Advertisement

Science China Earth Sciences

, Volume 62, Issue 3, pp 571–584 | Cite as

Clay mineralogy of an Eocene fluvial-lacustrine sequence in Xining Basin, Northwest China, and its paleoclimatic implications

  • Bin Hu
  • Chunxia ZhangEmail author
  • Haibing Wu
  • Qingzhen Hao
  • Zhengtang Guo
Research Paper
  • 34 Downloads

Abstract

The Eocene was marked by significant cooling during which the global climate was transformed from greenhouse to icehouse conditions. Notable coeval events were the India-Asia collision and the retreat of the Paratethys Sea in Asia. The Eocene section of the long and continuous sedimentary succession of the Xining Basin in Northwest China is characterized by red mudstones with intercalated gypsum and muddy-gypsiferous layers. In this study, we conducted a semi-quantitative analysis of the mineralogy of bulk samples and the clay fraction using X-ray diffraction, with the aim of characterizing the Eocene climatic evolution of the northeastern margin of the Tibetan Plateau and inland Asia. We used a new pretreatment method to address the problem of extracting sufficient clay particles from the gypsum and gypsiferous layers. The bulk mineralogy is dominated by quartz, feldspar, calcite, gypsum and dolomite; and the clay mineralogy is dominated by illite, chlorite, and smectite (including irregular mixed-layer illite-smectite (I/S)). The variations of the clay mineral assemblages indicate the occurrence of alternations between warm humid conditions and hot dry conditions, with relatively high humidity during ~52–50, ~41.5–39 and ~35–34 Ma. Comparison of the results with the timing of Tibetan Plateau uplift, transgressions and regressions of the Paratethys Sea, and the marine oxygen isotope record suggest that the Eocene climatic evolution of the study region was driven fundamentally by global climate change.

Keywords

Eocene Xining Basin Clay minerals Paleoclimate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Dr. Pei Li, Dr. Yating Lin, Xiangbing Ren and Shuya Zhu for their help with field work. We also thank Dr. Abu Sayem, Dr. Wenling An and Dr. Xinbo Gao for their valuable suggestions during this study. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41722206, 41430531, 41690114 & 41374072), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB26000000) and the International Cooperation Program of the Chinese Academy of Sciences (Grant No. 131C11KYSB20160061).

References

  1. Abels H A, Dupont-Nivet G, Xiao G, Bosboom R, Krijgsman W. 2011. Step-wise change of Asian interior climate preceding the Eocene-Oligocene transition (EOT). Palaeogeogr Palaeoclimatol Palaeoecol, 299: 399–412CrossRefGoogle Scholar
  2. An Z S, Kutzbach J E, Prell S C. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 411: 62–66CrossRefGoogle Scholar
  3. Bains S, Corfield R M, Norris R D. 1999. Mechanisms of climate warming at the end of the Paleocene. Science, 285: 724–727CrossRefGoogle Scholar
  4. Beck R A, Burbank D W, Sercombe W J, Riley G W, Barndt J K, Berry J R, Afzal J, Khan A M, Jurgen H, Metje J, Cheema A, Shafique N A, Lawrence R D, Khan M A. 1995. Stratigraphic evidence for an early collision between northwest India and Asia. Nature, 373: 55–58CrossRefGoogle Scholar
  5. Bohaty S M, Zachos J C, Florindo F, Delaney M L. 2009. Coupled greenhouse warming and deep-sea acidification in the middle Eocene. Paleoceanography, 24: 1–16CrossRefGoogle Scholar
  6. Bosboom R E, Abels H A, Hoorn C, van den Berg B C J, Guo Z J, Dupont-Nivet G. 2014a. Aridification in continental Asia after the Middle Eocene climatic optimum (MECO). Earth Planet Sci Lett, 389: 34–42CrossRefGoogle Scholar
  7. Bosboom R E, Dupont-Nivet G, Houben A J P, Brinkhuis H, Villa G, Mandic O, Stoica M, Zachariasse W J, Guo Z J, Li C X, Krijgsman W. 2011. Late Eocene sea retreat from the Tarim basin (west China) and concomitant Asian paleoenvironmental change. Palaeogeogr Palaeoclimatol Palaeoecol, 299: 385–398CrossRefGoogle Scholar
  8. Bosboom R, Dupont-Nivet G, Grothe A, Brinkhuis H, Villa G, Mandic O, Stoica M, Kouwenhoven T, Huang W, Yang W, Guo Z J. 2014b. Timing, cause and impact of the late Eocene stepwise sea retreat from the Tarim Basin (west China). Palaeogeogr Palaeoclimatol Palaeoecol, 403: 101–118CrossRefGoogle Scholar
  9. Bougeois L, Dupont-Nivet G, de Rafélis M, Tindall J C, Proust J N, Reichart G J, de Nooijer L J, Guo Z, Ormukov C. 2018. Asian monsoons and aridification response to Paleogene sea retreat and Neogene westerly shielding indicated by seasonality in Paratethys oysters. Earth Planet Sci Lett, 485: 99–110CrossRefGoogle Scholar
  10. Burtman V S. 2000. Cenozoic crustal shortening between the Pamir and Tien Shan and a reconstruction of the Pamir-Tien Shan transition zone for the Cretaceous and Palaeogene. Tectonophysics, 319: 69–92CrossRefGoogle Scholar
  11. Cai F, Ding L, Yue Y. 2011. Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet: Implications for timing of India-Asia collision. Earth Planet Sci Lett, 305: 195–206CrossRefGoogle Scholar
  12. Caves J K, Winnick M J, Graham S A, Sjostrom D J, Mulch A, Chamberlain C P. 2015. Role of the westerlies in Central Asia climate over the Cenozoic. Earth Planet Sci Lett, 428: 33–43CrossRefGoogle Scholar
  13. Chamley H. 1989. Clay Sedimentology. New York: Spring-Verlag Berlin HeidelbergCrossRefGoogle Scholar
  14. Chen C F. 2009. Cenozoic pollen records and Palaoenvironmental evolution in Xining Basin, Northeastern Tibetan Plateau. Masteral Dissertation. China: Lanzhou UniversityGoogle Scholar
  15. Dai S, Fang X M, Dupont-Niver G, Song C H, Gao J P, Krijgsman W, Langereis C, Zhang W L. 2006. Magnetostratigraphy of Cenozoic sediments from the Xining Basin: Tectonic implications for the northeastern Tibetan Plateau. J Geophys Res, 111: B11102CrossRefGoogle Scholar
  16. Deng Y P, Hong H L, Yin k, Xu Y M, Du J, Zhang K X. 2010. Clay mineralogy and its palaeoclimatic indicator of the Late Paleocene to Early Oligocene Sediments in Yongdeng Lanzhou Basin (in Chinese with English abstract). Geoscience, 24: 793–800Google Scholar
  17. Ding L, Kapp P, Wan X. 2005. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics, 24: TC3001CrossRefGoogle Scholar
  18. Ding Z L, Xiong S F, Sun J M, Yang S L, Gu Z Y, Liu T S. 1999. Pedostratigraphy and paleomagnetism of a ~7.0 Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution. Palaeogeogr Palaeoclimatol Palaeoecol, 152: 49–66CrossRefGoogle Scholar
  19. Dupont-Nivet G, Hoorn C, Konert M. 2008. Tibetan uplift prior to the Eocene-Oligocene climate transition: Evidence from pollen analysis of the Xining Basin. Geology, 36: 987–990CrossRefGoogle Scholar
  20. Dupont-Nivet G, Krijgsman W, Langereis C G, Abels H A, Dai S, Fang X. 2007. Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition. Nature, 445: 635–638CrossRefGoogle Scholar
  21. Edgar K M, Wilson P A, Sexton P F, Gibbs S J, Roberts A P, Norris R D. 2010. New biostratigraphic, magnetostratigraphic and isotopic insights into the Middle Eocene climatic optimum in low latitudes. Palaeogeogr Palaeoclimatol Palaeoecol, 297: 670–682CrossRefGoogle Scholar
  22. Eldrett J S, Greenwood D R, Harding I C, Huber M. 2009. Increased seasonality through the Eocene to Oligocene transition in northern high latitudes. Nature, 459: 969–973CrossRefGoogle Scholar
  23. Fang X M, Zan J B, Appel E, Lu Y, Song C H, Dai S, Tuo S B. 2015. An Eocene-Miocene continuous high resolution rock magnetic record from the sediments in the Xining Basin, NW China: Indication for Cenozoic persistent drying driven by global cooling and Tibetan Plateau uplift. Geophys J Int, 201: 78–89CrossRefGoogle Scholar
  24. Guo Z T, Ruddiman W F, Hao Q Z, Wu H B, Qiao Y S, Zhu R X, Peng S Z, Wei J J, Yuan B Y, Liu T S. 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416: 159–163CrossRefGoogle Scholar
  25. Guo Z T, Sun B, Zhang Z S, Peng S Z, Xiao G Q, Ge J Y, Hao Q Z, Qiao Y S, Liang M Y, Liu J F, Yin Q Z, Wei J J. 2008. A major reorganization of Asian climate regime by the early Miocene. Clim Past, 4: 153–174CrossRefGoogle Scholar
  26. Gylesjö S, Arnold E. 2006. Clay mineralogy of a red clay-loess sequence from Lingtai, the Chinese Loess Plateau. Glob Planet Change, 51: 181–194CrossRefGoogle Scholar
  27. Hetzel R, Dunkl I, Haider V, Strobl M, von Eynatten H, Ding L, Frei D. 2011. Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift. Geology, 39: 983–986CrossRefGoogle Scholar
  28. Hong H L, Zhang K X, Li Z H. 2010. Climatic and tectonic uplift evolution since ~7 Ma in Gyirong basin, southwestern Tibet plateau: Clay mineral evidence. Int J Earth Sci-Geol Rundsch, 99: 1305–1315CrossRefGoogle Scholar
  29. Hoorn C, Straathof J, Abels H A, Xu Y, Utescher T, Dupont-Nivet G. 2012. A late Eocene palynological record of climate change and Tibetan Plateau uplift (Xining Basin, China). Palaeogeogr Palaeoclimatol Palaeoecol, 344-345: 16–38CrossRefGoogle Scholar
  30. Hren M T, Sheldon N D, Grimes S T, Collinson M E, Hooker J J, Bugler M, Lohmann K C. 2013. Terrestrial cooling in Northern Europe during the Eocene-Oligocene transition. Proc Natl Acad Sci USA, 110: 7562–7567CrossRefGoogle Scholar
  31. Hu B, Zhang C X, Guo Z T. 2016. A new method of clay mineral extraction from gypsum layer and its application in paleoclimate reconstruction (in Chinese with English abstract). Quat Sci, 34: 926–934Google Scholar
  32. Kent-Corson M L, Ritts B D, Zhuang G, Bovet P M, Graham S A, Page Chamberlain C. 2009. Stable isotopic constraints on the tectonic, topographic, and climatic evolution of the northern margin of the Tibetan Plateau. Earth Planet Sci Lett, 282: 158–166CrossRefGoogle Scholar
  33. Kraatz B P, Geisler J H. 2010. Eocene-Oligocene transition in Central Asia and its effects on mammalian evolution. Geology, 38: 111–114CrossRefGoogle Scholar
  34. Lear C H, Bailey T R, Pearson P N, Coxall H K, Rosenthal Y. 2008. Cooling and ice growth across the Eocene-Oligocene transition. Geology, 36: 251–254CrossRefGoogle Scholar
  35. Lear C H, Elderfield H, Wilson P A. 2000. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science, 287: 269–272CrossRefGoogle Scholar
  36. Lippert P C, van Hinsbergen D J J, Dupont-Nivet G. 2014. Early Cretaceous to present latitude of the central proto-Tibetan Plateau: A paleomagnetic synthesis with implications for Cenozoic tectonics, paleogeography, and climate of Asia. Geol Soc Am Spec Pap, 507: 1–23Google Scholar
  37. Liu T S, Guo Z T. 1997. Geological environment in China and global change. In: An Z S, ed. Selected Works of Liu Tungsheng. Beijing: Science Press. 192–202Google Scholar
  38. Liu T S. 1985. Loess and Environment (in Chinese). Beijing: Science PressGoogle Scholar
  39. Long L Q, Fang X M, Miao Y F, Bai Y, Wang Y L. 2011. Northern Tibetan Plateau cooling and aridification linked to Cenozoic global cooling: Evidence from n-alkane distributions of Paleogene sedimentary sequences in the Xining Basin. Chin Sci Bull, 56: 1221–1231CrossRefGoogle Scholar
  40. Miao Y F, Fang X M, Song Z C, Wu F L, Han W X, Dai S, Song C H. 2008. Late Eocene pollen records and palaeoenvironmental changes in northern Tibetan Plateau. Sci China Ser D-Earth Sci, 51: 1089–1098CrossRefGoogle Scholar
  41. Miao Y, Wu F, Chang H, Fang X, Deng T, Sun J, Jin C. 2016. A Late-Eocene palynological record from the Hoh Xil Basin, northern Tibetan Plateau, and its implications for stratigraphic age, paleoclimate and paleoelevation. Gondwana Res, 31: 241–252CrossRefGoogle Scholar
  42. Moore D M, Reynolds J. 1989. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. New York: Oxford University PressGoogle Scholar
  43. Najman Y, Appel E, Boudagher-Fadel M, Bown P, Carter A, Garzanti E, Godin L, Han J, Liebke U, Oliver G, Parrish R, Vezzoli G. 2010. Timing of India-Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints. J Geophys Res, 115: B12416CrossRefGoogle Scholar
  44. Patzelt A, Li H, Wang J, Appel E. 1996. Palaeomagnetism of Cretaceous to Tertiary sediments from southern Tibet: Evidence for the extent of the northern margin of India prior to the collision with Eurasia. Tectonophysics, 259: 259–284CrossRefGoogle Scholar
  45. Pearson P N, Foster G L, Wade B S. 2009. Atmospheric carbon dioxide through the Eocene-Oligocene climate transition. Nature, 461: 1110–1113CrossRefGoogle Scholar
  46. Pei J L, Sun Z M, Wang X S, Zhao Y, Ge X H, Guo X Z, Li H B, Si J L. 2009. Evidence for Tibetan plateau uplift in Qaidam basin before Eocene-Oligocene boundary and its climatic implications. J Earth Sci, 20: 430–437CrossRefGoogle Scholar
  47. Petschick R. 2000. MacDiff 4.2.2: A software of calculating concentration of minerals for XRD data. Online: http://servermac.geologie.un-frankfurt.de/Rainer.htmlGoogle Scholar
  48. Prell W L, Kutzbach J E. 1992. Sensitivity of the indian monsoon to forcing parameters and implications for its evolution. Nature, 360: 647–652CrossRefGoogle Scholar
  49. Qiang X, An Z, Song Y, Chang H, Sun Y, Liu W, Ao H, Dong J, Fu C, Wu F, Lu F, Cai Y, Zhou W, Cao J, Xu X, Ai L. 2011. New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25 Ma ago. Sci China Earth Sci, 54: 136–144CrossRefGoogle Scholar
  50. Qinghai Bureau of Geology and Mineral Resources. 1985. Geologic Maps of the Duoba, Gaodian, Tianjiazai, and Xining Regions, 4 Sheets, with Regional Geologic Report (1:50000 Scale). Beijing: Geol Publ House. 199Google Scholar
  51. Robert C, Kennett J P. 1994. Antarctic subtropical humid episode at the Paleocene-Eocene boundary: Clay-mineral evidence. Geology, 22: 211–214CrossRefGoogle Scholar
  52. Rohrmann A, Kapp P, Carrapa B, Reiners P W, Guynn J, Ding L, Heizler M. 2012. Thermochronologic evidence for plateau formation in central Tibet by 45 Ma. Geology, 40: 187–190CrossRefGoogle Scholar
  53. Rowley D B. 1996. Age of initiation of collision between India and Asia: A review of stratigraphic data. Earth Planet Sci Lett, 145: 1–13CrossRefGoogle Scholar
  54. Rowley D B, Currie B S. 2006. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 439: 677–681CrossRefGoogle Scholar
  55. Ruddiman W F, Kutzbach J E. 1989. Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American West. J Geophys Res, 94: 18409CrossRefGoogle Scholar
  56. Sayem A S M, Guo Z, Wu H, Zhang C, Yang F, Xiao G, He Z. 2018. Sedimentary and geochemical evidence of Eocene climate change in the Xining Basin, northeastern Tibetan Plateau. Sci China Earth Sci, 61: 1292–1305CrossRefGoogle Scholar
  57. Shi N. 1996. Development of spruce and fir in North China during the Pliocene and the Early Plestocene: Palaeoclimatic implication. Quat Sci, 4: 319–328Google Scholar
  58. Singer A. 1984. The paleoclimatic interpretation of clay minerals in sediments— A review. Earth-Sci Rev, 21: 251–293CrossRefGoogle Scholar
  59. Song B W, Zhang K X, Lu J F, Wang C W, Xu Y D. 2013. The middle Eocene to early Miocene integrated sedimentary record in the Qaidam Basin and its implications for paleoclimate and early Tibetan Plateau uplift. Can J Earth Sci, 50: 183–196CrossRefGoogle Scholar
  60. Sun X J, Wang P X. 2005. How old is the Asian monsoon system?—Palaeobotanical records from China. Palaeogeogr Palaeoclimatol Palaeoecol, 222: 181–222CrossRefGoogle Scholar
  61. Tang T, Xue Y, Yu C. 1992. Characteristics and Sedimentary Environments of the Late Cretaceous to Early Tertiary Marine Strata in the Western Tarim, China. Beijin: Science PressGoogle Scholar
  62. Velde B. 1995. Origin and Mineralogy of Clays. Paris: Springer-Verlag Berlin and Heidelberg. 207–210CrossRefGoogle Scholar
  63. Vonhof H B, Smit J, Brinkhuis H, Montanari A, Nederbragt A J. 2000. Global cooling accelerated by early late Eocene impacts? Geology, 28: 687CrossRefGoogle Scholar
  64. Wang C S, Li X H, Hu X, Jansa L F. 2002. Latest marine horizon north of Qomolangma (Mt Everest): Implications for closure of Tethys seaway and collision tectonics. Terra Nova, 14: 114–120CrossRefGoogle Scholar
  65. Wang C S, Zhao X X, Liu Z F, Lippert P C, Graham S A, Coe R S, Yi H S, Zhu L D, Liu S, Li Y L. 2008. Constraints on the early uplift history of the Tibetan Plateau. Proc Natl Acad Sci USA, 105: 4987–4992CrossRefGoogle Scholar
  66. Wang C W, Hong H L, Li Z H, Yin K, Xie J, Liang G J, Song B W, Song E P, Zhang K X. 2013. The Eocene-Oligocene climate transition in the Tarim Basin, Northwest China: Evidence from clay mineralogy. Appl Clay Sci, 74: 10–19CrossRefGoogle Scholar
  67. Wang C W, Hong H L, Song B W, Yin K, Li Z H, Zhang K X, Ji J L. 2011. The early-Eocene climate optimum (EECO) event in the Qaidam basin, northwest China: Clay evidence. Clay miner, 46: 649–661CrossRefGoogle Scholar
  68. Xiao G Q. 2009. Magnetostratigraphy and Sedimentary Evolution of the Late Eocene–early Miocene Deposits in the Xining Basin, Northwestern China. Doctoral Dissertation. China: Institute of Earth Environment, Graduate School, CASGoogle Scholar
  69. Xiao G Q, Abels H A, Yao Z Q, Dupont-Nivet G, Hilgen F J. 2010. Asian aridification linked to the first step of the Eocene-Oligocene climate Transition (EOT) in obliquity-dominated terrestrial records (Xining Basin, China). Clim Past, 6: 501–513CrossRefGoogle Scholar
  70. Xu Q, Ding L, Zhang L, Cai F, Lai Q, Yang D, Liu-Zeng J. 2013. Paleo-gene high elevations in the Qiangtang Terrane, central Tibetan Plateau. Earth Planet Sci Lett, 362: 31–42CrossRefGoogle Scholar
  71. Yi Z, Huang B, Chen J, Chen L, Wang H. 2011. Paleomagnetism of early Paleogene marine sediments in southern Tibet, China: Implications to onset of the India-Asia collision and size of Greater India. Earth Planet Sci Lett, 9: 153–165Google Scholar
  72. Yue L, Heller F, Qiu Z, Zhang L, Xie G, Qiu Z, Zhang Y. 2001. Magnetostratigraphy and pavleo-environmental record of Tertiary deposits of Lanzhou Basin. Chin Sci Bull, 46: 770–773CrossRefGoogle Scholar
  73. Zachos J C, Dickens G R, Zeebe R E. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451: 279–283CrossRefGoogle Scholar
  74. Zachos J C, Röhl U, Schellenberg S A, Sluijs A, Hodell D A, Kelly D C, Thomas E, Nicolo M, Raffi I, Lourens L J, McCarren H, Kroon D. 2005. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science, 308: 1611–1615CrossRefGoogle Scholar
  75. Zachos J C, Wara M W, Bohaty S, Delaney M L, Petrizzo M R, Brill A, Bralower T J, Premoli-Silva I. 2003. A transient rise in tropical sea surface temperature during the Paleocene-Eocene thermal maximum. Science, 302: 1551–1554CrossRefGoogle Scholar
  76. Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292: 686–693CrossRefGoogle Scholar
  77. Zanazzi A, Kohn M J, MacFadden B J, Terry D O. 2007. Large temperature drop across the Eocene–Oligocene transition in central North America. Nature, 445: 639–642CrossRefGoogle Scholar
  78. Zhang C X, Guo Z T. 2014. Clay mineral changes across the Eocene-Oligocene transition in the sedimentary sequence at Xining occurred prior to global cooling. Palaeogeogr Palaeoclimatol Palaeoecol, 411: 18–29CrossRefGoogle Scholar
  79. Zhang C X, Xiao G Q, Guo Z T, Wu H B, Hao Q Z. 2015. Evidence of late early Miocene aridification intensification in the Xining Basin caused by the northeastern Tibetan Plateau uplift. Glob Planet Change, 128: 31–46CrossRefGoogle Scholar
  80. Zhang J, Wang Y N, Zhang B H, Zhang Y P. 2016. Tectonics of the Xining Basin in NW China and its implications for the evolution of the NE Qinghai-Tibetan Plateau. Basin Res, 28: 159–182CrossRefGoogle Scholar
  81. Zhang Y, Kong S C, Yan S, Yang Z J, Ni J. The variation of forest line in the north slope of Tian Shan Mountain in the Holocene and its palaeoenvironment feature. Chin Sci Bull, 2006, 51: 1450–1458Google Scholar
  82. Zhang Z S, Flatøy F, Wang H J, Bethke I, Bentsen M, Guo Z T. 2012. Early Eocene Asian climate dominated by desert and steppe with limited monsoons. J Asian Earth Sci, 44: 24–35CrossRefGoogle Scholar
  83. Zhu B, Kidd W S F, Rowley D B, Currie B S, Shafique N. 2005. Age of initiation of the India-Asia collision in the East-Central Himalaya. J Geol, 113: 265–285CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Bin Hu
    • 1
    • 2
  • Chunxia Zhang
    • 1
    • 2
    • 3
    • 4
    Email author
  • Haibing Wu
    • 1
    • 2
    • 4
    • 5
  • Qingzhen Hao
    • 1
    • 2
    • 4
    • 5
  • Zhengtang Guo
    • 1
    • 2
    • 4
    • 5
  1. 1.Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  2. 2.Institution of Earth ScienceChinese Academy of ScienceBeijingChina
  3. 3.College of Earth Science and EngineeringShandong University of Science and TechnologyQingdaoChina
  4. 4.CAS Center for Excellence in Life and PaleoenvironmentBeijingChina
  5. 5.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations