Advertisement

Hydrocarbon generation characteristics and exploration prospects of Proterozoic source rocks in China

  • Wenzhi Zhao
  • Xiaomei WangEmail author
  • Suyun Hu
  • Shuichang Zhang
  • Huajian Wang
  • Shuwei Guan
  • Yuntao Ye
  • Rong Ren
  • Tongshan Wang
Research Paper

Abstract

A large number of primary oil and gas reservoirs have been discovered in Proterozoic strata all over the globe. Proterozoic sequences are widely distributed in China, and the discovery of large Sinian-aged gas reservoirs in the Sichuan Basin and Mesoproterozoic liquid oil seepages in North China shows that attention should be paid to the exploration potential of Proterozoic strata. In this paper, the main controlling factors of Proterozoic source rocks are discussed. Principally, active atmospheric circulation and astronomical cycles may have driven intense upwelling and runoff to provide nutrients; oxygenated oceanic surface waters could have provided suitable environments for the organisms to thrive; volcanic activity and terrestrial weathering caused by continental break-up would have injected large amounts of nutrients into the ocean, leading to persistent blooms of marine organisms; and extensive anoxic deep waters may have created ideal conditions for the preservation of organic matter. Additionally, the appearance of eukaryotes resulted in diversified hydrocarbon parent material, which effectively improved the generation potential for oil and gas. Through the comparison of Formations across different cratons, seven sets of Proterozoic organic-rich source rocks have been recognized in China, which mainly developed during interglacial periods and are also comparable worldwide. The Hongshuizhuang and Xiamaling Formations in North China have already been identified previously as Mesoproterozoic source rocks. The early Proterozoic Changchengian System is highly promising as a potential source rock in the Ordos Basin. In the Upper Yangtze area, the Neoproterozoic Datangpo and Doushantuo Formations are extensively distributed, and represent the major source rocks for Sinian gas reservoirs in the Sichuan Basin. Moreover, the Nanhuan System may contain abundant shales with high organic matter contents in the Tarim Basin, although this possibility still needs to be verified. Indeed, all three cratons may contain source rocks of Proterozoic strata; thus, these strata represent major exploration targets worthy of great attention.

Keywords

Proterozoic Source rocks Hydrocarbon generation characteristics Replacement field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Professor Donald E. Canfield from University of Southern Denmark for constructive suggestions in paper writing. This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFC0603101), National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2016ZX05004001), National Natural Science Foundation of China (Grant Nos. 41530317, 41602144), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA14010101), and Scientific Research and Technological Development Project of CNPC(Grant No. 2016A-0200).

References

  1. Ahmad M, Dunster J N, Munson T J, Edgoose C J. 2013. Overview of the geology and mineral and petroleum resources of the McArthur Basin. In: Annual Geoscience Exploration Seminar, Northern Territory, AustraliaGoogle Scholar
  2. Algeo T J, Meyers P A, Robinson R S, Rowe H, Jiang G Q. 2014. Icehouse-greenhouse variations in marine denitrification. Biogeosciences, 11: 1273–1295CrossRefGoogle Scholar
  3. Anbar A D, Knoll A H. 2002. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science, 297: 1137–1142CrossRefGoogle Scholar
  4. Baudino R, Monge A M, Ferreira L M G, Haryono S, Sofia S, Hafizi N E, Hernán-Gómez J, Brisson I, Grammatico G, Ochoa M, Tocco R, Badali M, Pichaco B C, Varade R, Abdallah H. 2014. Assessing a petroleum system on the frontier of geological time: The Mesoproterozoic of the Taoudeni Basin (Mauritania). In: International Conference & Exhibition, IstanbulGoogle Scholar
  5. Bhat G M, Craig J, Hafiz M, Hakhoo N, Thurow J W, Thusu B, Cozzi A. 2012. Geology and hydrocarbon potential of Neoproterozoic-Cambrian Basins in Asia: An introduction. Geol Soc Lond Spec Publ, 366: 1–17CrossRefGoogle Scholar
  6. Blumenberg M, Thiel V, Riegel W, Kah L C, Reitner J. 2012. Biomarkers of black shales formed by microbial mats, Late Mesoproterozoic (1.1 Ga) Taoudeni Basin, Mauritania. Precambrian Res, 196-197: 113–127CrossRefGoogle Scholar
  7. Brocks J J, Banfield J. 2009. Unravelling ancient microbial history with community proteogenomics and lipid geochemistry. Nat Rev Microbiol, 7: 601–609CrossRefGoogle Scholar
  8. Brocks J J, Jarrett A J M, Sirantoine E, Hallmann C, Hoshino Y, Liyanage T. 2017. The rise of algae in Cryogenian oceans and the emergence of animals. Nature, 548: 578–581CrossRefGoogle Scholar
  9. Brocks J J, Logan G A, Buick R, Summons R E. 1999. Archean molecular fossils and the early rise of eukaryotes. Science, 285: 1033–1036CrossRefGoogle Scholar
  10. Brocks J J, Love G D, Summons R E, Knoll A H, Logan G A, Bowden S A. 2005. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature, 437: 866–870CrossRefGoogle Scholar
  11. Brocks J J, Pearson A. 2005. Building the biomarker tree of life. Rev Mineral Geochem, 59: 233–258CrossRefGoogle Scholar
  12. Butterfield N J, Knoll A H, Swett K. 1990. A bangiophyte red alga from the Proterozoic of arctic Canada. Science, 250: 104–107CrossRefGoogle Scholar
  13. Canfield D E. 1998. A new model for Proterozoic ocean chemistry. Nature, 396: 450–453CrossRefGoogle Scholar
  14. Canfield D E, Poulton S W, Narbonne G M. 2007. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science, 315: 92–95CrossRefGoogle Scholar
  15. Canfield D E, Raiswell R. 1999. The evolution of the sulfur cycle. Am J Sci, 299: 697–723Google Scholar
  16. Canfield D E, Zhang S, Wang H, Wang X, Zhao W, Su J, Bjerrum C J, Haxen E R, Hammarlund E U. 2018. A Mesoproterozoic Iron Formation. Proc Natl Acad Sci USA, 115: E3895–E3904CrossRefGoogle Scholar
  17. Chen J P, Liang D G, Zhang S C, Bian L Z, Zhong N N, Zhao J, Gong F H, Deng C P, Zhang D J, Zhang B M. 2013. Shale and mudstone: Essential source rocks in the Proterozoic to Paleozoic marine basins in China (in Chinese). Acta Geol Sin, 87: 905–921Google Scholar
  18. Chen L, Xiao S H, Pang K, Zhou C M, Yuan X L. 2014. Cell differentiation and germ-soma separation in Ediacaran animal embryo-like fossils. Nature, 516: 238–241CrossRefGoogle Scholar
  19. Cheng J, Feng J, Sun J, Huang Y, Zhou J H, Cen K F. 2014. Enhancing the lipid content of the diatom Nitzschia sp. by 60Co-γ irradiation mutation and high-salinity domestication. Energy, 78: 9–15CrossRefGoogle Scholar
  20. Cheng M, Li C, Zhou L, Xie S C. 2015. Mo marine geochemistry and reconstruction of ancient ocean redox states. Sci China Earth Sci, 58: 2123–2133CrossRefGoogle Scholar
  21. Cloud P E, Licari G R, Wright L A, Troxel B W. 1969. Proterozoic eu-caryotes from eastern California. Proc Natl Acad Sci USA, 62: 623–630CrossRefGoogle Scholar
  22. Condon D, Zhu M Y, Bowring S, Wang W, Yang A H, Jin Y G. 2005. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science, 308: 95–98CrossRefGoogle Scholar
  23. Craig J, Biffi U, Galimberti R F, Ghori K A R, Gorter J D, Hakhoo N, Le Heron D P, Thurow J, Vecoli M. 2013. The palaeobiology and geochemistry of Precambrian hydrocarbon source rocks. Mar Pet Geol, 40: 1–47CrossRefGoogle Scholar
  24. Craig J, Thurow J, Thusu B, Whitham A, Abutarruma Y. 2009. Global Neoproterozoic petroleum systems: The emerging potential in North Africa. Geol Soc Lond Spec Publ, 326: 1–25CrossRefGoogle Scholar
  25. Cui H Z, Jiang X D, Deng Q, Wang J, Zhuo X W, Ren G M, Cai J J, Wu H, Jiang Z F. 2016. Zircon U-Pb geochronological results of the Danzhou Group in northern Guangxi and their implications for the Neoproter-ozoic rifting stages in South China (in Chinese). Geotect Metal, 40: 1049–1063Google Scholar
  26. Cui H Z, Jiang X S, Wang J, Zhuo J W, Xiong G Q, Lu J Z, Deng Q, Wu H, Liu J H. 2013. Zircon U-Pb geochronology for the stratotype section of the Neoproterozoic Chengjiang Formation in central Yunnan and its geological significance (in Chinese). Geoscience, 27: 547–556Google Scholar
  27. Cui J W. 2011. Comparison of multiple occurrence biomarkers of core and outcrop in Gaoyuzhuang and Hongshuizhuang Fm, Jibei Sab (in Chinese). Acta Sedimentol Sin, 29: 593–598Google Scholar
  28. Du J H, Zou C N, Xu C C, He H Q, Shen P, Yang Y M, Li Y L, Wei G Q, Wang Z C, Yang Y. 2014. Theoretical and technical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao Formation of central Sichuan paleo-uplift, Sichuan Basin (in Chinese). Petrol Explor Dev, 41: 268–277Google Scholar
  29. Dutkiewicz A, Volk H, Ridley J, George S. 2003. Biomarkers, brines, and oil in the Mesoproterozoic, Roper Superbasin, Australia. Geology, 31: 981–984CrossRefGoogle Scholar
  30. Fan W B. 2015. Geological features and research progress of the Meso-proterozoic Xiamaling Formation in the North China Craton: A review after nearly one hundred years of study (in Chinese). Geol Rev, 61: 1383–1406Google Scholar
  31. Fang J, Liu B Q. 2012. Thermal experiments on lime-shale from the Upper Proterozoic Xiamaling Formation at Xiahuayuan, Zhangjiakou (in Chinese). Geol J Chin U, 8: 345–355Google Scholar
  32. Farquhar J, Wing B A, McKeegan K D, Harris J W, Cartigny P, Thiemens M H. 2002. Mass-independent sulfur of inclusions in diamond and sulfur recycling on early Earth. Science, 298: 2369–2372CrossRefGoogle Scholar
  33. French K L, Hallmann C, Hope J M, Schoon P L, Zumberge J A, Hoshino Y, Peters C A, George S C, Love G D, Brocks J J, Buick R, Summons R E. 2015. Reappraisal of hydrocarbon biomarkers in Archean rocks. Proc Natl Acad Sci USA, 112: 5915–5920CrossRefGoogle Scholar
  34. Gaillard F, Scaillet B, Arndt N T. 2011. Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature, 478: 229–232CrossRefGoogle Scholar
  35. Gao J, Wang X S, Klemd R, Jiang T, Qian Q, Mu L X, Ma Y Z. 2015. Record of assembly and breakup of Rodinia in the Southwestern Altaids: Evidence from Neoproterozoic magmatism in the Chinese Western Tianshan Orogen. J Asian Earth Sci, 113: 173–193CrossRefGoogle Scholar
  36. Gao L Z, Ding X Z, Pang X Q, Zhang C H. 2011. New geological time scale of Meso- and Neoproterozoic of China and geochronologic constraint by SHRIMP zircon U-Pb dating (in Chinese). J Stratigra, 35: 1–7Google Scholar
  37. Gao L Z, Zhang C H, Liu P J, Ding X Z, Wang Z Q, Zhang Y J. 2009. Recognition of Meso- and Neoproterozoic stratigraphic framework in North and South China (in Chinese). Acta Geosci Sin, 30: 433–446Google Scholar
  38. Gao L Z, Zhang C H, Yin Z Y, Shi X Y, Wang Z Q, Liu Y M, Liu P J, Tang F, Song B. 2008. SHRIMP zircon ages: Basis for redining the chron-ostratigraphic classification of the Meso- and Neoproterozoic strats in North China old land (in Chinese). Acta Geosci Sin, 29: 366–376Google Scholar
  39. Ge W C, Li X H, Li Z X, Zhou H W. 2001. Mafic intrusions in longsheng area: Age and its geological implications (in Chinese). Chin J Geol, 36: 112–118Google Scholar
  40. Geboy N J. 2006. Rhenium-Osmium Age Determinations of Glaciogenic Shales from the Mesoproterozoic Vazante Formation, Brazil. Master Dissertation. Washington: University of Maryland, College ParkGoogle Scholar
  41. Gilleaudeau G J, Kah L C. 2013. Carbon isotope records in a Mesopro-terozoic epicratonic sea: Carbon cycling in a low-oxygen world. Pre-cambrian Res, 228: 85–101CrossRefGoogle Scholar
  42. Giorgioni M, Keller C E, Weissert H, Hochuli P A, Bernasconi S M. 2015. Black shales—From coolhouse to greenhouse (early Aptian). Cretac Res, 56: 716–731CrossRefGoogle Scholar
  43. Grosjean E, Love G D, Stalvies C, Fike D A, Summons R E. 2009. Origin of petroleum in the Neoproterozoic-Cambrian South Oman Salt Basin. Org Geochem, 40: 87–110CrossRefGoogle Scholar
  44. Guan S W, Wu L, Ren R, Zhu G Y, Peng Z Q, Zhao W T, Li J. 2017. Distribution and petroleum prospect of Precambrian rifts in the main cratons, China (in Chinese). Acta Petrol Sin, 38: 9–22CrossRefGoogle Scholar
  45. Han T M, Runnegar B. 1992. Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee Iron-Formation, Michigan. Science, 257: 232–235CrossRefGoogle Scholar
  46. Hays J D, Imbrie J, Shackleton N J. 1976. Variations in the Earth’s Orbit: Pacemaker of the Ice Ages. Science, 194: 1121–1132CrossRefGoogle Scholar
  47. He J W, Zhu W B, Ge R F. 2014. New age constraints on Neoproterozoic diamicites in Kuruktag, NW China and Precambrian crustal evolution of the Tarim Craton. Precambrian Res, 241: 44–60CrossRefGoogle Scholar
  48. Hlebszevitsch J C, Gebhard I, Cruz C E, Consoli V. 2009. The “Infra-cambrian System” in the southwestern margin of Gondwana, southern South America. In: Hlebszevitsch J C, Gebhard I, Cruz C E, Consoli V, eds. global Neoproterozoic Petroleum Systems: The Emerging Potential in North Africa. London: Geol Soc Lond Spec Publ. 289–302Google Scholar
  49. Hou G, Santosh M, Qian X, Lister G S, Li J. 2008. Configuration of the Late Paleoproterozoic supercontinent Columbia: Insights from radiating mafic dyke swarms. Gondwana Res, 14: 395–409CrossRefGoogle Scholar
  50. Imbus S W, Macko S A, Douglas Elmore R, Engel M H. 1992. Stable isotope (C, S, N) and molecular studies on the Precambrian nonesuch Shale (Wisconsin-Michigan, U.S.A.): Evidence for differential preservation rates, depositional environment and hydrothermal influence. Chem Geol, 101: 255–281Google Scholar
  51. Javaux E J, Knoll A H, Walter M R. 2004. TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology, 2: 121–132CrossRefGoogle Scholar
  52. Jiang Z F, Cui X Z, Jiang X S, Wang J, Zhuo J W, Xiong G Q, Lu J Z, Wu H, Wei Y N. 2016. New zircon U-Pb ages of the pre-Sturtian rift successions from the western Yangtze Block, South China and their geological significance. Int Geol Rev, 58: 1064–1075CrossRefGoogle Scholar
  53. Kasting J F, Siefert J L. 2002. Life and the evolution of Earth’s atmosphere. Science, 296: 1066–1068CrossRefGoogle Scholar
  54. Kelly A E, Love G D, Lyons T W, Anbar A D. 2010. An integrated organic-inorganic geochemical study of the 1.64 Ga Barney Creek Formation in Australia. AGU Fall Meeting. B51G-0429Google Scholar
  55. Klemme H, Ulmishek G F. 1991. Effective petroleum source rocks of the world: Stratigraphic distribution and controlling depositional factors (1). Am Assoc Pet Geol Bull, 75: 1809–1851Google Scholar
  56. Knauth L P, Lowe D R. 2003. High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Geol Soc Am Bull, 115: 566–580CrossRefGoogle Scholar
  57. Knoll A H, Javaux E J, Hewitt D, Cohen P. 2006. Eukaryotic organisms in Proterozoic oceans. Philos Trans R Soc B-Biol Sci, 361: 1023–1038CrossRefGoogle Scholar
  58. Kolonic S, Wagner T, Forster A, Sinninghe Damsté J S, Walsworth-Bell B, Erba E, Turgeon S, Brumsack H J, Chellai E H, Tsikos H, Kuhnt W, Kuypers M M M. 2005. Black shale deposition on the northwest African Shelf during the Cenomanian/Turonian oceanic anoxic event: Climate coupling and global organic carbon burial. Paleoceanography, 20: PA1006CrossRefGoogle Scholar
  59. Kopp R E, Kirschvink J L, Hilburn I A, Nash C Z. 2005. The Paleopro-terozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci USA, 102: 11131–11136CrossRefGoogle Scholar
  60. Kump L R, Brantley S L, Arthur M A. 2000. Chemical Weathering, Atmospheric CO2, and Climate. Annu Rev Earth Planet Sci, 28: 611–667CrossRefGoogle Scholar
  61. Lamb D M, Awramik S M, Chapman D J, Zhu S. 2009. Evidence for eukaryotic diversification in the ~1800 million-year-old Changzhougou Formation, North China. Precambrian Res, 173: 93–104CrossRefGoogle Scholar
  62. Lan Z W, Li X H, Zhu M Y, Chen Z Q, Zhang Q R, Li Q L, Lu D B, Yiu Y, Tang G Q. 2014. A rapid and synchronous initiation of the wide spread Cryogenian glaciations. Precambrian Res, 255: 401–411CrossRefGoogle Scholar
  63. Lan Z, Li X H, Zhang Q R, Li Q L. 2015. Global synchronous initiation of the 2nd episode of Sturtian glaciation: SIMS zircon U-Pb and O isotope evidence from the Jiangkou Group, South China. Precambrian Res, 267: 28–38CrossRefGoogle Scholar
  64. Lenton T M, Boyle R A, Poulton S W, Shields-Zhou G A, Butterfield N J. 2014. Co-evolution of eukaryotes and ocean oxygenation in the Neo-proterozoic era. Nat Geosci, 7: 257–265CrossRefGoogle Scholar
  65. Li C, Cheng M, Algeo T J, Xie S C. 2015. A theoretical prediction of chemical zonation in early oceans (>520 Ma). Sci China Earth Sci, 58: 1901–1909CrossRefGoogle Scholar
  66. Li C, Cheng M, Zhu M, Lyons T W. 2018. Heterogeneous and dynamic marine shelf oxygenation and coupled early animal evolution. Emerg Top Life Sci, 2: 279–288CrossRefGoogle Scholar
  67. Li H K, Su W B, Zhou H Y, Geng J Z, Xiang Z Q, Cui Y R, Liu W C, Lu S N. 2011. The base age of the Changchengian System at the northern North China Craton should be younger than 1670 Ma: Constraints from zircon U-Pb LA-MC-ICPMS dating of a granite-porphyry dike in Miyun County, Beijing (in Chinese). Front Earth Sci, 18: 108–120Google Scholar
  68. Li H K, Su W B, Zhou H Y, Xiang Z Q, Tian Q, Yang L G. 2014. The first precise age constraints on the Jixian System of the Meso-to Neopro-terozoic Standard Section of China: SHRIMP zircon U-Pb dating of bentonites from the Wumishan and Tieling Formations in the Jixian Section, North China Craton (in Chinese). Acta Petrol Sin, 30: 2999–3012Google Scholar
  69. Li H K, Zhang C L, Yao C Y, Xiang Z Q. 2013. U-Pb zircon age and Hf isotope compositions of Mesoproterozoic sedimentary strata on the western margin of the Yangtze massif. Sci China Earth Sci, 56: 628–639CrossRefGoogle Scholar
  70. Li H K, Zhu S X, Xiang Z Q, Su W B, Lu S N, Zhou H Y, Geng, J Z, Li S, Yang F J. 2010. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing Beijing.: Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China Craton (in Chinese). Acta Petrol Sin, 26: 2131–2140Google Scholar
  71. Li M, Wang C, Wang Z F. 2013. Depoisitonal age and geological implications of the Ruyang Group in the southwestern margin of the North China Craton: Evidence from detrial zircon U-Pb ages (in Chinese). Chin J Geol, 48: 1115–1139Google Scholar
  72. Li Z X, Bogdanova S V, Collins A S, Davidson A, De Waele B, Ernst R E, Fitzsimons I C W, Fuck R A, Gladkochub D P, Jacobs J, Karlstrom K E, Lu S, Natapov L M, Pease V, Pisarevsky S A, Thrane K, Verni-kovsky V. 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Res, 160: 179–210CrossRefGoogle Scholar
  73. Li X H. 1999. U-Pb zircon ages of granites from the southern margin of the Yangtze Block: Timing of Neoproterozoic Jinning: Orogeny in SE China and implications for Rodinia Assembly. Precambrian Res, 97: 43–57CrossRefGoogle Scholar
  74. Li X H, Li Z X, Zhou H W, Liu Y, Kinny P D. 2002. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoicbimodal volcanic rocks in the Kangdian Rift of South China: Implications for the initial rifting of Rodinia. Precambrian Res, 113: 135–154CrossRefGoogle Scholar
  75. Liu Y, Zhong N N, Tian Y J, Qi W, Mu G Y. 2011. The oldest oil accumulation in China: Meso-proterozoic Xiamaling Formation bituminous sandstone reservoirs (in Chinese). Petrol Explor Dev, 38: 503–512CrossRefGoogle Scholar
  76. Long X P, Yuan C, Sun M, Kröner A, Zhao G C, Wilde S, Hu A Q. 2011. Reworking of the Tarim Craton by underplating of mantle plume-derived magmas: Evidence from Neoproterozoic granitoids in the Kulu-ketage area, NW China. Precambrian Res, 187: 1–14CrossRefGoogle Scholar
  77. Love G D, Grosjean E, Stalvies C, Fike D A, Grotzinger J P, Bradley A S, Kelly A E, Bhatia M, Meredith W, Snape C E, Bowring S A, Condon D J, Summons R E. 2009. Fossil steroids record the appearance of De-mospongiae during the Cryogenian period. Nature, 457: 718–721CrossRefGoogle Scholar
  78. Lu S N, Li H M. 1991. A precise U-Pb singe zircon age determination for the volcanics of Dahongyu Formation Changcheng System in Jixian (in Chinese). Bull Chin Acad Geol Sci, 22: 137–145Google Scholar
  79. Luo G M, Hallmann C, Xie S C, Ruan X Y, Summons R E. 2015. Comparative microbial diversity and redox environments of black shale and stromatolite facies in the Mesoproterozoic Xiamaling Formation. Geochim Cosmochim Acta, 151: 150–167CrossRefGoogle Scholar
  80. Luo G M, Junium C K, Kump L R, Huang J H, Li C, Feng Q H, Shi X Y, Bai X, Xie S C. 2014. Shallow stratification prevailed for ~1700 to ~1300 Ma ocean: Evidence from organic carbon isotopes in the North China Craton. Earth Planet Sci Lett, 400: 219–232CrossRefGoogle Scholar
  81. Luo Q Y, Zhong N N, Zhu L, Wang Y N, Qin J, Qi L, Zhang Y, Ma Y. 2013. Correlation of burial organic carbon and paleoproductivity in the Me-soproterozoic Hongshuizhuang Formation, northern North China (in Chinese). Chin Sci Bull, 58: 1036–1047Google Scholar
  82. Lyons T W, Reinhard C T, Planavsky N J. 2014. The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 506: 307–315CrossRefGoogle Scholar
  83. Lyons T W, Reinhard C T. 2011. Sea change for the rise of oxygen. Nature, 478: 194–195CrossRefGoogle Scholar
  84. Marshall A O, Corsetti F A, Sessions A L, Marshall C P. 2009. Raman spectroscopy and biomarker analysis reveal multiple carbon inputs to a Precambrian glacial sediment. Org Geochem, 40: 1115–1123CrossRefGoogle Scholar
  85. McFadden K A, Huang J, Chu X, Jiang G, Kaufman A J, Zhou C, Yuan X, Xiao S. 2008. Pulsed oxidation and biological evolution in the Edia-caran Doushantuo Formation. Proc Natl Acad Sci USA, 105: 3197–3202CrossRefGoogle Scholar
  86. Melenevskii V N. 2012. Modeling of catagenetic transformation of organic matter from a Riphean mudstone in hydrous pyrolysis experiments: Biomarker data. Geochem Int, 50: 425–436CrossRefGoogle Scholar
  87. Meng F W, Yuan X L, Zhou C M, Chen Z L. 2003. Dinosterane from the Neoproterozoic Datangpo black shales and its biological implications (in Chinese). Acta Micropaleo Sin, 20: 97–102Google Scholar
  88. Meng F W, Zhou C M, Yan K, Yuan X L, Yin L M. 2006. Biological orgin of early Palaeozoic and Precambrian hydrocarbon surce rocks based on C27/C29 sterane raro and organic carbon isotope (in Chinese). Acta Micropaleo Sin, 23: 51–56Google Scholar
  89. Meyers P A, Bernasconi S M. 2005. Carbon and nitrogen isotope excursions in mid-Pleistocene sapropels from the Tyrrhenian Basin: Evidence for climate-induced increases in microbial primary production. Mar Geol, 220: 41–58CrossRefGoogle Scholar
  90. Nance R D, Murphy J B, Santosh M. 2014. The supercontinent cycle: A retrospective essay. Gondwana Res, 25: 4–29CrossRefGoogle Scholar
  91. Nance R D, Worsley T R, Moody J B. 1988. The supercontinent cycle. Sci Am, 259: 72–79CrossRefGoogle Scholar
  92. Och L M, Shields-Zhou G A. 2012. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling. Earth-Sci Rev, 110: 26–57CrossRefGoogle Scholar
  93. Pavlov A A, Hurtgen M T, Kasting J F, Arthur M A. 2003. Methane-rich Proterozoic atmosphere? Geology, 31: 87–90CrossRefGoogle Scholar
  94. Peng Y B, Bao H M, Yuan X L. 2009. New morphological observations for Paleoproterozoic acritarchs from the Chuanlinggou Formation, North China. Precambrian Res, 168: 223–232CrossRefGoogle Scholar
  95. Peters K E, Walters C C, Moldowan J M. 2005. The Biomarker Guide: Biomarkers and Isotopes in the Environment and Human History. Cambridge: Cambridge University Press. 704Google Scholar
  96. Planavsky N J, McGoldrick P, Scott C T, Li C, Reinhard C T, Kelly A E, Chu X, Bekker A, Love G D, Lyons T W. 2011. Widespread iron-rich conditions in the Mid-Proterozoic ocean. Nature, 477: 448–451CrossRefGoogle Scholar
  97. Planavsky N J, Reinhard C T, Wang X, Thomson D, McGoldrick P, Rainbird R H, Johnson T, Fischer W W, Lyons T W. 2014. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science, 346: 635–638CrossRefGoogle Scholar
  98. Poulton S W, Canfield D E. 2011. Ferruginous conditions: A dominant feature of the ocean through Earth’s history. Elements, 7: 107–112CrossRefGoogle Scholar
  99. Poulton S W, Fralick P W, Canfield D E. 2004. The transition to a sulphidic ocean ~1.84 billion years ago. Nature, 431: 173–177CrossRefGoogle Scholar
  100. Poulton S W, Fralick P W, Canfield D E. 2010. Spatial variability in oceanic redox structure 1.8 billion years ago. Nat Geosci, 3: 486–490CrossRefGoogle Scholar
  101. Reinhard C T, Raiswell R, Scott C, Anbar A D, Lyons T W. 2009. A late Archean sulfidic sea stimulated by early oxidative weathering of the continents. Science, 326: 713–716CrossRefGoogle Scholar
  102. Ren R, Guan S W, Wu L, Zhu G Y. 2017. The north-south differentiation characteristic and its enlightenment on oil-gas exploration of the Neo-proterozic rift basin, Tarim Basin (in Chinese). Acta Petrol Sin, 38: 255–266Google Scholar
  103. Riding R. 2006. Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition. Geobiology, 4: 299–316CrossRefGoogle Scholar
  104. Rogers J J W, Santosh M. 2002. Configuration of Columbia, a Mesopro-terozoic supercontinent. Gondwana Res, 5: 5–22CrossRefGoogle Scholar
  105. Sahoo S K, Planavsky N J, Kendall B, Wang X, Shi X, Scott C, Anbar A D, Lyons T W, Jiang G. 2012. Ocean oxygenation in the wake of the Marinoan glaciation. Nature, 489: 546–549CrossRefGoogle Scholar
  106. Schaefer K. 2017. This country is caught in acatch-22 with EnergyGoogle Scholar
  107. Schopf J W. 2006. Fossil evidence of Archaean life. Philos Trans R Soc B-Biol Sci, 361: 869–885CrossRefGoogle Scholar
  108. Scott C, Lyons T W, Bekker A, Shen Y, Poulton S W, Chu X L, Anbar A D. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452: 456–459CrossRefGoogle Scholar
  109. Shen Y N, Buick R, Canfield D E. 2001. Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature, 410: 77–81CrossRefGoogle Scholar
  110. Slack J F, Grenne T, Bekker A, Rouxel O J, Lindberg P A. 2007. Suboxic deep seawater in the late Paleoproterozoic: Evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA. Earth Planet Sci Lett, 255: 243–256CrossRefGoogle Scholar
  111. Strand K. 2012. Global and continental-scale glaciations on the Pre-cambrian earth. Mar Pet Geol, 33: 69–79CrossRefGoogle Scholar
  112. Su W B, Li H K, Huff W D, Ettensohn F R, Zhang S H, Zhou H Y, Wan Y S. 2010. SHRIMP U-Pb dating for a K-bentonite bed in the Tieling Formation, North China (in Chinese). Chin Sci Bull, 55: 2197–2206CrossRefGoogle Scholar
  113. Su W B, Li H S, Xu L, Jia S H, Geng J Z, Zhou H Y, Wang Z H, Pu H Y. 2012. Luoyu and Ruyang Group at the south margin of the North China Craton (NCC) should belong in the Mesoproterozoic Changchengian-System: Direct constraints from the LA-MC-ICPMS U-Pb age of the tuffite in the Luoyukou Formation, Ruzhou, Henan, China (in Chinese). Geol Sur Res, 35: 96–108Google Scholar
  114. Summons R E, Brassell S C, Eglinton G, Evans E, Horodyski R J, Robinson N, Ward D M. 1988. Distinctive hydrocarbon biomarkers from fossiliferous sediment of the Late Proterozoic Walcott Member, Chuar Group, Grand Canyon, Arizona. Geochim Cosmochim Acta, 52: 2625–2637CrossRefGoogle Scholar
  115. Summons R E, Jahnke L L, Hope J M, Logan G A. 1999. 2-Methylho-panoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature, 400: 554–557CrossRefGoogle Scholar
  116. Sun S, Wang T G. 2015. Meso-Neoproterozoic Geology and Petroleum Resources in Eastern China (in Chinese). Beijing: Science PressGoogle Scholar
  117. Tang D J, Shi X Y, Wang X Q, Jiang G Q. 2016. Extremely low oxygen concentration in Mid-Proterozoic shallow seawaters. Precambrian Res, 276: 145–157CrossRefGoogle Scholar
  118. Tissot B P, Welte D H. 1978. Petroleum Formation and Occurance: A New Approach to Oil and Gas Exploration. Heidelberg: Springer. 538CrossRefGoogle Scholar
  119. Vogel M B, Moldowan J M, Zinniker D. 2005. Biomarkers from Units in the Uinta Mountain and Chuar Groups. In: Vogel B M, Moldowan M J, Zinniker D, eds. The AAPG/Datapages Combined Publications Database. 75–96Google Scholar
  120. Wang H Z. 1985. Atlas of the Palaeogeography of China (in Chinese). Beijing: Cartogra Pub HouseGoogle Scholar
  121. Wang J, Li Z X. 2003. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up. Precambrian Res, 122: 141–158CrossRefGoogle Scholar
  122. Wang S W, Liao Z W, Sun X M, Zhou B G, Guo Y, Jiang X F, Zhu H P, Sun Z M, Luo M J, Ma D. 2013. Age and geochemistry of the Caiyuanzi granite in Sichuan, SW China: Mechanism of the Grenvillian Orogenic Movement in the western margin of Yangtze Block (in Chinese). Acta Geol Sin, 87: 55–70CrossRefGoogle Scholar
  123. Wang T G, Han K Y. 2011. On Meso-Neoproterozoic primary petroleum resources (in Chinese). Acta Petreo Sin, 32: 1–7CrossRefGoogle Scholar
  124. Wang T G, Li M J, Wang C J, Wang G L, Zhang W B, Shi Q, Zhu L. 2008. Organic molecular evidence in the Late Neoproterozoic Tillites for a palaeo-oceanic environment during the snowball Earth era in the Yangtze region, southern China. Precambrian Res, 162: 317–326CrossRefGoogle Scholar
  125. Wang T G, Zhong N N, Wang C J, Zhu Y X, Liu Y, Song D F. 2016. Source beds and oil entrapment-alteration histories of fossil-oil-reservoirsin the Xiamaling Formation Basal Sandstone, Jibei Depression (in Chinese). Petro Sci Bull, 1: 24–37Google Scholar
  126. Wang X L, Zhou J C, Griffin W L, Wang R C, Qiu J S, O’Reilly S Y, Xu X, Liu X M, Zhang G L. 2007. Detrital zircon geochronology of Pre-cambrian basement sequences in the Jiangnan orogen: Dating the assembly of the Yangtze and Cathaysia Blocks. Precambrian Res, 159: 117–131CrossRefGoogle Scholar
  127. Wang X L, Zhou J C, Griffin W, Wang R C, Qiu J S, O’Reilly S, Xu X S, Liu X M, Zhang G L. 2017. Oxygen, climate and the chemical evolution of a 1400 million year old tropical marine setting. Am J Sci, 317: 861–900Google Scholar
  128. Wang Z C, Jiang H, Wang T S, Gu Z D, Huang S P. 2014. Hydrocarbon systems and exploration potentials of Neoproterozoic in the Upper Yangtze region (in Chinese). Nat Gas Ind, 34: 27–36Google Scholar
  129. Wei G Q, Wang Z H, Li J, Yang W, Xie Z Y. 2017. Characteristics of source rocks, resource potential and exploration direction of Sinian and Cambrian in Sichuan Basin (in Chinese). Nat Gas Geosci, 28: 1–13Google Scholar
  130. Wen Z X, Tong X G, Zhang G Y, Wang Y M. 2012. Petroleum geology features and exploration potential of Basin Group in east African rift system (in Chinese). Chin Petrol Expor, 4: 60–65Google Scholar
  131. Wu L, Guan S W, Ren R, Wang X B, Yang H J, Jin J Q, Zhu G Y. 2016. The characteristics of Precambrian sedimentary basin and the distribution of deep source rock: A case study of Tarim Basin in Neoproterozoic and source rocks in Early Cambrian, Western China (in Chinese). Petrol Expor Dev, 43: 905–915Google Scholar
  132. Xie L J, Sun Y G, Yang Z W, Chen J P, Jiang A Z, Zhang Y D, Deng C P. 2013. Evaluation of hydrocarbon generation of the Xiamaling Formation shale in Zhangjiakou and its significance to the petroleum geology in North China. Sci China Earth Sci, 56: 444–452CrossRefGoogle Scholar
  133. Xie S C, Yin H F, Shi X Y. 2011. Geobiology: Interactions and Co-Evolution Between Life and Earth Environments (in Chinese). Beijing: Science PressGoogle Scholar
  134. Xu B, Xiao S H, Zou H B, Chen Y, Li Z X, Song B, Liu D Y, Zhou C M, Yuan X L. 2009. SHRIMP zircon U-Pb age constraints on Neoproterozoic Quruqtagh diamictites in NW China. Precambrian Res, 168: 247–258CrossRefGoogle Scholar
  135. Xu B, Zou H B, Chen Y, He J Y, Wang Y. 2013. The Sugetbrak basalts from northwestern Tarim Block of northwest China: Geochronology, geochemistry and implications for Rodinia breakup and ice age in the Late Neoproterozoic. Precambrian Res, 236: 214–226CrossRefGoogle Scholar
  136. Xu Z Q, He B Z, Zhang C L, Zhang J X, Wang Z M, Cai Z H. 2013. Tectonic framework and crustal evolution of the Precambrian basement of the Tarim Block in NW China: New geochronological evidence from deep drilling samples. Precambrian Res, 235: 150–162CrossRefGoogle Scholar
  137. Ye Y T, Wang H J, Zhai L N, Zhou W X, Wang X M, Zhang S C, Wu C D. 2017. Geological events and their biological responses during the Neoproterozoic Era (in Chinese). Acta Sedim Sin, 35: 203–216Google Scholar
  138. Yin C Y, Liu D Y, Gao L Z, Wang Z Q, Xing Y S, Jian P, Shi Y R. 2003. Lower boundary age of the Nanhua System and the Gucheng glacial stage: Evidence from SHRIMP II dating (in Chinese). Chin Sci Bull, 48: 1657–1662CrossRefGoogle Scholar
  139. Yin F G, Sun Z M, Zhang Z. 2012. Mesoproterozoic stratigraphic-structure framework in Huili-Dongchuan area (in Chinese). Geol Rev, 57: 770–778Google Scholar
  140. Yin Z J, Zhu M Y, Davidson E H, Bottjer D J, Zhao F C, Tafforeau P. 2015. Sponge grade body fossil with cellular resolution dating 60 Myr before the Cambrian. Proc Nat Acad Sci USA, 112: E1453–E1460Google Scholar
  141. Yuan X L, Chen Z, Xiao S H, Zhou C M, Hua H. 2011. An early Ediacaran assemblage of macroscopic and morphologically differentiated eu-karyotes. Nature, 470: 390–393CrossRefGoogle Scholar
  142. Zhai M G, Hu B, Peng P, Zhao T P. 2014. Meso-Neoproterozic magmatic events and multi-stage rifting in the NCC (in Chinese). Front Earth Sci, 21: 100–119Google Scholar
  143. Zhai M G. 2013. The main old lands in China and assembly of Chinese unified continent. Sci China Earth Sci, 56: 1829–1852CrossRefGoogle Scholar
  144. Zhang C H, Gao L Z, Wu Z J, Shi X Y, Yan Q R, Li S J. 2007. SHRIMP U-Pb zircon age of tuff from the Kunyang Group in central Yunnan: Evidence for Grenvillian orogeny in South China. Chin Sci Bull, 52: 1517–1525CrossRefGoogle Scholar
  145. Zhang C L, Li Z X, Li X H, Ye H M. 2009. Neoproterozoic mafic dyke swarms at the northern margin of the Tarim Block, NW China: Age, geochemistry, petrogenesis and tectonic implications. J Asian Earth Sci, 35: 167–179CrossRefGoogle Scholar
  146. Zhang C L, Yang D S, Wang H Y, Dong Y G, Ye H M. 2010. Neopro-terozoic mafic dykes and basalts in the southern margin of Tarim, Northwest China: Age, geochemistry and geodynamic implications. Acta Geol Sin-Engl Ed, 84: 549–562CrossRefGoogle Scholar
  147. Zhang G W, Guo A L, Wang Y J, Zhang Y P, Liu S F, He D F, Cheng S Y, Lu Y K, Yao A P. 2013. Tectonics of South China continent and its implications. Sci China Earth Sci, 56: 1804–1828CrossRefGoogle Scholar
  148. Zhang K, Zhu X K, Wood R A, Shi Y, Gao Z F, Poulton S W. 2018. Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes. Nat Geosci, 11: 345–350CrossRefGoogle Scholar
  149. Zhang S, Moldowan J M, Li M W. 2002. The abnormal distribution of the molecular fossils in the pre-Cambrian and Cambrian: Its biological significance. Sci China Ser D-Earth Sci, 45: 193–200CrossRefGoogle Scholar
  150. Zhang S C, Wang X M, Hammarlund E U, Wang H J, Costa M M, Bjerrum C J, Connelly J N, Zhang B M, Bian L Z, Canfield D E. 2015a. Orbital forcing of climate 1.4 billion years ago. Proc Natl Acad Sci USA, 112: 1406–1413Google Scholar
  151. Zhang S C, Wang X M, Wang H J, Hammarlund E U, Su J, Wang Y, Canfield D E. 2017. The oxic degradation of sedimentary organic matter 1400 Ma constrains atmospheric oxygen levels. Biogeosciences, 14: 2133–2149CrossRefGoogle Scholar
  152. Zhang S C, Wang X M, Wang H J, He K, Su J. 2015b. Hydrocarbon generation potential, parent material and developmental environment of Proterozoic source rocks (in Chinese). Qingdao: The 15th National Symposium of Organic GeochemistryGoogle Scholar
  153. Zhang S C, Wang X, Wang H, Bjerrum C J, Hammarlund E U, Costa M M, Connelly J N, Zhang B, Su J, Canfield D E. 2016. Sufficient oxygen for animal respiration 1400 million years ago. Proc Natl Acad Sci USA, 113: 1731–1736CrossRefGoogle Scholar
  154. Zhang S C, Zhang B M, Bian L Z, Jin Z J, Wang D R, Chen J F. 2007. The Xiamaling oil shale generated through Rhodophyta over 800 Ma ago. Sci China Ser D-Earth Sci, 50: 527–535CrossRefGoogle Scholar
  155. Zhang S C, Zhang B M, Bian L Z, Jin Z J, Wang D R, Zhang X Y, Gao Z Y, Chen J F. 2005. Development constraints of marine source rocks in China (in Chinese). Front Earth Sci, 12: 39–48Google Scholar
  156. Zhang S H, Jiang G Q, Han Y G. 2008. The age of the Nantuo Formation and Nantuo glaciation in South China. Terra Nova, 20: 289–294CrossRefGoogle Scholar
  157. Zhang S H, Jiang G Q, Zhang J M, Song B, Kennedy M J, Christie-Blick N. 2005. U-Pb sensitive high-resolution ion microprobe ages from the Doushantuo Formation in south China: Constraints on late Neoproter-ozoic glaciations. Geology, 33: 473–476CrossRefGoogle Scholar
  158. Zhang S H, Zhao Y, Ye H, Hu J M, Wu F. 2013. New constraints on ages of the Chuanlinggou and Tuanshanzi Formations of the Changcheng System in the Yan-Liao area in the northern North China Craton (in Chinese). Acta Petrol Sin, 29: 2481–2490Google Scholar
  159. Zhao C L, Li R F, Zhou J S. 1997. Sedimentology and Petroleum Geology of the Meso-and Neo-Proterozoic in North China. Beijing: Geol Pub HouseGoogle Scholar
  160. Zhao G C, Sun M, Wilde S A, Li S Z. 2004. A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup. Earth-Sci Rev, 67: 91–123CrossRefGoogle Scholar
  161. Zhao P, Chen Y, Zhan S, Xu B, Faure M. 2014. The Apparent Polar Wander Path of the Tarim Block (NW China) since the Neoproterozoic and its implications for a long-term Tarim-Australia connection. Pre-cambrian Res, 242: 39–57CrossRefGoogle Scholar
  162. Zhao T P, Zhai M G, Xia B, Li H M, Zhang Y X, Wan Y S. 2004. Zircon U-Pb SHRIMP dating for the volcanic rocks of the Xiong’er Group: Constraints on the initial formation age of the cover of the North China Craton. Chin Sci Bull, 49: 2495–2502CrossRefGoogle Scholar
  163. Zhao W Z, Hu S Y, Wang Z C, Zhang S C, Wang T S. 2018. Petroleum geological conditions and exploration importance of Proterozoic to Cambrian in China (in Chinese). Petrol Explor Dev, 45: 1–13CrossRefGoogle Scholar
  164. Zhou C M, Tucker R, Xiao S H, Peng Z X, Yuan X L, Chen Z. 2004. New constraints on the ages of Neoproterozoic glaciations in south China. Geology, 32: 437–440CrossRefGoogle Scholar
  165. Zhou H R, Wang Z Q. 1999. Feature and tectono-paleogeography evolution of the southern margin of the North China continent in Mesoproterozoic and Neoproterozoic Era (in Chinese). Geoscience, 13: 261–267Google Scholar
  166. Zhu M Y, Wang H F. 2011. Neoproterozoic glaciogenic diamictites of the Tarim Block, NW China. In: Arnaud E, Halverson G P, Shields-Zhou G, eds. The Geological Record of Neoproterozoic Glaciations. Geol Soc Lond Memoir, 36: 367–378CrossRefGoogle Scholar
  167. Zhu S X, Chen H N. 1995. Megascopic multicellular organisms from the 1700-million-year-old Tuanshanzi Formation in the Jixian area, North China. Science, 270: 620–622CrossRefGoogle Scholar
  168. Zhu S X, Zhu M Y, Knoll A H, Yin Z J, Zhao F C, Sun S F, Qu Y G, Shi M, Liu H. 2016. Decimetre-scale multicellular eukaryotes from the 1.56-billion-year-old Gaoyuzhuang Formation in North China. Nat Commun, 7: 11500CrossRefGoogle Scholar
  169. Zhuo J W, Jiang X S, Wang J, Cui X Z, Xiong G Q, Lu J Z, Liu J H, Ma M Z. 2013. Opening time and filling pattern of the Neoproterozoic Kangdian Rift Basin, western Yangtze Continent, South China. Sci China Earth Sci, 56: 1664–1676CrossRefGoogle Scholar
  170. Zou C N, Du J H, Xu C C, Wang Z C, Zhang B M, Wei G Q, Wang T S, Yao G S, Deng S H, Liu J J. 2014. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China (in Chinese). Petrol Explor Dev, 41: 278–293Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Wenzhi Zhao
    • 1
  • Xiaomei Wang
    • 1
    Email author
  • Suyun Hu
    • 1
  • Shuichang Zhang
    • 1
  • Huajian Wang
    • 1
  • Shuwei Guan
    • 1
  • Yuntao Ye
    • 1
  • Rong Ren
    • 1
  • Tongshan Wang
    • 1
  1. 1.Research Institute of Petroleum Exploration & DevelopmentPetroChinaChina

Personalised recommendations