A long δ 18O record from the NE margin of the Tibetan plateau. Earth Planet Sci Lett, 214: 267–277CrossRefGoogle Scholar
  19. Ding L, Xu Q, Yue Y, Wang H, Cai F, Li S. 2014. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene—Eocene Linzhou Basin. Earth Planet Sci Lett, 392: 250–264CrossRefGoogle Scholar
  20. Ding Z, Rutter N, Jingtai H, Tungsheng L. 1992. A coupled environmental system formed at about 2.5 Ma in East Asia. Palaeogeogr Palaeoclimatol Palaeoecol, 94: 223–242CrossRefGoogle Scholar
  21. Fan M, Carrapa B. 2014. Late Cretaceous-early Eocene Laramide uplift, exhumation, and basin subsidence in Wyoming: Crustal responses to flat slab subduction. Tectonics, 33: 509–529CrossRefGoogle Scholar
  22. Fang X, Zan J, Appel E, Lu Y, Song C, Dai S, Tuo S. 2015. An Eocene—Miocene continuous rock magnetic record from the sediments in the Xining Basin, NW China: Indication for Cenozoic persistent drying driven by global cooling and Tibetan Plateau uplift. Geophys J Int, 201: 78–89CrossRefGoogle Scholar
  23. Fujioka T, Chappell J. 2010. History of Australian aridity: chronology in the evolution of arid landscapes. Geol Soc London Spec Publ, 346: 121–139CrossRefGoogle Scholar
  24. Gadgil S. 2003. The Indian Monsoon and its variability. Annu Rev Earth Planet Sci, 31: 429–467CrossRefGoogle Scholar
  25. Gadgil S. 2018. The monsoon system: Land-sea breeze or the ITCZ? J Earth Syst Sci, 127: 1CrossRefGoogle Scholar
  26. Guo Z T, Ruddiman W F, Hao Q Z, Wu H B, Qiao Y S, Zhu R X, Peng S Z, Wei J J, Yuan B Y, Liu T S. 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416: 159–163CrossRefGoogle Scholar
  27. Guo Z T, Sun B, Zhang Z S, Peng S Z, Xiao G Q, Ge J Y, Hao Q Z, Qiao Y S, Liang M Y, Liu J F, Yin Q Z, Wei J J. 2008. A major reorganization of Asian climate by the early Miocene. Clim Past, 4: 153–174CrossRefGoogle Scholar
  28. Guo Z. 2017. Loess Plateau attests to the onsets of monsoon and deserts (in Chinese). Sci Sin Terrae, 47: 421–437CrossRefGoogle Scholar
  29. Gupta A K, Yuvaraja A, Prakasam M, Clemens S C, Velu A. 2015. Evolution of the South Asian monsoon wind system since the late Middle Miocene. Palaeogeogr Palaeoclimatol Palaeoecol, 438: 160–167CrossRefGoogle Scholar
  30. Gurnis M, Turner M, Zahirovic S, DiCaprio L, Spasojevic S, Müller R D, Boyden J, Seton M, Manea V C, Bower D J. 2012. Plate tectonic reconstructions with continuously closing plates. Comput Geosci, 38: 35–42CrossRefGoogle Scholar
  31. Hall R. 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. J Asian Earth Sci, 20: 353–431CrossRefGoogle Scholar
  32. Herold N, Seton M, Müller R D, You Y, Huber M. 2008. Middle Miocene tectonic boundary conditions for use in climate models. Geochem Geophys Geosyst, 9: Q10009CrossRefGoogle Scholar
  33. Huber M, Goldner A. 2012. Eocene monsoons. J Asian Earth Sci, 44: 3–23CrossRefGoogle Scholar
  34. Jones C, Gregory J, Thorpe R, Cox P, Murphy J, Sexton D, Valdes P. 2005. Systematic optimisation and climate simulation of FAMOUS, a fast version of HadCM3. Clim Dyn, 25: 189–204CrossRefGoogle Scholar
  35. Kroon D, Steens T N F, Troelstra S R. 1991. Onset of monsoonal related upwelling in the western Arabian Sea as revealed by planktonic foraminifers. Proc Ocean Drill Prog Sci Res, 117: 257–263Google Scholar
  36. Kutzbach J E, Prell W L, Ruddiman W F. 1993. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau. J Geol, 101: 177–190CrossRefGoogle Scholar
  37. Läderach A, Raible C C. 2013. Lower-tropospheric humidity: climatology, trends and the relation to the ITCZ. Tellus Ser A-Dyn Meteorol Oceanogr, 65: 20413CrossRefGoogle Scholar
  38. Li J X, Yue L P, Roberts A P, Hirt A M, Pan F, Guo L, Xu Y, Xi R G, Guo L, Qiang X K, Gai C C, Jiang Z X, Sun Z M, Liu Q S. 2018a. Global cooling and enhanced Eocene Asian mid-latitude interior aridity. Nat Commun, 9: 3026CrossRefGoogle Scholar
  39. Li X, Zhang R, Zhang Z, Yan Q. 2018b. What enhanced the aridity in Eocene Asian inland: Global cooling or early Tibetan Plateau uplift? Palaeogeogr Palaeoclimatol Palaeoecol, 510: 6–14CrossRefGoogle Scholar
  40. Licht A, van Cappelle M, Abels H A, Ladant J B, Trabucho-Alexandre J, France-Lanord C, Donnadieu Y, Vandenberghe J, Rigaudier T, Lécuyer C, Terry Jr D, Adriaens R, Boura A, Guo Z, Soe A N, Quade J, Dupont-Nivet G, Jaeger J J. 2014. Asian monsoons in a late Eocene greenhouse world. Nature, 513: 501–506CrossRefGoogle Scholar
  41. Linder H P. 2017. East African Cenozoic vegetation history. Evol Anthropol, 26: 300–312CrossRefGoogle Scholar
  42. Liu X D, Dong B W. 2013. Influence of the Tibetan Plateau uplift on the Asian monsoon-arid environment evolution. Chin Sci Bull, 58: 4277–4291CrossRefGoogle Scholar
  43. Liu X, Dong B, Yin Z Y, Smith R S, Guo Q. 2017. Continental drift and plateau uplift control origination and evolution of Asian and Australian monsoons. Sci Rep, 7: 40344CrossRefGoogle Scholar
  44. Liu X, Guo Q, Guo Z, Yin Z Y, Dong B, Smith R. 2015a. Where were the monsoon regions and arid zones in Asia prior to the Tibetan Plateau uplift? Nat Sci Rev, 2: 403–416CrossRefGoogle Scholar
  45. Liu X, Sun H, Miao Y, Dong B, Yin Z Y. 2015b. Impacts of uplift of northern Tibetan Plateau and formation of Asian inland deserts on regional climate and environment. Quat Sci Rev, 116: 1–14CrossRefGoogle Scholar
  46. Liu X, Yin Z Y. 2002. Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol, 183: 223–245CrossRefGoogle Scholar
  47. Liu X, Sun H, Miao Y, Dong B, Yin Z Y. 2015b. Impacts of uplift of northern Tibetan Plateau and formation of Asian inland deserts on regional climate and environment. Quat Sci Rev, 116: 1–14CrossRefGoogle Scholar
  48. Liu X, Yin Z Y. 2002. Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol, 183: 223–245CrossRefGoogle Scholar
  49. Marin J, Donnellan S C, Hedges S B, Doughty P, Hutchinson M N, Cruaud C, Vidal N. 2013. Tracing the history and biogeography of the Australian blindsnake radiation. J Biogeogr, 40: 928–937CrossRefGoogle Scholar
  50. Martin H A. 2006. Cenozoic climatic change and the development of the arid vegetation in Australia. J Arid Environ, 66: 533–563CrossRefGoogle Scholar
  51. McIlveen R. 2010. Fundamentals of Weather and Climate. 2nd ed. New York: Oxford University Press. 527–534Google Scholar
  52. Miller H B D, Vasconcelos P M, Eiler J M, Farley K A. 2017. A Cenozoic terrestrial paleoclimate record from He dating and stable isotope geochemistry of goethites from Western Australia. Geology, 45: 895–898CrossRefGoogle Scholar
  53. Molnar P, Stock J M. 2009. Slowing of India’s convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics, 28: TC3001CrossRefGoogle Scholar
  54. Nicholson S E. 2009. A revised picture of the structure of the “monsoon” and land ITCZ over West Africa. Clim Dyn, 32: 1155–1171CrossRefGoogle Scholar
  55. Peel M C, Finlayson B L, McMahon T A. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci, 11: 1633–1644CrossRefGoogle Scholar
  56. Polissar P J, Freeman K H, Rowley D B, McInerney F A, Currie B S. 2009. Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers. Earth Planet Sci Lett, 287: 64–76CrossRefGoogle Scholar
  57. Popov S V, Shcherba I G, Ilyina L B, Nevesskaya L A, Paramonova N P, Khondkarian S O, Magyar I. 2006. Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean. Palaeogeogr Palaeoclimatol Palaeoecol, 238: 91–106CrossRefGoogle Scholar
  58. Quade J, Cerling T E, Bowman J R. 1989. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature, 342: 163–166CrossRefGoogle Scholar
  59. Quan C, Liu Y S C, Utescher T. 2012. Eocene monsoon prevalence over China: A paleobotanical perspective. Palaeogeogr Palaeoclimatol Palaeoecol, 365–366: 302–311CrossRefGoogle Scholar
  60. Ramstein G, Fluteau F, Besse J, Joussaume S. 1997. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years. Nature, 386: 788–795CrossRefGoogle Scholar
  61. Rea D K, Snoeckx H, Joseph L H. 1998. Late Cenozoic Eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere. Paleoceanography, 13: 215–224CrossRefGoogle Scholar
  62. Rix M G, Cooper S J B, Meusemann K, Klopfstein S, Harrison S E, Harvey M S, Austin A D. 2017. Post-Eocene climate change across continental Australia and the diversification of Australasian spiny trapdoor spiders (Idiopidae: Arbanitinae). Mol Phylogenet Evol, 109: 302–320CrossRefGoogle Scholar
  63. Rodwell M J, Hoskins B J. 1996. Monsoons and the dynamics of deserts. Q J R Meteorol Soc, 122: 1385–1404CrossRefGoogle Scholar
  64. Rowley D B, Currie B S. 2006. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 439: 677–681CrossRefGoogle Scholar
  65. Scotese C R. 2004. A continental drift flipbook. J Geol, 112: 729–741CrossRefGoogle Scholar
  66. Searle M P, Windley B F, Coward M P, Cooper D J W, Rex A J, Rex D, Tingdong L, Xuchang X, Jan M Q, Thakur V C, Kumar S. 1987. The closing of Tethys and the tectonics of the Himalaya. Geol Soc Am Bull, 98: 678–701CrossRefGoogle Scholar
  67. Senut B, Pickford M, Ségalen L. 2009. Neogene desertification of Africa. C R Geosci, 341: 591–602CrossRefGoogle Scholar
  68. Shi Z, Liu X, An Z, Yi B, Yang P, Mahowald N. 2011. Simulated variations of eolian dust from inner Asian deserts at the mid-Pliocene, last glacial maximum, and present day: Contributions from the regional tectonic uplift and global climate change. Clim Dyn, 37: 2289–2301CrossRefGoogle Scholar
  69. Shukla A, Mehrotra R C, Spicer R A, Spicer T E V, Kumar M. 2014. Cool equatorial terrestrial temperatures and the South Asian monsoon in the Early Eocene: Evidence from the Gurha Mine, Rajasthan, India. Palaeogeogr Palaeoclimatol Palaeoecol, 412: 187–198CrossRefGoogle Scholar
  70. Smith R S, Gregory J M, Osprey A. 2008. A description of the FAMOUS (version XDBUA) climate model and control run. Geosci Model Dev, 1: 53–68CrossRefGoogle Scholar
  71. Smith R S, Gregory J. 2012. The last glacial cycle: Transient simulations with an AOGCM. Clim Dyn, 38: 1545–1559CrossRefGoogle Scholar
  72. Spicer R, Yang J, Herman A, Kodrul T, Aleksandrova G, Maslova N, Spicer T, Ding L, Xu Q, Shukla A, Srivastava G, Mehrotra R, Liu X Y, Jin J H. 2017. Paleogene monsoons across India and South China: Drivers of biotic change. Gondwana Res, 49: 350–363CrossRefGoogle Scholar
  73. Sun J, Windley B F. 2015. Onset of aridification by 34 Ma across the Eocene-Oligocene transition in Central Asia. Geology, 43: 1015–1018CrossRefGoogle Scholar
  74. Sun J, Gong Z, Tian Z, Jia Y, Windley B. 2015. Late Miocene stepwise aridification in the Asian interior and the interplay between tectonics and climate. Palaeogeogr Palaeoclimatol Palaeoecol, 421: 48–59CrossRefGoogle Scholar
  75. Sun X, Wang P. 2005. How old is the Asian monsoon system?—Palaeobotanical records from China. Palaeogeogr Palaeoclimatol Palaeoecol, 222: 181–222CrossRefGoogle Scholar
  76. Sun Y, An Z. 2002. History and variability of Asian interior aridity recorded by eolian flux in the Chinese Loess Plateau during the past 7 Ma. Sci China Ser D-Earth Sci, 45: 420–429CrossRefGoogle Scholar
  77. Veranso-Libalah M C, Kadereit G, Stone R D, Couvreur T L P. 2018. Multiple shifts to open habitats in Melastomateae (Melastomataceae) congruent with the increase of African Neogene climatic aridity. J Biogeogr, 45: 1420–1431CrossRefGoogle Scholar
  78. Wang B, Ding Q. 2006. Changes in global monsoon precipitation over the past 56 years. Geophys Res Lett, 33: L06711Google Scholar
  79. Wang B, Liu J, Kim H J, Webster P J, Yim S Y. 2012. Recent change of the global monsoon precipitation (1979–2008). Clim Dyn, 39: 1123–1135CrossRefGoogle Scholar
  80. Wang C, Dai J, Zhao X, Li Y, Graham S A, He D, Ran B, Meng J. 2014. Outward-growth of the Tibetan Plateau during the Cenozoic: A review. Tectonophysics, 621: 1–43CrossRefGoogle Scholar
  81. Wang P X. 2009. Global monsoon in a geological perspective. Chin Sci Bull, 54: 1113–1136Google Scholar
  82. Webster P J. 1987. The elementary monsoon. In: Fein J S, Stephens P L, eds. Monsoons. New York: John Wiley. 3–32Google Scholar
  83. Webster P J. 2004. The elementary Hadley circulation. In: Diaz H F, Bradley R S, eds. Present, Past and Future. Dordrecht: Springer. 9–60Google Scholar
  84. Wei H H, Meng Q R, Ding L, Li Z Y. 2013. Tertiary evolution of the western Tarim basin, northwest China: A tectono-sedimentary response to northward indentation of the Pamir salient. Tectonics, 32: 558–575CrossRefGoogle Scholar
  85. Williams M. 2015. Interactions between fluvial and eolian geomorphic systems and processes: Examples from the Sahara and Australia. Catena, 134: 4–13CrossRefGoogle Scholar
  86. Wu G, Liu Y, He B, Bao Q, Duan A, Jin F F. 2012. Thermal controls on the Asian summer monsoon. Sci Rep, 2: 404CrossRefGoogle Scholar
  87. Wu G X, Liu Y, Zhu X, Li W, Ren R, Duan A, Liang X. 2009. Multi-scale forcing and the formation of subtropical desert and monsoon. Ann Geophys, 27: 3631–3644CrossRefGoogle Scholar
  88. Wyrwoll K H, Miller G H. 2001. Initiation of the Australian summer monsoon 14,000 years ago. Quat Int, 83–85: 119–128CrossRefGoogle Scholar
  89. Xie P, Arkin P A. 1996. Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J Clim, 9: 840–858CrossRefGoogle Scholar
  90. Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292: 686–693CrossRefGoogle Scholar
  91. Žagar N, Skok G, Tribbia J. 2011. Climatology of the ITCZ derived from ERA Interim reanalyses. J Geophys Res, 116: D15103CrossRefGoogle Scholar
  92. Zhang Z, Flatøy F, Wang H, Bethke I, Bentsen M, Guo Z. 2012. Early Eocene Asian climate dominated by desert and steppe with limited monsoons. J Asian Earth Sci, 44: 24–35CrossRefGoogle Scholar
  93. Zhang Z, Ramstein G, Schuster M, Li C, Contoux C, Yan Q. 2014. Aridification of the Sahara desert caused by Tethys Sea shrinkage during the Late Miocene. Nature, 513: 401–404CrossRefGoogle Scholar
  94. Zhao S Q. 1983. A new scheme for comprehensive geographical regionalization in China. Acta Geogr Sin, 38: 1–10Google Scholar
  95. Zhuang G, Pagani M, Zhang Y G. 2017. Monsoonal upwelling in the western Arabian Sea since the middle Miocene. Geology, 45: 655–658CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiaodong Liu
    • 1
    • 2
    • 3
    Email author
  • Buwen Dong
    • 4
  • Zhi-Yong Yin
    • 5
  • Robin S. Smith
    • 4
  • Qingchun Guo
    • 6
  1. 1.State Key Laboratory of Loess and Quaternary Geology, Institute of Earth EnvironmentChinese Academy of SciencesXi’anChina
  2. 2.CAS Center for Excellence in Tibetan Plateau Earth SciencesBeijingChina
  3. 3.College of Earth and Planetary SciencesUniversity of Chinese Academy of SciencesBeijingChina
  4. 4.National Centre for Atmospheric ScienceUniversity of ReadingReadingUK
  5. 5.Department of Environmental & Ocean SciencesUniversity of San DiegoSan DiegoUSA
  6. 6.School of Environment and PlanningLiaocheng UniversityLiaochengChina

Personalised recommendations