Experimental study of high to intermediate temperature alteration in porphyry copper systems and geological implications

  • Jianping Li
  • Huayong Chen
  • Long Su
  • Bing Xiao
  • Yunfeng Wang
Research Paper


Porphyry copper systems, which provide most of the world’s copper resource, are commonly associated with characteristic concentric zonation of alteration and mineralization. In-depth knowledge of the distribution and transport mechanism of elements in the alteration zones is essential for understanding the ore-forming processes. We employed flow-reaction apparatus to simulate the fluid-rock interactions during porphyry ore formation so as to investigate the mechanisms that govern the transport of elements and the development of zonation. The results indicate more heterogeneous distribution of elements in the experimental products at 450°C compared to those at lower temperatures, which implies a crucial role of temperature in controlling elements redistribution in hydrothermal systems. Heating advances potassic alteration and Ca leaching of wall rocks. To achieve the same degree of sodic alteration, it requires a higher concentration of Na+ in the fluid toward higher temperature. Temperature also facilitates the incorporation of Ti, Sr and Pb into silicate minerals through cation substitution. We infer from experimental results that from the center of intermediate to mafic volcanic wall rocks toward periphery, the contents of K and Ti should decrease and the contents of Ca, Zn and Mn should increase, whereas the trend for Si and Na could be non-monotonic. This study provides experimental and theoretical insights into a variety of vital geological observations, including anhydrite formation and the widespread development of potassic rather than sodic alteration in porphyry copper deposits.


Porphyry copper deposit Fluid-rock interactions Flowing systems Elements transport mechanism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Zhang Dongwei, Li Dengfeng, Zhang Shitao, Zhao Liandang, Xu Chao and Huang Jianhan are thanked for the laboratory assistance. We also appreciate the constructive comments from three anonymous reviewers which significantly improved this manuscript. This work was supported by National Natural Science Foundation of China (Grant No. U1603244), Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB1803206) and Science and Technology Planning Project of Guangdong Province (Grant No. 2017B030314175).


  1. Aagaard P, Helgeson H C. 1982. Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions: I, Theoretical considerations. Am J Sci, 282: 237–285Google Scholar
  2. Ague J J, Brimhall G H. 1989. Geochemical modeling of steady state fluid flow and chemical reaction during supergene enrichment of porphyry copper deposits. Econ Geol, 84: 506–528CrossRefGoogle Scholar
  3. Airy G B. 1855. On the computation of the effect of the attraction of mountain-masses, as disturbing the apparent astronomical latitude of stations in geodetic surveys. Philos Trans R Soc Lond, 145: 101–104CrossRefGoogle Scholar
  4. Barnes H L. 1997. Geochemistry of Hydrothermal Ore Deposits. 3rd ed. John Wiley & Sons. 1Google Scholar
  5. Bondar R J, Sanchez P L, Moncada D, Macinnis M S. 2014. Fluid inclusions in hydrothermal ore deposits. Treat Geochem, 13: 119–142Google Scholar
  6. Bickle M, Baker J. 1990. Migration of reaction and isotopic fronts in infiltration zones: Assessments of fluid flux in metamorphic terrains. Earth Planet Sci Lett, 98: 1–13CrossRefGoogle Scholar
  7. Bird D K, Schiffman P, Elders W A, Williams A E, McDowell S D. 1984. Calc-silicate mineralization in active geothermal systems. Econ Geol, 79: 671–695CrossRefGoogle Scholar
  8. Brimhall G H. 1977. Early fracture-controlled disseminated mineralization at Butte, Montana. Econ Geol, 72: 37–59CrossRefGoogle Scholar
  9. Carmichael D M. 1987. Induced stress and secondary mass transfer: Thermodynamic basis for the tendency toward constant-volume constraint in diffusion metasomatism. In: Helgeson H C, ed. Chemical Transport in Metasomatic Processes. NATO ASI Series (Series C: Mathematical and Physical Sciences). Dordrecht: SpringerGoogle Scholar
  10. Carten R B. 1986. Sodium-calcium metasomatism; chemical, temporal, and spatial relationships at the Yerington, Nevada, porphyry copper deposit. Econ Geol, 81: 1495–1519CrossRefGoogle Scholar
  11. Chang J, Li J W, Audétat A. 2018. Formation and evolution of multistage magmatic-hydrothermal fluids at the Yulong porphyry Cu-Mo deposit, eastern Tibet: Insights from LA-ICP-MS analysis of fluid inclusions. Geochim Cosmochim Acta, 232: 181–205CrossRefGoogle Scholar
  12. Chen H Y, Xiao B. 2014. Metallogenesis of subduction zone: The progress and future. Geosci Front, 21: 13–22CrossRefGoogle Scholar
  13. Cooke D R, Hollings P, Walshe J L. 2005. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Econ Geol, 100: 801–818CrossRefGoogle Scholar
  14. Cooke D R, Baker M, Hollings P, Sweet G, Chang Z, Danyushevsky L, Gilbert G, Zhou T, White N C, Gemmell J B, Inglis S. 2014a. New advances in detecting systems-epidote mineral chemistry as a tool for vectoring and fertility assessments. Soc Econ Geologists Spec Publ, 18: 127–152Google Scholar
  15. Cooke D R, Agnew P, Hollings P. 2017. Porphyry indicator minerals (PIMS) and porphyry vectoring and fertility tools (PVFTS)-indicators of mineralization styles and recorders of hypogene geochemical dispersion halos. In: Exploration 17: Sixth Decennial International Conference on Mineral Exploration.Google Scholar
  16. Toronto Cooke D R, Hollings P, Wilkinson J J, Tosdal R M. 2014b. Geochemistry of porphyry deposits. Treat Geochem, 13: 357–381CrossRefGoogle Scholar
  17. Dang Z, Hou Y. 1995. Experimental study on the dissolution kinetics of basalt-water interaction. Acta Petrol Sin, 11: 9–15Google Scholar
  18. Du L T. 1986. Geochemistry of alkaline metasomatism. Sci China, 1: 83–92Google Scholar
  19. Du J G. 2010. High Pressure Geoscience. Beijing: Seismological PressGoogle Scholar
  20. Ferry J M, Dipple G M. 1991. Fluid flow, mineral reactions, and metaso-matism. Geology, 19: 211–214CrossRefGoogle Scholar
  21. Ferry J M, Dipple G M. 1992. Models for coupled fluid flow, mineral reaction, and isotopic alteration during contact metamorphism: The Notch Peak aureole, Utah. Ame Miner, 77: 577–591Google Scholar
  22. Fournier R O. 1999. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Econ Geol, 94: 1193–1211CrossRefGoogle Scholar
  23. Fournier R O, Marshall W L. 1983. Calculation of amorphous silica solubilities at 25 to 300°C and apparent cation hydration numbers in aqueous salt solutions using the concept of effective density of water. Geochim Cosmochim Acta, 47: 587–596CrossRefGoogle Scholar
  24. Frank M R, Candela P A, Piccoli P M. 1998. K-feldspar-muscovite-andalusite- quartz-brine phase equilibria: An experimental study at 25 to 60 MPa and 400 to 550°C. Geochim Cosmochim Acta, 62: 3717–3727CrossRefGoogle Scholar
  25. Frank M R, Vaccaro D M. 2012. An experimental study of high temperature potassic alteration. Geochim Cosmochim Acta, 83: 195–204CrossRefGoogle Scholar
  26. Gautier J M, Oelkers E H, Schott J. 1994. Experimental study of K-feldspar dissolution rates as a function of chemical affinity at 150°C and pH 9. Geochim Cosmochim Acta, 58: 4549–4560CrossRefGoogle Scholar
  27. Gislason S R, Oelkers E H. 2003. Mechanism, rates, and consequences of basaltic glass dissolution: II. An experimental study of the dissolution rates of basaltic glass as a function of pH and temperature. Geochim Cosmochim Acta, 67: 3817–3832Google Scholar
  28. Gudbrandsson S, Wolff-Boenisch D, Gislason S R, Oelkers E H. 2011. An experimental study of crystalline basalt dissolution from 2=pH=11 and temperatures from 5 to 75°C. Geochim Cosmochim Acta, 75: 5496–5509CrossRefGoogle Scholar
  29. Harris N B W, Inger S, Ronghua X. 1990. Cretaceous plutonism in Central Tibet: An example of post-collision magmatism? J Volcanol Geotherm Res, 44: 21–32CrossRefGoogle Scholar
  30. Halter W E, Pettke T, Heinrich C A. 2002. The origin of Cu/Au ratios in porphyry-type ore deposits. Science, 296: 1844–1846CrossRefGoogle Scholar
  31. Haselton Jr H T, Cygan G L, Jenkins D M. 1995. Experimental study of muscovite stability in pure H2O and 1 molal KCl-HCl solutions. Geochim Cosmochim Acta, 59: 429–442CrossRefGoogle Scholar
  32. Helgeson H C. 1969. Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am J Sci, 267: 729–804Google Scholar
  33. Heinrich C A. 1990. The chemistry of hydrothermal tin(-tungsten) ore deposition. Econ Geol, 85: 457–481CrossRefGoogle Scholar
  34. Heinrich C A. 2005. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: A thermodynamic study. Miner Deposita, 39: 864–889CrossRefGoogle Scholar
  35. Heinrich C A. 2006. From fluid inclusion microanalysis to large-scale hydrothermal mass transfer in the Earth’s interior. J Mineral Petrol Sci, 101: 110–117CrossRefGoogle Scholar
  36. Hemley J J, Montoya J W, Marinenko J W, Luce R W. 1980. Equilibria in the system Al2O3-SiO2-H2O and some general implications for alteration/mineralization processes. Econ Geol, 75: 210–228CrossRefGoogle Scholar
  37. Heinrich C A, Walshe J L, Harrold B P. 1996. Chemical mass transfer modelling of ore-forming hydrothermal systems: Current practise and problems. Ore Geol Rev, 10: 319–338CrossRefGoogle Scholar
  38. Hemley J J. 1959. Some mineralogical equilibria in the system K2O-Al2O3- SiO2-H2O. Am J Sci, 257: 241–270Google Scholar
  39. Hemley J J, Jones W R. 1964. Chemical aspects of hydrothermal alteration with emphasis on hydrogen metasomatism. Econ Geol, 59: 538–569CrossRefGoogle Scholar
  40. Hildreth W, Moorbath S. 1988. Crustal contributions to arc magmatism in the Andes of central Chile. Contr Mineral Petrol, 98: 455–489CrossRefGoogle Scholar
  41. Holyland P W. 1987. Dynamic modelling at the Renison tin mine. Pacific Rim Congress’87. 189–193Google Scholar
  42. Hu S M, Zhang R H, Zhang X T, Hang W B. 2010. Experimental study of water-basalt interaction in Luzong volcanic basin and its application. Acta Petrol Sin, 26: 2681–2693Google Scholar
  43. Huang W B, Zhang R H, Hu S M. 2011. Chemical dynamics of basaltseawater interaction near critical states. Acta Mineral Sin, Suppl: 692Google Scholar
  44. Hutcheon I, Shevalier M, Abercrombie H J. 1993. pH buffering by metastable mineral-fluid equilibria and evolution of carbon dioxide fugacity during burial diagenesis. Geochim Cosmochim Acta, 57: 1017–1027CrossRefGoogle Scholar
  45. Kerrich R. 2000. The geodynamics of world-class gold deposits, characteristics, space-time distribution, and origins. Rev. Econ Geol, 13: 501–551Google Scholar
  46. Korzhinskii D S. 1959. Acid-basic interaction of components in silicate melts and the direction of the cotectic lines. Doklady Akademii Nauk SSSR, 128: 383–386Google Scholar
  47. Korzhiniskii D S. 1970. Theory of Metasomatie Zoning. Oxford: Oxford University PressGoogle Scholar
  48. Landtwing M R, Pettke T, Halter W E, Heinrich C A, Redmond P B, Einaudi M T, Kunze K. 2005. Copper deposition during quartz dissolution by cooling magmatic-hydrothermal fluids: The Bingham porphyry. Earth Planet Sci Lett, 235: 229–243CrossRefGoogle Scholar
  49. Landtwing M R, Furrer C, Redmond P B, Pettke T, Guillong M, Heinrich C A. 2010. The Bingham Canyon porphyry Cu-Mo-Au deposit. III. Zoned copper-gold ore deposition by magmatic vapor expansion. Econ Geol, 105: 91–118Google Scholar
  50. Liang H Y, Sun W, Su W C, Zartman R E. 2009. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration. Econ Geol, 104: 587–596CrossRefGoogle Scholar
  51. Lasaga A C, Rye D M. 1993. Fluid flow and chemical reaction kinetics in metamorphic systems. Am J Sci, 293: 361–404Google Scholar
  52. Liu Y, Liu H C, Li X H. 1996. Simultaneous and precise determination of 40 trace elements in rock Samples using ICP-MS. Geochimica, 6: 552–558Google Scholar
  53. Liu Y J. 1984. Geochemistry of Elements. Beijing: Science PressGoogle Scholar
  54. Liu Y S, Zhang G L. 1996. An Experimental study on sea water-basalt interaction at 250–500°C and 100 MPa. Geochimica, 1: 53–62Google Scholar
  55. Lowell J D, Guilbert J M. 1970. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Econ Geol, 65: 373–408CrossRefGoogle Scholar
  56. Luhmann A J, Tutolo B M, Tan C, Moskowitz B M, Saar M O, Seyfried Jr. W E. 2017. Whole rock basalt alteration from CO2-rich brine during flow-through experiments at 150°C and 150 bar. Chem Geol, 453: 92–110CrossRefGoogle Scholar
  57. Merino E, Moore C, Ortoleva P, Ripley E. 1986. Mineral zoning in sediment- hosted copper-iron sulfide deposits—A quantitative kinetic approach. In: Geology and Metallogeny of Copper Deposits. Special Publication No. 4 of the Society for Geology Applied to Mineral Deposits. Berlin: Springer. 559–571Google Scholar
  58. Montoya J W, Hemley J J. 1975. Activity relations and stabilities in alkali feldspar and mica alteration reactions. Econ Geol, 70: 577–583CrossRefGoogle Scholar
  59. Mottl M J, Holland H D. 1978. Chemical exchange during hydrothermal alteration of basalt by seawater—I. Experimental results for major and minor components of seawater. Geochim Cosmochim Acta, 42: 1103–1115CrossRefGoogle Scholar
  60. Murphy W M, Oelkers E H, Lichtner P C. 1989. Surface reaction versus diffusion control of mineral dissolution and growth rates in geochemical processes. Chem Geol, 78: 357–380CrossRefGoogle Scholar
  61. Nash J T. 1976. Fluid-inclusion petrology—Data from porphyry copper deposits and applications to exploration: A summary of new and published descriptions of fluid inclusions from 36 porphyry copper deposits and discussion of possible applications to exploration for copper deposits. US Govt. Print. OffGoogle Scholar
  62. Oelkers E H. 2001. General kinetic description of multioxide silicate mineral and glass dissolution. Geochim Cosmochim Acta, 65: 3703–3719CrossRefGoogle Scholar
  63. Oelkers E H, Schott J. 2001. An experimental study of enstatite dissolution rates as a function of pH, temperature, and aqueous Mg and Si concentration, and the mechanism of pyroxene/pyroxenoid dissolution. Geochim Cosmochim Acta, 65: 1219–1231CrossRefGoogle Scholar
  64. Oelkers E H, Schott J, Devidal J L. 1994. The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochim Cosmochim Acta, 58: 2011–2024CrossRefGoogle Scholar
  65. Orville P M. 1962. Alkali metasomatism and feldspars. Norsk Geologisk Tidsskrift. 283–316Google Scholar
  66. Pollard P J. 2001. Sodic(-calcic) alteration in Fe-oxide-Cu-Au districts: An origin via unmixing of magmatic H2O-CO2-NaCl±CaCl2-KCl fluids. Miner Depos, 36: 93–100CrossRefGoogle Scholar
  67. Ré C L, Kaszuba J P, Moore J N, McPherson B J. 2014. Fluid-rock interactions in CO2-saturated, granite-hosted geothermal systems: Implications for natural and engineered systems from geochemical experiments and models. Geochim Cosmochim Acta, 141: 160–178CrossRefGoogle Scholar
  68. Reed M H. 1997. Hydrothermal alteration and its relationship to ore fluid composition. Geochem Hydrothermal Ore Deposits, 1: 303–365Google Scholar
  69. Redmond P B, Einaudi M T, Inan E E, Landtwing M R, Heinrich C A. 2004. Copper deposition by fluid cooling in intrusion-centered systems: New insights from the Bingham porphyry ore deposit, Utah. Geology, 32: 217–220CrossRefGoogle Scholar
  70. Redmond P B, Einaudi M T. 2010. The Bingham Canyon porphyry Cu-Mo-Au deposit. I. Sequence of intrusions, vein formation, and sulfide deposition. Econ Geol, 105: 43–68Google Scholar
  71. Richards J P. 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol Rev, 40: 1–26CrossRefGoogle Scholar
  72. Richards J P, Kerrich R. 2007. Special paper: Adakite-like rocks: Their diverse origins and questionable role in metallogenesis. Econ Geol, 102: 537–576CrossRefGoogle Scholar
  73. Ringwood A E. 1977. Petrogenesis in Island Arc Systems. Island Arcs, Deep Sea Trenches and Back-arc Basins. Washington: American Geophysical Union. 311–324Google Scholar
  74. Roedder E. 1971. Fluid inclusion studies on the porphyry-type ore deposits at Bingham, Utah, Butte, Montana, and Climax, Colorado. Econ Geol, 66: 98–118CrossRefGoogle Scholar
  75. Rogers K L, Neuhoff P S, Pedersen A K, Bird D K. 2006. CO2 metasomatism in a basalt-hosted petroleum reservoir, Nuussuaq, West Greenland. Lithos, 92: 55–82CrossRefGoogle Scholar
  76. Rusk B G, Reed M H, Dilles J H, Klemm L M, Heinrich C A. 2004. Compositions of magmatic hydrothermal fluids determined by LA-ICPMS of fluid inclusions from the porphyry copper-molybdenum deposit at Butte, MT. Chem Geol, 210: 173–199CrossRefGoogle Scholar
  77. Rusk B G, Reed M H, Dilles J H. 2008. Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana. Econ Geol, 103: 307–334CrossRefGoogle Scholar
  78. Schott J, Pokrovsky O S, Oelkers E H. 2009. The link between mineral dissolution/precipitation kinetics and solution chemistry. Rev Mineral Geochem, 70: 207–258CrossRefGoogle Scholar
  79. Seedorff E, Dilles J H, Proffett J M. 2005. Porphyry deposits: Characteristics and origin of hypogene features. Econ Geol, 100: 251–298Google Scholar
  80. Sillitoe R H. 1972. A plate tectonic model for the origin of porphyry copper deposits. Econ Geol, 67: 184–197CrossRefGoogle Scholar
  81. Sillitoe R H. 1973. The tops and bottoms of porphyry copper deposits. Econ Geol, 68: 799–815CrossRefGoogle Scholar
  82. Sillitoe R H. 2010. Porphyry copper systems. Econ Geol, 105: 3–41CrossRefGoogle Scholar
  83. Stern C R, Funk J A, Skewes M A, Arevalo A. 2007. Magmatic anhydrite in plutonic rocks at the El Teniente Cu-Mo deposit chile, and the role of sulfur- and copperrich magmas in its formation. Econ Geol, 102: 1335–1344CrossRefGoogle Scholar
  84. Sun S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol Soc Lond Spec Publ, 42: 313–345CrossRefGoogle Scholar
  85. Sun W D, Ling M X, Yang X Y, Fan W M, Ding X, Liang H Y. 2010. Ridge subduction and porphyry copper-gold mineralization: An overview. Sci China Earth Sci, 53: 475–484CrossRefGoogle Scholar
  86. Sverjensky D A, Hemley J J, D’angelo W M. 1991. Thermodynamic assessment of hydrothermal alkali feldspar-mica-aluminosilicate equilibria. Geochim Cosmochim Acta, 55: 989–1004CrossRefGoogle Scholar
  87. Tan K X, Zhang Z R, Wang Z G. 1994. The Mechanism of surface chemical kinetics of dissolution of minerals. Acta Mineral Sin, 3: 207–214Google Scholar
  88. Wang Y F, Chen H Y, Xiao B, Han J S. 2016. Porphyritic-overlapped mineralization of Tuwu and Yandong copper deposits in Eastern Tianshan Mountains, Xinjiang. Mineral Deposits, 35: 51–68Google Scholar
  89. Wang Y R, Wang Z X, Zhang S. 2000. Water-rock reaction experiment and mineralization. Bull Mineral Petrol Geochem, 19: 426–427Google Scholar
  90. Wilkinson J J, Chang Z, Cooke D R, Baker M J, Wilkinson C C, Inglis S, Chen H, Bruce Gemmell J. 2015. The chlorite proximitor: A new tool for detecting porphyry ore deposits. J Geochem Exploration, 152: 10–26CrossRefGoogle Scholar
  91. Winkler H G F, von Platen H. 1961. Experimentelle gesteinsmetamorphose —V. Geochim Cosmochim Acta, 24: 250–259CrossRefGoogle Scholar
  92. Xiao B, Chen H Y, Hollings P, Han J S, Wang Y F, Yang J T, Cai K D. 2015. Magmatic evolution of the Tuwu-Yandong porphyry Cu belt, NW China: Constraints from geochronology, geochemistry and Sr-Nd-Hf isotopes. Gondwana Res, 43: 74–91CrossRefGoogle Scholar
  93. Yang Z, Hou Z, White N C, Chang Z S, Li Z Q, Song Y C. 2009. Geology of the post-collisional porphyry copper-molybdenum deposit at Qulong, Tibet. Ore Geol Rev, 36: 133–159CrossRefGoogle Scholar
  94. Zhang D H, Xu J H, Yu X Q, Li J K, Mao S D, Wang K Q, Li Y Q. 2011. The diagenetic and metallogenic depth: Main constraints and the estimation methods. Geol Bull China, 30: 112–125Google Scholar
  95. Zhang Y X. 2010. Geochemical Kinetics. Beijing: Higher Education PressGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Key Laboratory of Petroleum Resources, Gansu Province/Key Laboratory of Petroleum Resources Research, Institute of Geology and GeophysicsChinese Academy of SciencesLanzhouChina

Personalised recommendations