Advertisement

The Langjiexue Group is an in situ sedimentary sequence rather than an exotic block: Constraints from coeval Upper Triassic strata of the Tethys Himalaya (Qulonggongba Formation)

  • Zhongyu Meng
  • Jiangang WangEmail author
  • Weiqiang Ji
  • Hao Zhang
  • Fuyuan Wu
  • Eduardo Garzanti
Research Paper
  • 19 Downloads

Abstract

The Upper Triassic Langjiexue Group in southeastern Tibet has long been an enigmatic geological unit. It belongs tectonically to the northern Tethys Himalayan zone, but provenance signatures of the detritus it contains are significantly different from those of typical Tethys Himalayan sandstones. Because the Langjiexue Group is everywhere in fault contact with Tethys Himalayan strata, its original paleogeographic position has remained controversial for a long time. According to some researchers, the Langjiexue Group was deposited onto the northern edge of the Indian passive continental margin, whereas others interpreted it as an independent block accreted to the northern Indian margin only during final India-Asia convergence and collision in the Paleocene. This study compares the Langjiexue Group and coeval Upper Triassic strata of the southern Tethys Himalayan zone (Qulonggongba Formation). Our new provenance data indicate that Qulonggongba Formation sandstones contain common felsic volcanic rock fragments, minor plagioclase, and euhedral to subhedral zircon grains yielding Late Paleozoic to Triassic ages. These provenance features compare well with those of the Langjiexue Group. Because the Qulonggongba Formation certainly belongs to the Tethys Himalayan zone, the provenance similarity with the Langjiexue Group indicates that the latter is also an in situ Tethys Himalayan sedimentary sequence rather than part of an exotic block. Volcanic detritus including Late Paleozoic to Triassic zircon grains in both Langjiexue Group and Qulonggongba Formation are interpreted to have been derived from the distant Gondwanide orogen generated by Pan-Pacific subduction beneath the southeastern margin of Gondwana. The Qulonggongba Formation, deposited above marlstones of the lower Upper Triassic Tulong Group, is overlain by India-derived coastal quartzose sandstones of the uppermost Triassic Derirong Formation. Deposition of both the Qulonggongba Formation and the Langjiexue Group were most likely controlled by regional tectonism, possibly a rifting event along the northern margin of Gondwana.

Keywords

Tethys Himalaya Provenance analysis Langjiexue Group Detrital-zircon geochronology Tectonic setting Late Triassic Paleogeography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Yueheng Yang for help with laserablation analyses. We are grateful to the two reviewers for their constructive comments that significantly improved this paper. This work was supported by the National Natural Science Foundation of China (Grant No. 41672109) and the Youth Innovation Promotion Associate Project of Chinese Academy of Science.

Supplementary material

11430_2018_9314_MOESM1_ESM.xls (30 kb)
Table S1 Detrital framework of sandstones from the Upper Triassic Qulonggongba Formation and Derirong Formation in Nyalam-Tingri area, southern Tibet
11430_2018_9314_MOESM2_ESM.xls (1.6 mb)
Table S2 Detrital zircon U–Pb dating results from the Upper Triassic in Nyalam-Tingri area, southern Tibet
11430_2018_9314_MOESM3_ESM.xls (41 kb)
Table S3 Detrital zricon Hf isotope from the Upper Triuassic Qulonggongba Formation in Nyalam-Tingri area, southern Tibet

References

  1. Aikman A B, Harrison T M, Lin D. 2008. Evidence for early (>44 Ma) Himalayan crustal thickening, Tethyan Himalaya, southeastern Tibet. Earth Planet Sci Lett, 274: 14–23CrossRefGoogle Scholar
  2. Aitchison J C, Badengzhu J C, Davis A M, Liu J, Luo H, Malpas J G, McDermid I R C, Wu H, Ziabrev S V, Zhou M. 2000. Remnants of a Cretaceous intra–oceanic subduction system within the Yarlung–Zangbo suture (southern Tibet). Earth Planet Sci Lett, 183: 231–244CrossRefGoogle Scholar
  3. Allègre C J, Courtillot V, Tapponnier P, Hirn A, Mattauer M, Coulon C, Jaeger J J, Achache J, Schärer U, Marcoux J, Burg J P, Girardeau J, Armijo R, Gariépy C, Göpel C, Li T, Xiao X, Chang C, Li G, Lin B, Teng J, Wang N, Chen G, Han T, Wang X, Den W, Sheng H, Cao Y, Zhou J, Qiu H, Bao P, Wang S, Wang B, Zhou Y, Xu R. 1984. Structure and evolution of the Himalayan–Tibet orogenic belt. Nature, 307: 17–22CrossRefGoogle Scholar
  4. An W, Hu X M, Garzanti E, BouDagher–Fadel M K, Wang J G, Sun G Y. 2014. Xigaze forearc basin revisited (South Tibet): Provenance changes and origin of the Xigaze Ophiolite. Geol Soc Am Bull, 126: 1595–1613CrossRefGoogle Scholar
  5. An W, Hu X M, Garzanti E. 2017. Sandstone provenance and tectonic evolution of the Xiukang Mélange from Neotethyan subduction to India–Asia collision (Yarlung–Zangbo suture, south Tibet). Gondwana Res, 41: 222–234CrossRefGoogle Scholar
  6. Ao S J, Xiao W J, Windley B F, Zhang J E, Zhang Z Y, Yang L. 2018. Components and structures of the eastern Tethyan Himalayan Sequence in SW China: Not a passive margin shelf but a mélange accretionary prism. Geol J, 53: 1–25CrossRefGoogle Scholar
  7. Audley–Charles M G. 1983. Reconstruction of eastern Gondwanaland. Nature, 306: 48–50CrossRefGoogle Scholar
  8. Cai F L, Ding L, Leary R J, Wang H Q, Xu Q, Zhang L Y, Yue Y H. 2012. Tectonostratigraphy and provenance of an accretionary complex within the Yarlung–Zangpo suture zone, southern Tibet: Insights into subduction–accretion processes in the Neo–Tethys. Tectonophysics, 574–575: 181–192CrossRefGoogle Scholar
  9. Cai F L, Ding L, Laskowski A K, Kapp P, Wang H Q, Xu Q. 2016. Late Triassic paleogeographic reconstruction along the Neo–Tethyan Ocean margins, southern Tibet. Earth Planet Sci Lett, 435: 105–114CrossRefGoogle Scholar
  10. Cao H W, Huang Y, Li G M, Zhang L K, Wu J Y, Dong L, Dai Z W, Lu L. 2018. Late Triassic sedimentary records in the northern Tethyan Himalaya: Tectonic link with greater India. Geosci Front, 9: 273–291CrossRefGoogle Scholar
  11. Carey S W, Browne W R. 1938. Review of the Carboniferous stratigraphy, tectonics and palaeogeography of New South Wales and Queensland. In: Journal and Proceedings of the Royal Society of New South Wales. 71: 591–614Google Scholar
  12. Carosi R, Montomoli C, Iaccarino S, Visonà D. 2018. Structural evolution, metamorphism and melting in the Greater Himalayan Sequence in central–western Nepal. Geol Soc Lond Spec Publ, 483: SP483–3Google Scholar
  13. Cawood P A. 2005. Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth–Sci Rev, 69: 249–279CrossRefGoogle Scholar
  14. Cawood P A, Nemchin A A, Leverenz A, Saeed A, Balance P F. 1999. U/Pb dating of detrital zircons: Implications for the provenance record of Gondwana margin terranes. Geol Soc Am Bull, 111: 1107–1119CrossRefGoogle Scholar
  15. Cawood P A, Buchan C. 2007. Linking accretionary orogenesis with supercontinent assembly. Earth–Sci Rev, 82: 217–256CrossRefGoogle Scholar
  16. Collins W J. 1991. A reassessment of the ‘Hunter–Bowen Orogeny’: Tectonic implications for the Southern New England Fold Belt. Aust J Earth Sci, 38: 409–424CrossRefGoogle Scholar
  17. Corfu F, Hanchar J M, Hoskin W O, Kinny P. 2003. Atlas of zircon textures. Rev Mineral Geochem, 53: 469–500CrossRefGoogle Scholar
  18. Dai J G, Yin A, Liu W C, Wang C S. 2008. Nd isotopic compositions of the Tethyan Himalayan Sequence in southeastern Tibet. Sci China Ser DEarth Sci, 51: 1306–1316CrossRefGoogle Scholar
  19. Dickinson W R. 1988. Provenance and sediment dispersal in relation to paleotectonics and paleogeography of sedimentary basins. In: Kleinspehn K L, Paola C, eds. New Perspectives in Basin Analysis. Berlin: Springer. 3–25Google Scholar
  20. Dürr S B. 1996. Provenance of Xigaze fore–arc basin clastic rocks (Cretaceous, south Tibet). Geol Soc Am Bull, 108: 669–684CrossRefGoogle Scholar
  21. Elliot D H, Fanning C M. 2008. Detrital zircons from upper Permian and lower Triassic Victoria Group sandstones, Shackleton Glacier region, Antarctica: Evidence for multiple sources along the Gondwana plate margin. Gondwana Res, 13: 259–274CrossRefGoogle Scholar
  22. Fang D R, Wang G H, Hisada K, Yuan G L, Han F L, Li D, Tang Y, Pei Q M, Zhang L L. 2018. Provenance of the Langjiexue Group to the south of the Yarlung–Tsangpo Suture Zone in southeastern Tibet: Insights on the evolution of the Neo–Tethys Ocean in the Late Triassic. Int Geol Rev, 35: 1–20Google Scholar
  23. Gaetani M, Garzanti E. 1991. Multicyclic history of the northern India continental margin (NW Himalaya). AAPG Bull, 75: 1427–1446Google Scholar
  24. Garzanti E. 1999. Stratigraphy and sedimentary history of the Nepal Tethys Himalaya passive margin. J Asian Earth Sci, 17: 805–827CrossRefGoogle Scholar
  25. Garzanti E. 2016. From static to dynamic provenance analysis—Sedimentary petrology upgraded. Sediment Geol, 336: 3–13CrossRefGoogle Scholar
  26. Garzanti E, Nicora A, Rettori R. 1998. Permo–Triassic boundary and Lower to Middle Triassic in South Tibet. J Asian Earth Sci, 16: 143–157CrossRefGoogle Scholar
  27. Garzanti E, Le Fort P, Sciunnach D. 1999. First report of Lower Permian basalts in south Tibet: Tholeiitic magmatism during break–up and incipient opening of Neotethys. J Asian Earth Sci, 17: 533–546CrossRefGoogle Scholar
  28. Garzanti E, Andò S, Padoan M, Vezzoli G, El Kammar A. 2015. The modern Nile sediment system: Processes and products. Quat Sci Rev, 130: 9–56CrossRefGoogle Scholar
  29. Gehrels G, Kapp P, Decelles P, Pullen A, Blakey R, Weislogel A, Ding L, Guynn J, Martin A, McQuarrie N, Yin A. 2011. Detrital zircon geochronology of pre–Tertiary strata in the Tibetan–Himalayan orogen. Tectonics, 30: TC5016CrossRefGoogle Scholar
  30. Golonka J, Ford D. 2000. Pangean (Late Carboniferous–Middle Jurassic) paleoenvironment and lithofacies. Palaeogeogr Palaeoclimatol Palaeoecol, 161: 1–34CrossRefGoogle Scholar
  31. Griffin W L, Powell W J, Person N J, O′Reilly S Y. 2008. GLITTER: Data reduction software for laser ablation ICP–MS. In: Sylvester P, ed. Laser Ablation ICP–MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineral Assoc Canada Short Course, 40: 308–311Google Scholar
  32. Gunawan I, Hall R, Sevastjanova I. 2012. Age, character and provenance of the Tipuma Formation, West Papua: New insights from detrital zircon dating. In: Proceedings, Indonesian Petroleum Association. Thirty–Sixth Annual Convention & Exhibition. IPA12–G–027Google Scholar
  33. Hébert R, Bezard R, Guilmette C, Dostal J, Wang C, Liu Z. 2012. The Indus–Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: First synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo–Tethys. Gondwana Res, 22: 377–397CrossRefGoogle Scholar
  34. Holcombe R J, Stephens C J, Fielding C R F, Gust D, Little T A, Sliwa R, Kassan J, McPhie J, Ewart A. 1997. Tectonic evolution of the northern New England Fold Belt: The Permian–Triassic Hunter–Bowen event. Tectonics Metall New England Orogen, 19: 52–65Google Scholar
  35. Hou Z Q, Duan L F, Lu Y J, Zheng Y C, Zhu D C, Yang Z M, Yang Z S, Wang B D, Pei Y R, Zhao Z D. 2015. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan–Tibetan orogen. Econ Geol, 110: 1541–1575CrossRefGoogle Scholar
  36. Hu X M, Jansa L, Wang C S. 2008. Upper Jurassic–Lower Cretaceous stratigraphy in south–eastern Tibet: A comparison with the western Himalayas. Cretac Res, 29: 301–315CrossRefGoogle Scholar
  37. Hu X M, Jansa L, Chen L, Griffin W L, O’Reilly S Y, Wang J G. 2010. Provenance of lower cretaceous Wölong Volcaniclastics in the Tibetan Tethyan Himalaya: Implications for the final breakup of Eastern Gondwana. Sediment Geol, 223: 193–205CrossRefGoogle Scholar
  38. Hu X M, Sinclair H D, Wang J G, Jiang H H, Wu F Y. 2012. Late Cretaceous–Palaeogene stratigraphic and basin evolution in the Zhepure Mountain of southern Tibet: Implications for the timing of India–Asia initial collision. Basin Res, 24: 520–543CrossRefGoogle Scholar
  39. Hu X M, Garzanti E, Moore T, Raffi I. 2015. Direct stratigraphic dating of India–Asia collision onset at the Selandian (middle Paleocene, 59±1 Ma). Geology, 43: 859–862CrossRefGoogle Scholar
  40. Hu X M, Garzanti E, Wang J, Huang W T, An W, Webb A. 2016. The timing of India–Asia collision onset—Facts, theories, controversies. Earth–Sci Rev, 160: 264–299CrossRefGoogle Scholar
  41. Ingersoll R V, Fullard T F, Ford R L, Grimm J P, Pickle J D, Sares S W. 1984. The effect of grain size on detrital modes: A test of the Gazzi–Dickinson point–counting method. J Sediment Res, 54: 103–116Google Scholar
  42. Jadoul F, Berra F, Garzanti E. 1998. The Tethys Himalayan passive margin from Late Triassic to Early Cretaceous (South Tibet). J Asian Earth Sci, 16: 173–194CrossRefGoogle Scholar
  43. Jeon H, Williams I S, Bennett V C. 2014. Uncoupled O and Hf isotopic systems in zircon from the contrasting granite suites of the New England Orogen, eastern Australia: Implications for studies of Phanerozoic magma genesis. Geochim Cosmochim Acta, 146: 132–149CrossRefGoogle Scholar
  44. Ji W Q, Wu F Y, Chung S L, Li J X, Liu C Z. 2009. Zircon U–Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chem Geol, 262: 229–245CrossRefGoogle Scholar
  45. Kamenetsky V S, Crawford A J, Meffre S. 2001. Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr–spinel and melt inclusions from primitive rocks. J Petrol, 42: 655–671CrossRefGoogle Scholar
  46. Kemp A I S, Hawkesworth C J, Collins W J, Gray C M, Blevin P L. 2009. Isotopic evidence for rapid continental growth in an extensional accretionary orogen: The Tasmanides, eastern Australia. Earth Planet Sci Lett, 284: 455–466CrossRefGoogle Scholar
  47. LeFort P. 1996. Evolution of the Himalaya. In: Yin A, Harrison T M, eds. The Tectonics of Asia. New York: Cambridge University Press. 95–106Google Scholar
  48. Lewis C J, Sircombe K N. 2013. Use of U–Pb geochronology to delineate provenance of North West Shelf sediments, Australia. In: Keep M, Moss S J, eds. The Sedimentary Basins of Western Australia IV: Proceedings of the Petroleum Exploration Society of Australia Symposium. Petroleum Exploration Society of Australia. Perth WA. 1–27Google Scholar
  49. Li G W, Liu X H, Alex P, Wei L J, Liu X B, Huang F X, Zhou X J. 2010. In–situ detrital zircon geochronology and Hf isotopic analyses from Upper Triassic Tethys sequence strata. Earth Planet Sci Lett, 297: 461–470CrossRefGoogle Scholar
  50. Li G W, Sandiford M, Liu X H, Xu Z Q, Wei L J, Li H Q. 2014. Provenance of Late Triassic sediments in central Lhasa terrane, Tibet and its implication. Gondwana Res, 25: 1680–1689CrossRefGoogle Scholar
  51. Li X H, Zeng Q G, Wang C S. 2003a. Sedimentary characteristics of the Upper Triassic Langjiexue Group in Southern Qiongjie, Tibet (in Chinese with English abstract). Geoscience, 17: 52–58Google Scholar
  52. Li X H, Zeng Q G, Wang C S. 2003b. Palaeocurrent data: Evidence for the source of the Langjiexue Group in Southern Tibet (in Chinese with English abstract). Geol Rev, 49: 132–137Google Scholar
  53. Li X H, Zeng Q G, Wang C S, Xie R W. 2004. Provenance analysis of the Upper Triassic Langjiexue Group in the Southern Tibet, China (in Chinese with English abstract). Acta Sediment Sin, 22: 553–559Google Scholar
  54. Li X H, Wang C S, Hu X M. 2005. Stratigraphy of deep–water Cretaceous deposits in Gyangze, southern Tibet, China. Cretac Res, 26: 33–41CrossRefGoogle Scholar
  55. Li X H, Wang Y, Xu W L, Sun Y, Kong Q Y, Zeng Q G, Xie R W, Mao G Z, Nima C R, Zhou Y, Liu L. 2011. Contrasing the Upper Triassic Flysch Langjiexue Group and Nieru Formation in Southern Tibet (in Chinese with English abstract). Acta Geol Sin, 85: 1551–1562Google Scholar
  56. Li X H, Mattern F, Zhang C K, Zeng Q G, Mao G Z. 2016. Multiple sources of the Upper Triassic flysch in the eastern Himalaya Orogen, Tibet, China: Implications to palaeogeography and palaeotectonic evolution. Tectonophysics, 666: 12–22CrossRefGoogle Scholar
  57. Najman Y. 2006. The detrital record of orogenesis: A review of approaches and techniques used in the Himalayan sedimentary basins. Earth–Sci Rev, 74: 1–72Google Scholar
  58. Ogg J G, von Rad U. 1994. The Triassic of the Thakkhola (Nepal). II: Paleolatitudes and comparison with other eastern Tethyan margins of Gondwana. Geol Rundsch, 83: 107–129Google Scholar
  59. Orme D A, Laskowski A K. 2016. Basin analysis of the Albian–Santonian Xigaze Forearc, Lazi Region, South–Central Tibet. J Sediment Res, 86: 894–913CrossRefGoogle Scholar
  60. Ratschbacher L, Frisch W, Liu G, Chen C. 1994. Distributed deformation in southern and western Tibet during and after the India–Asia collision. J Geophys Res, 99: 19917–19945CrossRefGoogle Scholar
  61. Sciunnach D, Garzanti E. 2012. Subsidence history of the Tethys Himalaya. Earth–Sci Rev, 111: 179–198CrossRefGoogle Scholar
  62. Sircombe K N. 1999. Tracing provenance through the isotope ages of littoral and sedimentary detrital zircon, eastern Australia. Sediment Geol, 124: 47–67CrossRefGoogle Scholar
  63. Tibetan Bureau of Geology and Mineral Resources. 1993. Lithostratigraphy of Xizang (Tibet) Autonomous Region (in Chinese). Beijing: China University of Geosciences Press. 302Google Scholar
  64. Tibetan Institute of Geological Survey. 2007. Report of the Lhasa–Zedong 1:250000 Regional Geological Survey (in Chinese)Google Scholar
  65. van Hinsbergen D J J, Lippert P C, Dupont–Nivet G, McQuarrie N, Doubrovine P V, Spakman W, Torsvik T H. 2012. Greater India Basin hypothesis and a two–stage Cenozoic collision between India and Asia. Proc Natl Acad Sci USA, 109: 7659–7664CrossRefGoogle Scholar
  66. Veevers J J. 2004. Gondwanaland from 650–500Ma assembly through 320 Ma merger in Pangea to 185–100Ma breakup: Supercontinental tectonics via stratigraphy and radiometric dating. Earth–Sci Rev, 68: 1–132CrossRefGoogle Scholar
  67. Wang C S, Li X H, Liu Z F, Li Y L, Jansa L, Dai J G, Wei Y S. 2012. Revision of the Cretaceous–Paleogene stratigraphic framework, facies architecture and provenance of the Xigaze forearc basin along the Yarlung Zangbo suture zone. Gondwana Res, 22: 415–433CrossRefGoogle Scholar
  68. Wang J G, Hu X M, Jansa L, Huang Z C. 2011. Provenance of the Upper Cretaceous–Eocene deep–water sandstones in Sangdanlin, Southern Tibet: Constraints on the timing of initial India–Asia collision. J Geol, 119: 293–309CrossRefGoogle Scholar
  69. Wang J G, Wu F Y, Garzanti E, Hu X, Ji W Q, Liu Z C, Liu X C. 2016. Upper Triassic turbidites of the northern Tethyan Himalaya (Langjiexue Group): The terminal of a sediment–routing system sourced in the Gondwanide Orogen. Gondwana Res, 34: 84–98CrossRefGoogle Scholar
  70. Wang J G, Hu X, Garzanti E, An W, Liu X C. 2017. The birth of the Xigaze forearc basin in southern Tibet. Earth Planet Sci Lett, 465: 38–47CrossRefGoogle Scholar
  71. Willems H, Zhou Z, Zhang B, Gräfe K U. 1996. Stratigraphy of the upper Cretaceous and lower Tertiary strata in the Tethyan Himalayas of Tibet (Tingri area, China). Geol Rundsch, 85: 723–754CrossRefGoogle Scholar
  72. Wu F Y, Yang Y H, Xie L W, Yang J H, Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chem Geol, 234: 105–126CrossRefGoogle Scholar
  73. Wu Y B, Zheng Y F. 2004. Genesis of zircon and its constrains on interpretation of U–Pb age. Chin Sci Bull, 49: 1589–1604CrossRefGoogle Scholar
  74. Xie L W, Zhang Y B, Zhang H H, Sun J F, Wu F Y. 2008. In situ simultaneous determination of trace elements, U–Pb and Lu–Hf isotopes in zircon and baddeleyite. Chin Sci Bull, 53: 220–228Google Scholar
  75. Xu W L, Li X H, Wang Y, Zeng Q G, Sun Y, Nima C R. 2011. Provenance analysis of the Upper Triassic Flysch in Renbu area, Southern Tibet (in Chinese with English abstract). Geol J China Univ, 17: 220–230Google Scholar
  76. Yin A. 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along–strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth–Sci Rev, 76: 1–131CrossRefGoogle Scholar
  77. Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan–Tibetan orogen. Annu Rev Earth Planet Sci, 28: 211–280CrossRefGoogle Scholar
  78. Zhang C K, Li X H, Wang Y, Sun Y. 2014. The lithological distribution pattern and its signifance of the Upper Triassic Langjiexue Group Flysch (in Chinese with English abstract). Acta Sediment Sin, 32: 36–43Google Scholar
  79. Zhang C K, Li X H, Mattern F, Mao G Z, Zeng Q G, Xu W L. 2015. Deposystem architectures and lithofacies of a submarine fan–dominated deep sea succession in an orogen: A case study from the Upper Triassic Langjiexue Group of southern Tibet. J Asian Earth Sci, 111: 222–243CrossRefGoogle Scholar
  80. Zhang C K, Li X H, Matter F, Zeng Q G, Mao G Z. 2017. Composition and sediment dispersal pattern of the Upper Triassic flysch in the eastern Himalayas, China: Significance to provenance and basin analysis. Int J Earth Sci–Geol Rundsch, 106: 1257–1276CrossRefGoogle Scholar
  81. Zeng Q G, Li X H, Xia B, Xu W L, Nima C R, Pu Q, Li J. 2009. Heavy mineral assemblages and provenance analysis of the Upper Triassic in Renbu area, southern Tibet, China (in Chinese with English abstract). Geol Bull China, 28: 38–44Google Scholar
  82. Zhu D C, Chung S L, Mo X X, Zhao Z D, Niu Y, Song B, Yang Y H. 2009a. The 132 Ma Comei–Bunbury large igneous province: Remnants identified in present–day southeastern Tibet and southwestern Australia. Geology, 37: 583–586CrossRefGoogle Scholar
  83. Zhu D C, Mo X X, Niu Y, Zhao Z D, Wang L Q, Liu Y S, Wu F Y. 2009b. Geochemical investigation of Early Cretaceous igneous rocks along an east–west traverse throughout the central Lhasa Terrane, Tibet. Chem Geol, 268: 298–312CrossRefGoogle Scholar
  84. Zhu D C, Zhao Z D, Niu Y, Mo X X, Chung S L, Hou Z Q, Wang L Q, Wu F Y. 2011a. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth Planet Sci Lett, 301: 241–255CrossRefGoogle Scholar
  85. Zhu D C, Zhao Z D, Niu Y, Dilek Y, Mo X X. 2011b. Lhasa terrane in southern Tibet came from Australia. Geology, 39: 727–730CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhongyu Meng
    • 1
    • 2
  • Jiangang Wang
    • 1
    Email author
  • Weiqiang Ji
    • 1
  • Hao Zhang
    • 1
    • 2
  • Fuyuan Wu
    • 1
  • Eduardo Garzanti
    • 3
  1. 1.Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Laboratory for Provenance Studies, Department of Earth and Environmental SciencesUniversità di Milano-BicoccaMilanoItaly

Personalised recommendations