A biomimetic experimental study of magnesium ion mineralization in Mg-enriched aragonite

  • Qizhi Yao
  • Yuying Wang
  • Yifan Zhang
  • Han Li
  • Gentao ZhouEmail author
Research Paper


In this work, we test the hypothesis that the Mg2+ content in biogenic aragonite has a systematic relationship with biomolecules. A series of biomimetic experiments were conducted to show the dependence of Mg2+ in aragonite on the model organic molecules added to the mineralizing solution, including the concentration of various organics, mineralization temperature, Mg/Ca ratio and Mg2+ initial concentration. The mineralized products were characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), and inductively coupled plasma-atomic emission spectrometry (ICP-AES). High Mg2+ is detected in aragonite obtained in the presence of organics, whereas the lowest Mg2+ is measured in aragonite without organics. Moreover, the concentration of Mg2+ in aragonite increases gradually with the amended organics. Mg K-edge NEXAFS spectra show that the magnesium microenvironment in aragonite is similar to the organic-associated environment, indicating that the Mg2+ ions are not on the aragonite lattices, but adhere to the intracrystalline organics. Furthermore, the mineralization temperature, Mg/Ca ratio and Mg2+ content in mineralization medium significantly influence Mg2+ content in aragonite, reiterating the effect of the microenvironment on aragonite biomineralization.


Aragonite Magnesium content Organics Calcium carbonate Biomineralization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 41272054 and 41372053), and the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20133402130007).


  1. Addadi L, Joester D, Nudelman F, Weiner S. 2006. Mollusk shell formation: A source of new concepts for understanding biomineralization processes. Chem-Eur J, 12: 980–987CrossRefGoogle Scholar
  2. Addadi L, Raz S, Weiner S. 2003. Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization. Adv Mater, 15: 959–970CrossRefGoogle Scholar
  3. Albeck S, Weiner S, Addadi L. 1996. Polysaccharides of intracrystalline glycoproteins modulate calcite crystal growth in vitro. Chem-Eur J, 2: 278–284CrossRefGoogle Scholar
  4. Allison N, Finch A A, Webster J M, Clague D A. 2007. Palaeoenvironmental records from fossil corals: The effects of submarine diagenesis on temperature and climate estimates. Geochim Cosmochim Acta, 71: 4693–4703CrossRefGoogle Scholar
  5. Bentov S, Erez J. 2006. Impact of biomineralization processes on the Mg content of foraminiferal shells: A biological perspective. Geochem Geophys Geosyst, 7: Q01P08CrossRefGoogle Scholar
  6. Berner R A, Westrich J T, Graber R, Smith J, Martens C S. 1978. Inhibition of aragonite precipitation from supersaturated seawater: A laboratory and field study. Am J Sci, 278: 816–837CrossRefGoogle Scholar
  7. Brown W A, Kose R, King D A. 1998. Femtomole adsorption calorimetry on single-crystal surfaces. Chem Rev, 98: 797–832CrossRefGoogle Scholar
  8. Cuif J P, Dauphin Y, Gautret P. 1999. Compositional diversity of soluble mineralizing matrices in some recent coral skeletons compared to finescale growth structures of fibres: Discussion of consequences for biomineralization and diagenesis. Int J Earth Sci, 88: 582–592CrossRefGoogle Scholar
  9. Cuif J P, Dauphin Y, Doucet J, Salome M, Susini J. 2003. XANES mapping of organic sulfate in three scleractinian coral skeletons. Geochim Cosmochim Acta, 67: 75–83CrossRefGoogle Scholar
  10. Cusack M, Pérez-Huerta A, Janousch M, Finch A A. 2008. Magnesium in the lattice of calcite-shelled brachiopods. Chem Geol, 257: 59–64CrossRefGoogle Scholar
  11. Davis K J, Dove P M, De Yoreo J J. 2000. The role of Mg2+ as an impurity in calcite growth. Science, 290: 1134–1137CrossRefGoogle Scholar
  12. DeCarlo T M, Gaetani G A, Holcomb M, Cohen A L. 2015. Experimental determination of factors controlling U/Ca of aragonite precipitated from seawater: Implications for interpreting coral skeleton. Geochim Cosmochim Acta, 162: 151–165CrossRefGoogle Scholar
  13. Denniston R F, González L A, Asmerom Y, Sharma R H, Reagan M K. 2000. Speleothem evidence for changes in Indian Summer Monsoon precipitation over the last ~2300 years. Quat Res, 53: 196–C202CrossRefGoogle Scholar
  14. Dickson J A D. 2002. Fossil echinoderms as monitor of the Mg/Ca ratio of Phanerozoic oceans. Science, 298: 1222–C1224CrossRefGoogle Scholar
  15. Dietzel M, Gussone N, Eisenhauer A. 2004. Co-precipitation of Sr2+ and Ba2+ with aragonite by membrane diffusion of CO2 between 10 and 50°C. Chem Geol, 203: 139–151CrossRefGoogle Scholar
  16. Farges F, Meibom A, Flank A M, Lagarde P, Janousch M, Stolarski J. 2009. Speciation of Mg in biogenic Calcium carbonates. J Phys Conf Ser, 190: 012175CrossRefGoogle Scholar
  17. Finch A A, Allison N. 2007. Coordination of Sr and Mg in calcite and aragonite. Mineral Mag, 71: 539–552CrossRefGoogle Scholar
  18. Finch A A, Allison N. 2008. Mg structural state in coral aragonite and implications for the paleoenvironmental proxy. Geophys Res Lett, 35: L08704Google Scholar
  19. Folk R L. 1974. Petrology of Sedimentary Rocks. Austin: Hemphill. 177Google Scholar
  20. Foster L C, Finch A A, Allison N, Andersson C, Clarke L J. 2008. Mg in aragonitic bivalve shells: Seasonal variations and mode of incorporation in Arctica islandica. Chem Geol, 254: 113–119CrossRefGoogle Scholar
  21. Frisia S, Borsato A, Fairchild I J, McDermott F, Selmo E M. 2002. Aragonite-calcite relationships in speleothems (Grotte de Clamouse, France): Environment, fabrics, and carbonate geochemistry. J Sediment Res, 72: 687–699CrossRefGoogle Scholar
  22. Gaetani G A, Cohen A L, Wang Z, Crusius J. 2011. Rayleigh-based, multielement coral thermometry: A biomineralization approach to developing climate proxies. Geochim Cosmochim Acta, 75: 1920–1932CrossRefGoogle Scholar
  23. Gayathri S, Lakshminarayanan R, Weaver J C, Morse D E, Kini R M, Valiyaveettil S. 2007. In vitro study of magnesium-calcite biomineralization in the skeletal materials of the seastar Pisaster giganteus. Chem-Eur J, 13: 3262–3268CrossRefGoogle Scholar
  24. Harfouche M, Farges F, Crocombette J P, Flank A M. 2005. XAFS and molecular dynamics study of natural minerals, analogues of ceramics for nuclear waste storage. Phys Scripta, T115: 928–930CrossRefGoogle Scholar
  25. Holcomb M, Cohen A L, Gabitov R I, Hutter J L. 2009. Compositional and morphological features of aragonite precipitated experimentally from seawater and biogenically by corals. Geochim Cosmochim Acta, 73: 4166–4179CrossRefGoogle Scholar
  26. Honisch B, Hemming N, Grottoli A, Amat A, Hanson G, Bijma J. 2004. Assessing scleractinian corals as recorders for paleo-pH: Empirical calibration and vital effects. Geochim Cosmochim Acta, 68: 3675–3685CrossRefGoogle Scholar
  27. Kitano Y. 1962. The behavior of various inorganic ions in the separation of calcium carbonate from a bicarbonate solution. B Chem Soc Jpn, 35: 1973–1980CrossRefGoogle Scholar
  28. Lea D W, Shen G T, Boyle E A. 1989. Coralline barium records temporal variability in equatorial Pacific upwelling. Nature, 340: 373–376CrossRefGoogle Scholar
  29. Lippmann F. 1973. Sedimentary Carbonate Minerals. New York: SpringerCrossRefGoogle Scholar
  30. Long X, Ma Y, Qi L. 2011. In vitro synthesis of high Mg calcite under ambient conditions and its implication for biomineralization process. Cryst Growth Des, 11: 2866–2873CrossRefGoogle Scholar
  31. Loste E, Wilson R M, Seshadri R, Meldrum F C. 2003. The role of magnesium in stabilising amorphous calcium carbonate and controlling calcite morphologies. J Cryst Growth, 254: 206–218CrossRefGoogle Scholar
  32. McCulloch M, Fallon S, Wyndham T, Hendy E, Lough J, Barnes D. 2003. Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement. Nature, 421: 727–730CrossRefGoogle Scholar
  33. Meibom A, Cuif J P, Hillion F, Constantz B R, Juillet-Leclerc A, Dauphin Y, Watanabe T, Dunbar R B. 2004. Distribution of magnesium in coral skeleton. Geophys Res Lett, 31: L23360CrossRefGoogle Scholar
  34. Meibom A, Yurimoto H, Cuif J P, Domart-Coulon I, Houlbreque F, Constantz B, Dauphin Y, Tambutté E, Tambutté S, Allemand D, Wooden J, Dunbar R. 2006. Vital effects in coral skeletal composition display strict three-dimensional control. Geophys Res Lett, 33: L11608CrossRefGoogle Scholar
  35. Meibom A, Cuif J P, Houlbreque F, Mostefaoui S, Dauphin Y, Meibom K L, Dunbar R. 2008. Compositional variations at ultra-structure length scales in coral skeleton. Geochim Cosmochim Acta, 72: 1555–1569CrossRefGoogle Scholar
  36. Muscatine L, Goiran C, Land L, Jaubert J, Cuif J P, Allemand D. 2005. Stable isotopes (δ 13C and δ 15N) of organic matrix from coral skeleton. Proc Natl Acad Sci USA, 102: 1525–1530CrossRefGoogle Scholar
  37. Min G R, Edwards R L, Taylor F W, Recy J, Gallup C D, Warren Beck J. 1995. Annual cycles of in coral skeletons and thermometry. Geochim Cosmochim Acta, 59: 2025–2042CrossRefGoogle Scholar
  38. Mitsuguchi T, Matsumoto E, Abe O, Uchida T, Isdale P J. 1996. Mg/Ca thermometry in coral skeletons. Science, 274: 961–963CrossRefGoogle Scholar
  39. Nishiyama R, Munemoto T, Fukushi K. 2013. Formation condition of monohydrocalcite from CaCl2-MgCl2-Na2CO3 solutions. Geochim Cosmochim Acta, 100: 217–231CrossRefGoogle Scholar
  40. Oomori T, Kaneshima K, Nakamura Y, Kitano Y. 1982. Seasonal variation of minor elements in coral skeletons. Galaxea, 1: 77–86Google Scholar
  41. Porter S M. 2007. Seawater chemistry and early carbonate biomineralization. Science, 316: 1302CrossRefGoogle Scholar
  42. Railsback L B, Brook G A, Chen J. 1994. Environmental controls on the petrology of a late Holocene speleothem from Botswana with annual layers of aragonite and calcite. J Sediment Res, 64: 147–155Google Scholar
  43. Raz S, Hamilton P C, Wilt F H, Weiner S, Addadi L. 2003. The transient phase of amorphous calcium carbonate in sea urchin larval spicules: The involvement of proteins and magnesium ions in its formation and stabilization. Adv Funct Mater, 13: 480–486CrossRefGoogle Scholar
  44. Raz S, Weiner S, Addadi L. 2000. Formation of high-Magnesian calcites via an amorphous precursor phase: Possible biological implications. Adv Mater, 12: 38–42CrossRefGoogle Scholar
  45. Repo E, Warchoł J K, Bhatnagar A, Sillanpää M. 2011. Heavy metals adsorption by novel EDTA-modified chitosan-silica hybrid materials. J Colloid Interf Sci, 358: 261–267CrossRefGoogle Scholar
  46. Ries J B. 2004. Effect of ambient Mg/Ca ratio on Mg fractionation in calcareous marine invertebrates: A record of the oceanic Mg/Ca ratio over the Phanerozoic. Geology, 32: 981–984CrossRefGoogle Scholar
  47. Ries J B, Stanley S M, Hardie L A. 2006. Scleractinian corals produce calcite, and grow more slowly, in artificial Cretaceous seawater. Geology, 34: 525CrossRefGoogle Scholar
  48. Robach J S, Stock S R, Veis A. 2006. Mapping of magnesium and of different protein fragments in sea urchin teeth via secondary ion mass spectroscopy. J Struct Biol, 155: 87–95CrossRefGoogle Scholar
  49. Shi J Y, Wang Y Y, Yao Q Z, Zhou G T, Fu S Q. 2013. Bio-inspired synthesis of silica ribbons with through-holes. Colloid Surface A, 436: 664–674CrossRefGoogle Scholar
  50. Sinclair D J, Kinsley L P J, McCulloch M T. 1998. High resolution analysis of trace elements in corals by laser ablation ICP-MS. Geochim Cosmochim Acta, 62: 1889–1901CrossRefGoogle Scholar
  51. Stanley S M, Hardie L A. 1998. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr Palaeoclimatol Palaeoecol, 144: 3–19CrossRefGoogle Scholar
  52. Stanley S M, Ries J B, Hardie L A. 2002. Nonlinear partial differential equations and applications: From the Cover: Low-magnesium calcite produced by coralline algae in seawater of Late Cretaceous composition. Proc Natl Acad Sci USA, 99: 15323–15326CrossRefGoogle Scholar
  53. Stanley S M, Ries J B, Hardie L A. 2005. Seawater chemistry, coccolithophore population growth, and the origin of Cretaceous chalk. Geology, 33: 593CrossRefGoogle Scholar
  54. Stephenson A E, DeYoreo J J, Wu L, Wu K J, Hoyer J, Dove P M. 2008. Peptides enhance magnesium signature in calcite: Insights into origins of vital effects. Science, 322: 724–727CrossRefGoogle Scholar
  55. Wang D, Wallace A F, De Yoreo J J, Dove P M. 2009. Carboxylated molecules regulate magnesium content of amorphous calcium carbonates during calcification. Proc Natl Acad Sci USA, 106: 21511–21516CrossRefGoogle Scholar
  56. Wang L, Sondi I, Matijević E. 1999. Preparation of uniform needle-like aragonite particles by homogeneous precipitation. J Colloid Interf Sci, 218: 545–553CrossRefGoogle Scholar
  57. Wang Y Y, Yao Q Z, Li H, Zhou G T, Sheng Y M. 2015. Formation of vaterite mesocrystals in biomineral-like structures and implication for 10 biomineralization. Cryst Growth Des, 15: 1714–1725CrossRefGoogle Scholar
  58. Wang Z, Hu P, Gaetani G, Liu C, Saenger C, Cohen A, Hart S. 2013. Experimental calibration of Mg isotope fractionation between aragonite and seawater. Geochim Cosmochim Acta, 102: 113–123CrossRefGoogle Scholar
  59. Weiner S, Levi-Kalisman Y, Raz S, Addadi L. 2003. Biologically formed amorphous calcium carbonate. Connect Tissue Res, 44: 214–218CrossRefGoogle Scholar
  60. Wombacher F, Eisenhauer A, Böhm F, Gussone N, Regenberg M, Dullo W C, Rüggeberg A. 2011. Magnesium stable isotope fractionation in marine biogenic calcite and aragonite. Geochim Cosmochim Acta, 75: 5797–5818CrossRefGoogle Scholar
  61. Yokoyama Y, Esat T M, Lambeck K. 2001. Last glacial sea-level change deduced from uplifted coral terraces of Huon Peninsula, Papua New Guinea. Quat Int, 83-85: 275–283CrossRefGoogle Scholar
  62. Zhang F, Xu H, Konishi H, Shelobolina E S, Roden E E. 2012. Polysaccharide-catalyzed nucleation and growth of disordered dolomite: A potential precursor of sedimentary dolomite. Am Mineral, 97: 556–567CrossRefGoogle Scholar
  63. Zhou G T, Yao Q Z, Ni J, Jin G. 2009. Formation of aragonite mesocrystals and implication for biomineralization. Am Mineral, 94: 293–302CrossRefGoogle Scholar
  64. Zhou G T, Yu J C, Wang X C, Zhang L Z. 2004. Sonochemical synthesis of aragonite-type calcium carbonate with different morphologies. New J Chem, 28: 1027–1031CrossRefGoogle Scholar
  65. Zhou G T, Zheng Y F. 2001. Chemical synthesis of CaCO3 minerals at low temperatures and implication for mechanism of polymorphic transition. Neues Jb Miner Abh, 176: 323–343Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Qizhi Yao
    • 1
  • Yuying Wang
    • 2
  • Yifan Zhang
    • 2
    • 3
  • Han Li
    • 2
    • 3
  • Gentao Zhou
    • 2
    • 3
    Email author
  1. 1.School of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaHefeiChina
  2. 2.CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina
  3. 3.CAS Center for Excellence in Comparative PlanetologyHefeiChina

Personalised recommendations