The scientific connotation of oil and gas formations under deep fluids and organic-inorganic interaction

  • Quanyou Liu
  • Dongya Zhu
  • Qingqiang Meng
  • Jiayi Liu
  • Xiaoqi Wu
  • Bing Zhou
  • Qi Fu
  • Zhijun Jin


As a relatively stable craton block in the earth system, the petroliferous basin is influenced by the evolution of the earth system from the early development environment of source rocks, hydrocarbon formation, and reservoir dissolution to hydrocarbon accumulation or destruction. As a link between the internal and external factors of the basin, deep fluids run through the whole process of hydrocarbon formation and accumulation through organic-inorganic interaction. The nutrients carried by deep fluids promote the bloom of hydrocarbon-generating organisms and extra addition of carbon and hydrogen source, which are beneficial to the development of high-quality source rock and enhancement of the hydrocarbon generation potential. The energy carried by the deep fluid promotes the early maturation of the source rock and facilitates the hydrocarbon generation by activation and hydrogenation in high-mature hydrocarbon sources. The dissolution alteration of carbonate rocks and clastic reservoirs by CO2-rich deep fluids improves the deep reservoir space, thus extending the oil and gas reservoir space into greater depth. The extraction of deeply retained crude oil by deep supercritical CO2 and the displacement of CH4 in shale have both improved the hydrocarbon fluidity in deep and tight reservoirs. Simultaneously, the energy and material carried by deep fluids (C, H, and catalytic substances) not only induce inorganic CH4 formation by Fischer-Tropsch (F-T) synthesis and “hydrothermal petroleum” generation from organic matter by thermal activity but also cause the hydrothermal alteration of crude oil from organic sources. Therefore, from the perspective of the interaction of the earth’s sphere, deep fluids not only input a significant amount of exogenous C and H into sedimentary basins but also improve the reservoir space for oil and gas, as well as their enrichment and accumulation efficiencies.


Organic-inorganic interaction Deep fluid Hydrocarbon generation from hydrogenation Dissolution alteration Displacement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank the reviewers for valuable comments and suggestions. This work was supported by National Natural Science Foundation of China (Grant Nos. 41625009, U1663201 and 41872122), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA14010404), and National Key Foundational Research and Development Project (Grant No. 2017YFC0603102).


  1. Abrajano T A, Sturchio N C, Bohlke J K, Lyon G L, Poreda R J, Stevens C M. 1988. Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines: Deep or shallow origin? Chem Geol, 71: 211–222CrossRefGoogle Scholar
  2. Akinlua A, Torto N, Ajayi T R. 2008. Supercritical fluid extraction of aliphatic hydrocarbons from Niger Delta sedimentary rock. J Supercrit Fluid, 45: 57–63CrossRefGoogle Scholar
  3. Al-Aasm I. 2003. Origin and characterization of hydrothermal dolomite in the Western Canada sedimentary basin. J Geochem Explor, 78-79: 9–15CrossRefGoogle Scholar
  4. Alemu B L, Aagaard P, Munz I A, Skurtveit E. 2011. Caprock interaction with CO2: A laboratory study of reactivity of shale with supercritical CO2 and brine. Appl Geochem, 26: 1975–1989CrossRefGoogle Scholar
  5. Algeo T J, Rowe H. 2012. Paleoceanographic applications of trace-metal concentration data. Chem Geol, 324-325: 6–18CrossRefGoogle Scholar
  6. Anders E, Hayatsu R, Studier M H. 1973. Organic compounds in meteorites: They may have formed in the solar nebula, by catalytic reactions of carbon monoxide, hydrogen, and ammonia. Science, 182: 781–790CrossRefGoogle Scholar
  7. Anderson R B, Köllbel H, Rálek M. 1984. The Fischer-Tropsch Synthesis. New York: Academic Press. 1–30Google Scholar
  8. Armitage P J, Faulkner D R, Worden R H, Aplin A C, Butcher A R, Iliffe J. 2011. Experimental measurement of, and controls on, permeability and permeability anisotropy of caprocks from the CO2 storage project at the Krechba Field, Algeria. J Geophys Res, 116: B12208CrossRefGoogle Scholar
  9. Bauld J. 1984. Microbial mats in marginal marine environments: Shark Bay, Western Australia, and Spencer Gulf, South Australia. In: Cohen Y, Castenholz R W, Halvorson H O, eds. Microbial Mats: Stromatolites. New York: Alan Liss. 39–58Google Scholar
  10. Bertier P, Swennen R, Laenen B, Lagrou D, Dreesen R. 2006. Experimental identification of CO2-water-rock interactions caused by sequestration of CO2 in Westphalian and Buntsandstein sandstones of the Campine Basin (NE-Belgium). J Geochem Explor, 89: 10–14CrossRefGoogle Scholar
  11. Bishop A N, Love G D, McAulay A D, Snape C E, Farrimond P. 1998. Release of kerogen-bound hopanoids by hydropyrolysis. Org Geochem, 29: 989–1001CrossRefGoogle Scholar
  12. Bohdanowic C. 1934. Natural gas occurrence in Russia (U.S.S.R). AAPG Bull, 18: 746–759Google Scholar
  13. Bondar E, Koel M. 1998. Application of supercritical fluid extraction to organic geochemical studies of oil shales. Fuel, 77: 211–213CrossRefGoogle Scholar
  14. Browning T J, Bouman H A, Henderson G M, Mather T A, Pyle D M, Schlosser C, Woodward E M S, Moore C M. 2014. Strong responses of Southern Ocean phytoplankton communities to volcanic ash. Geophys Res Lett, 41: 2851–2857CrossRefGoogle Scholar
  15. Burne R V, Moore L S. 1987. Microbialites: Organosedimentary deposits of benthic microbial communities. Palaios, 2: 241–254CrossRefGoogle Scholar
  16. Cai Y W, Wang H J, Wang X M, He K, Zhang S C, Wu C D. 2017. Formation conditions and main controlling factors of uranium in marine source rocks (in Chinese). Adv Earth Sci, 32: 199–208Google Scholar
  17. Che Y, Jiang H C, Mu X, Li J L. 2001. Gas reservoir type and reservoirforming rule of Huagou gas field (in Chinese). Petrol Geol Recov Eff, 8: 32–34Google Scholar
  18. Clifton C G, Walters C C, Simoneit B R T. 1990. Hydrothermal petroleums from Yellowstone National Park, Wyoming, U.S.A.. Appl Geochem, 5: 169–191CrossRefGoogle Scholar
  19. Dai J, Yang S, Chen H, Shen X. 2005. Geochemistry and occurrence of inorganic gas accumulations in Chinese sedimentary basins. Org Geochem, 36: 1664–1688CrossRefGoogle Scholar
  20. Dasgupta R, Hirschmann M M, Withers A C. 2004. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet Sci Lett, 227: 73–85CrossRefGoogle Scholar
  21. Davies G R, Smith Jr. L B. 2006. Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG Bull, 90: 1641–1690CrossRefGoogle Scholar
  22. Dehghanpour H, Zubair H A, Chhabra A, Ullah A. 2012. Liquid intake of organic shales. Energy Fuels, 26: 5750–5758CrossRefGoogle Scholar
  23. Demaison G J, Moore G T. 1980. Anoxic environments and oil source bed genesis. Org Geochem, 2: 9–31CrossRefGoogle Scholar
  24. Dick G J, Anantharaman K, Baker B J, Li M, Reed D C, Sheik C S. 2013. The microbiology of deep-sea hydrothermal vent plumes: Ecological and biogeographic linkages to seafloor and water column habitats. Front Microbiol, 4: 124CrossRefGoogle Scholar
  25. Dick G J, Tebo B M. 2010. Microbial diversity and biogeochemistry of the Guaymas Basin deep-sea hydrothermal plume. Environ Microbiol, 12: 1334–1347CrossRefGoogle Scholar
  26. Didyk B M, Simoneit B R T. 1990. Petroleum characteristics of the oil in a Guaymas Basin hydrothermal chimney. Appl Geochem, 5: 29–40CrossRefGoogle Scholar
  27. Duan Z, Li D. 2008. Coupled phase and aqueous species equilibrium of the H2O–CO2–NaCl–CaCO3 system from 0 to 250°C, 1 to 1000 bar with NaCl concentrations up to saturation of halite. Geochim Cosmochim Acta, 72: 5128–5145CrossRefGoogle Scholar
  28. Etiope G. 2017. Abiotic methane in continental serpentinization sites: An overview. Procedia Earth Planet Sci, 17: 9–12CrossRefGoogle Scholar
  29. Fang Y, Liao Y, Wu L, Geng A. 2014. The origin of solid bitumen in the Honghuayuan Formation (O1h) of the Majiang paleo-reservoir—Evidence from catalytic hydropyrolysates. Org Geochem, 68: 107–117CrossRefGoogle Scholar
  30. Feng Z H, Huo Q L, Wang X. 2001. A study of helium reservoir formation characteristic in the north part of Songliao Basin (in Chinese). Nat Gas Ind, 21: 29–30Google Scholar
  31. Fitzsimmons J N, John S G, Marsay C M, Hoffman C L, Nicholas S L, Toner B M, German C R, Sherrell R M. 2017. Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange. Nat Geosci, 10: 195–201CrossRefGoogle Scholar
  32. Frezzotti M L, Huizenga J M, Compagnoni R, Selverstone J. 2014. Diamond formation by carbon saturation in C–O–H fluids during cold subduction of oceanic lithosphere. Geochim Cosmochim Acta, 143: 68–86CrossRefGoogle Scholar
  33. Frogner P, Reynir Gíslason S, Óskarsson N. 2001. Fertilizing potential of volcanic ash in ocean surface water. Geology, 29: 487–490CrossRefGoogle Scholar
  34. Frost D J, McCammon C A. 2008. The redox state of Earth’s mantle. Annu Rev Earth Planet Sci, 36: 389–420CrossRefGoogle Scholar
  35. Fu Q, Sherwood Lollar B, Horita J, Lacrampe-Couloume G, Seyfried Jr. W E. 2007. Abiotic formation of hydrocarbons under hydrothermal conditions: Constraints from chemical and isotope data. Geochim Cosmochim Acta, 71: 1982–1998CrossRefGoogle Scholar
  36. Gao Y, Liu L, Hu W. 2009. Petrology and isotopic geochemistry of dawsonite-bearing sandstones in Hailaer basin, northeastern China. Appl Geochem, 24: 1724–1738CrossRefGoogle Scholar
  37. Gao Y Q, Liu L, Yang H D, You L, Liu N. 2007. Characteristics and origin of dawsonite in Gudian carbon dioxide gas field of Songliao Basin (in Chinese). Acta Petrol Sin, 28: 62–67Google Scholar
  38. Goebel E D, Coveney R M J, Angino E E, Zeller E J. 1983. Naturally occurring hydrogen gas from a borehole on the western flank of Nemaha anticline in Kansas. AAPG Bull, 67–68: 1324Google Scholar
  39. Pagès A, Grice K, Ertefai T, Skrzypek G, Jahnert R, Greenwood P. 2014. Organic geochemical studies of modern microbial mats from Shark Bay: Part I: Influence of depth and salinity on lipid biomarkers and their isotopic signatures. Geobiology, 12: 469–487CrossRefGoogle Scholar
  40. Han C R. 2001. Technic and Engineering of Hydrocracking (in Chinese). Beijing: China Petrochemical Press. 224–226Google Scholar
  41. Hawkes H E. 1972. Free hydrogen in genesis of petroleum. AAPG Bull, 56: 2268–2270Google Scholar
  42. He Z L, Wei X C, Qian Y X, Bao Z Y, Fan M, Jiao C L, Peng S T, Chen D. 2011. Forming mechanism and distribution prediction of quality marine carbonate reservoirs (in Chinese). Oil Gas Geol, 32: 489–498Google Scholar
  43. Hecht L, Freiberger R, Gilg H A, Grundmann G, Kostitsyn Y A. 1999. Rare earth element and isotope (C, O, Sr) characteristics of hydrothermal carbonates: Genetic implications for dolomite-hosted talc mineralization at Göpfersgrün (Fichtelgebirge, Germany). Chem Geol, 155: 115–130CrossRefGoogle Scholar
  44. Heller R, Zoback M. 2014. Adsorption of methane and carbon dioxide on gas shale and pure mineral samples. J Unconv Oil Gas Resour, 8: 14–24CrossRefGoogle Scholar
  45. Hoffmann L J, Breitbarth E, Ardelan M V, Duggen S, Olgun N, Hassellöv M, Wängberg S Å. 2012. Influence of trace metal release from volcanic ash on growth of Thalassiosira pseudonana and Emiliania huxleyi. Mar Chem, 132-133: 28–33CrossRefGoogle Scholar
  46. Hooper E C D. 1991. Fluid migration along growth faults in compacting sediments. J Pet Geol, 14: 161–180CrossRefGoogle Scholar
  47. Horita J, Berndt M E. 1999. Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science, 285: 1055–1057CrossRefGoogle Scholar
  48. Hu W X. 2016. Origin and indicators of deep-seated fluids in sedimentary basins (in Chinese). Bull Mineral Petrol Geochem, 35: 817–826Google Scholar
  49. Hu W X, Chen Q, Wang X L, Cao J. 2010. REE models for the discrimination of fluids in the formation and evolution of dolomite reservoirs (in Chinese). Oil Gas Geol, 31: 810–818Google Scholar
  50. Hu W X, Zhu J Q, Wang X L, You X L, He K. 2014. Characteristics,origin and geological implications of the Cambrian microbial dolomite in Keping area, Tarim Basin (in Chinese). Oil Gas Geol, 35: 860–869Google Scholar
  51. Huang B, Tian H, Huang H, Yang J, Xiao X, Li L. 2015. Origin and accumulation of CO2 and its natural displacement of oils in the continental basins, northern South China Sea. AAPG Bull, 99: 1349–1369CrossRefGoogle Scholar
  52. Huang B, Xiao X, Zhu W. 2004. Geochemistry, origin, and accumulation of CO2 in natural gases of the Yinggehai Basin, offshore South China Sea. AAPG Bull, 88: 1277–1293CrossRefGoogle Scholar
  53. Hurley N F, Budros R. 1990. Albion-Scipio and Stoney Point Fields-USA Michigan Basin. AAPG Special Volumes. 1–37Google Scholar
  54. Hyatt J A. 1984. Liquid and supercritical carbon dioxide as organic solvents. J Org Chem, 49: 5097–5101CrossRefGoogle Scholar
  55. Jacquemyn C, El Desouky H, Hunt D, Casini G, Swennen R. 2014. Dolomitization of the Latemar platform: Fluid flow and dolomite evolution. Mar Pet Geol, 55: 43–67CrossRefGoogle Scholar
  56. Jeffrey A W A, Kaplan I R. 1988. Hydrocarbons and inorganic gases in the Gravberg-1 well, Siljan Ring, Sweden. Chem Geol, 71: 237–255CrossRefGoogle Scholar
  57. Jiang Y Q, Tao Y Z, Gu Y B, Qiang Z T, Jiang N, Lin G, Jiang C. 2016. Hydrothermal dolomitization in Sinian Dengying Formation, Gaoshiti- Moxi area, Sichuan Basin, SW China (in Chinese). Petrol Explor Develop, 43: 1–10CrossRefGoogle Scholar
  58. Jiao N Z. 2012. Carbon fixation and sequestration in the ocean, with special reference to the microbial carbon pump (in Chinese). Sci Sin Terr, 42: 1473–1486Google Scholar
  59. Jin Z, Yuan Y, Sun D, Liu Q, Li S. 2014. Models for dynamic evaluation of mudstone/shale cap rocks and their applications in the Lower Paleozoic sequences, Sichuan Basin, SW China. Mar Pet Geol, 49: 121–128CrossRefGoogle Scholar
  60. Jin Z J, Zhang L P, Yang L, Hu W X. 2004. A preliminary study of mantlederived fluids and their effects on oil/gas generation in sedimentary basins. J Pet Sci Eng, 41: 45–55CrossRefGoogle Scholar
  61. Jin Z J, Hu W X, Zhang L P, Tao M X. 2007. Deep Fluid Activities and Their Effectiveness on Hydrocarbon Generation and Accumulation (in Chinese). Beijing: Science PressGoogle Scholar
  62. Jin Z J, Zhu D Y, Hu W X, Zhang X F, Wang Y, Yan X B. 2006. Geological and geochemical signatures of hydrothermal activity and their influence on carbonate reservoir beds in the Tarim Basin (in Chinese). Acta Geol Sin, 80: 245–253Google Scholar
  63. Jones R W, Edison T A. 1978. Microscopic observations of kerogen related to geochemical parameters with emphasis on thermal maturation. Pacific Section SEPM. 1–12Google Scholar
  64. Jung J W, Espinoza D N, Santamarina J C. 2010. Properties and phenomena relevant to CH4-CO2 replacement in hydrate-bearing sediments. J Geophys Res, 115: B10102CrossRefGoogle Scholar
  65. Kerrick D M, Connolly J A D. 1998. Subduction of ophicarbonates and recycling of CO2 and H2O. Geology, 26: 375–378CrossRefGoogle Scholar
  66. Kvenvolden K A, Rapp J B, Hostettler F D, Morton J L, King J D, Claypool G E. 1986. Petroleum associated with polymetallic sulfide in sediment from Gorda Ridge. Science, 234: 1231–1234CrossRefGoogle Scholar
  67. Lancet M S, Anders E. 1970. Carbon isotope fractionation in the Fischer- Tropsch synthesis and in meteorites. Science, 170: 980–982CrossRefGoogle Scholar
  68. Lee C T A, Jiang H, Ronay E, Minisini D, Stiles J, Neal M. 2018. Volcanic ash as a driver of enhanced organic carbon burial in the Cretaceous. Sci Rep, 8: 4197CrossRefGoogle Scholar
  69. Lewan M. 1993. Laboratory simulation of petroleum formation: Hydrous pyrolysis. In: Engel M H, Macko S A, eds. Organic Geochemistry-Principle and Applications. New York: Plenum Press. 419–422CrossRefGoogle Scholar
  70. Lewan M D, Winters J C, McDonald J H. 1979. Generation of oil-like pyrolyzates from organic-rich shales. Science, 203: 897–899CrossRefGoogle Scholar
  71. Li J, Cui J, Yang Q, Cui G, Wei B, Wu Z, Wang Y, Zhou H. 2017. Oxidative weathering and microbial diversity of an inactive seafloor hydrothermal sulfide chimney. Front Microbiol, 8: 1378CrossRefGoogle Scholar
  72. Li S G. 2015. Tracing deep carbon recycling by Mg isotopes (in Chinese). Earth Sci Front, 22: 143–159Google Scholar
  73. Liu G Y, Zhang L P, Jin Z J, 2005. Primary study on the effects of deepsourced fluid’s movement on hydrocarbon migration (in Chinese). Petrol Geol Exper, 27: 269–275Google Scholar
  74. Liu L, Gao Y Q, Qu X Y, Meng Q A, Gao F H, Ren Y G, Zhu D F. 2006. Petrology and carbon-oxygen isotope of inorganic CO2 gas reservoir in Wuerxun depression, Hailaer basin (in Chinese). Acta Petrol Sin, 22: 2229–2236Google Scholar
  75. Liao Y, Fang Y, Wu L, Geng A, Hsu C S. 2012. The characteristics of the biomarkers and δ 13C of n-alkanes released from thermally altered solid bitumens at various maturities by catalytic hydropyrolysis. Org Geochem, 46: 56–65CrossRefGoogle Scholar
  76. Liu N, Liu L, Qu X, Yang H, Wang L, Zhao S. 2011. Genesis of authigene carbonate minerals in the Upper Cretaceous reservoir, Honggang Anticline, Songliao Basin: A natural analog for mineral trapping of natural CO2 storage. Sediment Geol, 237: 166–178CrossRefGoogle Scholar
  77. Liu Q, Dai J, Jin Z, Li J, Wu X, Meng Q, Yang C, Zhou Q, Feng Z, Zhu D. 2016. Abnormal carbon and hydrogen isotopes of alkane gases from the Qingshen gas field, Songliao Basin, China, suggesting abiogenic alkanes? J Asian Earth Sci, 115: 285–297CrossRefGoogle Scholar
  78. Liu Q, Liu W, Dai J. 2007. Characterization of pyrolysates from maceral components of Tarim coals in closed system experiments and implications to natural gas generation. Org Geochem, 38: 921–934CrossRefGoogle Scholar
  79. Liu Q, Zhu D, Jin Z, Meng Q, Wu X, Yu H. 2017. Effects of deep CO2 on petroleum and thermal alteration: The case of the Huangqiao oil and gas field. Chem Geol, 469: 214–229CrossRefGoogle Scholar
  80. Liu S, Huang W, Jansa L F, Wang G, Song G, Zhang C, Sun W, Ma W. 2014. Hydrothermal dolomite in the Upper Sinian (Upper Proterozoic) Dengying Formation, East Sichuan Basin, China. Acta Geol Sin-Engl Ed, 88: 1466–1487Google Scholar
  81. Liu S A, Wu H, Shen S, Jiang G, Zhang S, Lv Y, Zhang H, Li S. 2017. Zinc isotope evidence for intensive magmatism immediately before the end- Permian mass extinction. Geology, 45: 343–346CrossRefGoogle Scholar
  82. Love G D, Snape C E, Carr A D, Houghton R C. 1995. Release of covalently- bound alkane biomarkers in high yields from kerogen via catalytic hydropyrolysis. Org Geochem, 23: 981–986CrossRefGoogle Scholar
  83. Lu J, Wilkinson M, Haszeldine R S, Fallick A E. 2009. Long-term performance of a mudrock seal in natural CO2 storage. Geology, 37: 35–38CrossRefGoogle Scholar
  84. Luo P, Wang S, Li P W, Song J M, Jin T F, Wang G Q, Yang S S. 2013. Review and prospectives of microbial carbonate reservoirs (in Chinese). Act Sediment Sin, 31: 807–823Google Scholar
  85. Luo Y R. 2004. Databook of Chemical Bond Energy (in Chinese). Beijing: Science Press. 1–396Google Scholar
  86. Ma A L, Li Y Z, Zhang X K, Zhang Z M. 2015. Carbon dioxide origin, alkane gas geochemical characteristics and pool-forming model of presalt J oilfield in offshore Santos basin, Brazil (in Chinese). Chin Offshore Oil Gas, 27: 13–20Google Scholar
  87. Makhanov K, Habibi A, Dehghanpour H, Kuru E. 2014. Liquid uptake of gas shales: A workflow to estimate water loss during shut-in periods after fracturing operations. J Unconv Oil Gas Resour, 7: 22–32CrossRefGoogle Scholar
  88. Martin J H, Fitzwater S E. 1988. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature, 331: 341–343CrossRefGoogle Scholar
  89. Marty B, Gunnlaugsson E, Jambon A, Oskarsson N, Ozima M, Pineau F, Torssander P. 1991. Gas geochemistry of geothermal fluids, the Hengill area, southwest rift zone of Iceland. Chem Geol, 91: 207–225CrossRefGoogle Scholar
  90. McCollom T M, Seewald J S, Lollar B S, Lacrampe-Couloume G. 2006. Isotopic signatures of abiotic organic synthesis under geologic conditions. Geochim Cosmochim Acta, 70: A0407CrossRefGoogle Scholar
  91. Meng Q, Sun Y, Tong J, Fu Q, Zhu J, Zhu D, Jin Z. 2015. Distribution and geochemical characteristics of hydrogen in natural gas from the Jiyang Depression, Eastern China. Acta Geol Sin-Engl Ed, 89: 1616–1624CrossRefGoogle Scholar
  92. Meng Q Q, Tao C, Zhu D Y, Jin Z J, Wang Q, Zheng L J. 2011. Primary study on relatively preconcentration of trace hydrogen in natural gas (in Chinese). Petrol Geol Exper, 33: 314–316Google Scholar
  93. Michaelis W, Jenisch A, Richnow H H. 1990. Hydrothermal petroleum generation in Red Sea sediments from the Kebrit and Shaban Deeps. Appl Geochem, 5: 103–114CrossRefGoogle Scholar
  94. Middag R, de Baar H J W, Laan P, Cai P H, van Ooijen J C. 2011. Dissolved manganese in the Atlantic sector of the Southern Ocean. Deep-Sea Res Part II-Top Stud Oceanogr, 58: 2661–2677CrossRefGoogle Scholar
  95. Middleton R S, Carey J W, Currier R P, Hyman J D, Kang Q, Karra S, Jiménez-Martínez J, Porter M L, Viswanathan H S. 2015. Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2. Appl Energy, 147: 500–509CrossRefGoogle Scholar
  96. Milesi V, Prinzhofer A, Guyot F, Benedetti M, Rodrigues R. 2016. Contribution of siderite-water interaction for the unconventional generation of hydrocarbon gases in the Solimões basin, north-west Brazil. Mar Pet Geol, 71: 168–182CrossRefGoogle Scholar
  97. Monin J C, Barth D, Perrut M, Espitalié M, Durand B. 1988. Extraction of hydrocarbons from sedimentary rocks by supercritical carbon dioxide. Org Geochem, 13: 1079–1086CrossRefGoogle Scholar
  98. Moore C M, Mills M M, Arrigo K R, Berman-Frank I, Bopp L, Boyd P W, Galbraith E D, Geider R J, Guieu C, Jaccard S L, Jickells T D, La Roche J, Lenton T M, Mahowald N M, Marañón E, Marinov I, Moore J K, Nakatsuka T, Oschlies A, Saito M A, Thingstad T F, Tsuda A, Ulloa O. 2013. Processes and patterns of oceanic nutrient limitation. Nat Geosci, 6: 701–710CrossRefGoogle Scholar
  99. Moore J, Adams M, Allis R, Lutz S, Rauzi S. 2005. Mineralogical and geochemical consequences of the long-term presence of CO2 in natural reservoirs: An example from the Springerville–St. Johns Field, Arizona, and New Mexico, U.S.A.. Chem Geol, 217: 365–385Google Scholar
  100. Morel F M M, Milligan A J, Saito M A. 2003. Marine bioinorganic chemistry: The role of trace metals in the ocean cycles of major nutrients. Treat Geochem, 6: 113–143CrossRefGoogle Scholar
  101. Neal C, Stanger G. 1983. Hydrogen generation from mantle source rocks in Oman. Earth Planet Sci Lett, 66: 315–320CrossRefGoogle Scholar
  102. Newell K D, Doveton J H, Merriam D F, Lollar B S, Waggoner W M, Magnuson L M. 2007. H2-rich and hydrocarbon gas recovered in a deep Precambrian well in Northeastern Kansas. Nat Resour Res, 16: 277–292CrossRefGoogle Scholar
  103. Nishijima A, Kameoka T, Sato T, Matsubayashi N, Nishimura Y. 1998. Catalyst design and development for upgrading aromatic hydrocarbons. Catal Today, 45: 261–269CrossRefGoogle Scholar
  104. Nygård R, Gutierrez M, Bratli R K, Høeg K. 2006. Brittle-ductile transition, shear failure and leakage in shales and mudrocks. Mar Pet Geol, 23: 201–212CrossRefGoogle Scholar
  105. Oelkers E H, Cole D R. 2008. Carbon dioxide sequestration a solution to a global problem. Elements, 4: 305–310CrossRefGoogle Scholar
  106. Ogawa H, Amagai Y, Koike I, Kaiser K, Benner R. 2001. Production of refractory dissolved organic matter by bacteria. Science, 292: 917–920CrossRefGoogle Scholar
  107. Olgun N i, Duggen S, Andronico D, Kutterolf S, Croot P L, Giammanco S, Censi P, Randazzo L. 2013. Possible impacts of volcanic ash emissions of Mount Etna on the primary productivity in the oligotrophic Mediterranean Sea: Results from nutrient-release experiments in seawater. Mar Chem, 152: 32–42CrossRefGoogle Scholar
  108. Pedersen R B, Rapp H T, Thorseth I H, Lilley M D, Barriga F J A S, Baumberger T, Flesland K, Fonseca R, Früh-Green G L, Jorgensen S L. 2010. Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge. Nat Commun, 1: 126CrossRefGoogle Scholar
  109. Peter J M, Peltonen P, Scott S D, Simoneit B R T, Kawka O E. 1991. 14C ages of hydrothermal petroleum and carbonate in Guaymas Basin, Gulf of California: Implications for oil generation, expulsion, and migration. Geology, 19: 253–256CrossRefGoogle Scholar
  110. Price L C, Wenger L M. 1992. The influence of pressure on petroleum generation and maturation as suggested by aqueous pyrolysis. Org Geochem, 19: 141–159CrossRefGoogle Scholar
  111. Qian Y X, Feng, J F, He Z L, Zhang, K Y, Jin T, Dong S F, You D H, Zhang Y D. 2017. Applications of petrography and isotope analysis of microdrill samples to the study of genesis of grape-like dolomite of the Dengying Formation in the Sichuan Basin (in Chinese). Oil Gas Geol, 38: 665–676Google Scholar
  112. Qing H, Bosence D W J, Rose E P F. 2001. Dolomitization by penesaline sea water in Early Jurassic peritidal platform carbonates, Gibraltar, western Mediterranean. Sedimentology, 48: 153–163CrossRefGoogle Scholar
  113. Reeves E P, Seewald J S, Sylva S P. 2012. Hydrogen isotope exchange between n-alkanes and water under hydrothermal conditions. Geochim Cosmochim Acta, 77: 582–599CrossRefGoogle Scholar
  114. Rona P A, Klinkhammer G, Nelsen T A, Trefry J H, Elderfield H. 1986. Black smokers, massive sulphides and vent biota at the Mid-Atlantic Ridge. Nature, 321: 33–37CrossRefGoogle Scholar
  115. Saxby J D, Riley K W. 1984. Petroleum generation by laboratory-scale pyrolysis over six years simulating conditions in a subsiding basin. Nature, 308: 177–179CrossRefGoogle Scholar
  116. Schimmelmann A, Lewan M D, Wintsch R P. 1999. D/H isotope ratios of kerogen, bitumen, oil, and water in hydrous pyrolysis of source rocks containing kerogen types I, II, IIS, and III. Geochim Cosmochim Acta, 63: 3751–3766CrossRefGoogle Scholar
  117. Schimmelmann A, Mastalerz M, Gao L, Sauer P E, Topalov K. 2009. Dike intrusions into bituminous coal, Illinois Basin: H, C, N, O isotopic responses to rapid and brief heating. Geochim Cosmochim Acta, 73: 6264–6281CrossRefGoogle Scholar
  118. Shangguan Z G, Huo W G. 2002. dD values of escaped H2 from hot springs at the Tengchong Rehai geothermal area and its origin. Chin Sci Bull, 47: 148–150Google Scholar
  119. Shen Y, Farquhar J, Zhang H, Masterson A, Zhang T, Wing B A. 2011. Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction. Nat Commun, 2: 210CrossRefGoogle Scholar
  120. Sherwood Lollar B, Onstott T C, Lacrampe-Couloume G, Ballentine C J. 2014. The contribution of the Precambrian continental lithosphere to global H2 production. Nature, 516: 379–382CrossRefGoogle Scholar
  121. Shiraki R, Dunn T L. 2000. Experimental study on water-rock interactions during CO2 flooding in the Tensleep Formation, Wyoming, USA. Appl Geochem, 15: 265–279CrossRefGoogle Scholar
  122. Shu X H, Zhang J T, Li G R, Long S X, Wu S X, Li H T. 2012. Characteristics and genesis of hydrothermal dolomites of Qixia and Maokou Formations in northern Sichuan Basin (in Chinese). Oil Gas Geol, 33: 442–448Google Scholar
  123. Shuai Y H, Zhang S C, Su A G, Wang H T, Cai B Y, Wang H. 2010. Geochemical evidence for strong ongoing methanogenesis in Sanhu region of Qaidam Basin. Sci China Ser D-Earth Sci, 53: 84–90CrossRefGoogle Scholar
  124. Simoneit B R T. 1984. Hydrothermal effects on organic matter—High vs low temperature components. Org Geochem, 6: 857–864CrossRefGoogle Scholar
  125. Simoneit B R T. 1990. Selected papers from the symposium: Organic matter in hydrothermal systems-maturation, migration and biogeochemistry at the third chemical congress of North America and the 195th American chemical society national meeting. Appl Geochem, 5: 1–15CrossRefGoogle Scholar
  126. Simoneit B R T, Lonsdale P F. 1982. Hydrothermal petroleum in mineralized mounds at the seabed of Guaymas Basin. Nature, 295: 198–202CrossRefGoogle Scholar
  127. Simoneit B R T, Aboul-Kassim T A T, Tiercelin J J. 2000. Hydrothermal petroleum from lacustrine sedimentary organic matter in the East African Rift. Appl Geochem, 15: 355–368CrossRefGoogle Scholar
  128. Simoneit B R T, Kvenvolden K A. 1994. Comparison of 14C ages of hydrothermal petroleums. Org Geochem, 21: 525–529CrossRefGoogle Scholar
  129. Simoneit B R T, Lein A Y, Peresypkin V I, Osipov G A. 2004. Composition and origin of hydrothermal petroleum and associated lipids in the sulfide deposits of the Rainbow field (Mid-Atlantic Ridge at 36°N). Geochim Cosmochim Acta, 68: 2275–2294CrossRefGoogle Scholar
  130. Slowakiewicz M, Tucker M E, Pancost R D, Perri E, Mawson M. 2013. Upper Permian (Zechstein) microbialites: Supratidal through deep subtidal deposition, source rock, and reservoir potential. AAPG Bull, 97: 1921–1936CrossRefGoogle Scholar
  131. Song J M, Liu S G, Li Z W, Luo P, Yang D, Sun W, Peng H L, Yu Y Q. 2017. Characteristics and controlling factors of microbial carbonate reservoirs in the Upper Sinian Dengying Formation in the Sichuan Basin, China (in Chinese). Oil Gas Geol, 38: 741–752Google Scholar
  132. Suda K, Ueno Y, Yoshizaki M, Nakamura H, Kurokawa K, Nishiyama E, Yoshino K, Hongoh Y, Kawachi K, Omori S, Yamada K, Yoshida N, Maruyama S. 2014. Origin of methane in serpentinite-hosted hydrothermal systems: The CH4–H2–H2O hydrogen isotope systematics of the Hakuba Happo hot spring. Earth Planet Sci Lett, 386: 112–125CrossRefGoogle Scholar
  133. Thayer T P. 1966. Serpentinization considered as a constant-volume metasomatic process. Miner Soc Amer, 51: 685–710Google Scholar
  134. Tissot B T, Durand B, Espitalie J, Combaz A. 1974. Influence of nature and diagenesis of organic matter in formation of petroleum. AAPG Bull, 58: 499–506Google Scholar
  135. Van Cappellen P, Ingall E D. 1994. Benthic phosphorus regeneration, net primary production, and ocean anoxia: A model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography, 9: 677–692CrossRefGoogle Scholar
  136. Vasconcelos C, McKenzie J A. 1997. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). J Sediment Res, 67: 378–390Google Scholar
  137. Von Damm K L. 1990. Seafloor hydrothermal activity: Black smoker chemistry and chimneys. Annu Rev Earth Planet Sci, 18: 173–204CrossRefGoogle Scholar
  138. Wang S Y, Li X F, 1999. Study on the geochemical characteristics of natural gas and gas-bearing system in the Sinian strata in Weiyuan and Ziyang area (in Chinese). Nat Gas Geosci, 10: 63–69Google Scholar
  139. Wei J, Ge Q, Yao R, Wen Z, Fang C, Guo L, Xu H, Sun J. 2017. Directly converting CO2 into a gasoline fuel. Nat Commun, 8: 15174CrossRefGoogle Scholar
  140. Weitkamp J, Raichle A, Traa Y. 2001. Novel zeolite catalysis to create value from surplus aromatics: Preparation of C2+-n-alkanes, a highquality synthetic steamcracker feedstock. Appl Catal A-General, 222: 277–297CrossRefGoogle Scholar
  141. Welhan J A, Craig H. 1979. Methane and hydrogen in East Pacific rise hydrothermal fluids. Geophys Res Lett, 6: 829–831CrossRefGoogle Scholar
  142. Wilkinson M, Haszeldine R S, Fallick A E, Odling N, Stoker S J, Gatliff R W. 2009. CO2-mineral reaction in a natural analogue for CO2 storage— Implications for modeling. J Sediment Res, 79: 486–494CrossRefGoogle Scholar
  143. Woolnough W G. 1934. Natural gas in Australia and New Guinea. AAPG Bull, 18: 226–242Google Scholar
  144. Worden R H. 2006. Dawsonite cement in the Triassic Lam Formation, Shabwa Basin, Yemen: A natural analogue for a potential mineral product of subsurface CO2 storage for greenhouse gas reduction. Mar Pet Geol, 23: 61–77CrossRefGoogle Scholar
  145. Wu L L, Liao Y H, Fang Y X, Geng A S. 2013. The comparison of biomarkers released by hydropyrolysis and Soxhlet extraction from source rocks of different maturities. Chin Sci Bull, 58: 373–383CrossRefGoogle Scholar
  146. Xu Y C, Shen P, Li Y C, 1989. The oldest gas pool of China—Weiyuan Sinian gas pool, Sichuan province (in Chinese). Acta Sediment Sin, 7: 3–14Google Scholar
  147. Yamanaka T, Ishibashi J, Hashimoto J. 2000. Organic Geochemistry of hydrothermal petroleum generated in the submarine Wakamiko caldera, southern Kyushu, Japan. Org Geochem, 31: 1117–1132CrossRefGoogle Scholar
  148. Yang C Q, Yao J X, 2004. Modes of CO2 gas reservoir formation in Sanshui Basin (in Chinese). Nat Gas Ind, 24: 36–39Google Scholar
  149. Zhang G, Zhang X, Hu D, Li D, Algeo T J, Farquhar J, Henderson C M, Qin L, Shen M, Shen D, Schoepfer S D, Chen K, Shen Y. 2017. Redox chemistry changes in the Panthalassic Ocean linked to the end-Permian mass extinction and delayed Early Triassic biotic recovery. Proc Natl Acad Sci USA, 114: 1806–1810CrossRefGoogle Scholar
  150. Zhang L F, Tao R B, Zhu J J, 2017. Some problems of deep carbon cycle in subduction zone (in Chinese). Bull Mineral Petrol Geochem, 36: 185–196Google Scholar
  151. Zhang Q X, Li Y L, Hu, Z L, Zhang Q M. 1989. The deep thermal origin and water-facies migration of petroleum in the Meishan Formatoin in the Yinggehai Basin (in Chinese). Chin Offshore Oil Gas, 3: 25–33Google Scholar
  152. Zhang S, He K, Hu G, Mi J, Ma Q, Liu K, Tang Y. 2018. Unique chemical and isotopic characteristics and origins of natural gases in the Paleozoic marine formations in the Sichuan Basin, SW China: Isotope fractionation of deep and high mature carbonate reservoir gases. Mar Pet Geol, 89: 68–82CrossRefGoogle Scholar
  153. Zhang S, Mi J, He K. 2013. Synthesis of hydrocarbon gases from four different carbon sources and hydrogen gas using a gold-tube system by Fischer-Tropsch method. Chem Geol, 349-350: 27–35CrossRefGoogle Scholar
  154. Zhang Z S, 1987. The helium resource and its development and protection in China (in Chinese). Resour Develop Mark, 3: 28–31Google Scholar
  155. Zhao F Y, Jiang S G, Li S Z, Cao W, Wang G, Zhang H X, Gao S. 2017. Correlation of inorganic CO2 reservoirs in East China to subduction of (Paleo-) Pacific Plate (in Chinese). Earth Sci Front, 24: 370–384Google Scholar
  156. Zhao W Z, Shen A J, Zhou J G, Wang X F, Lu J M. 2014. Types, characteristics, origin and exploration significance of reef-shoal reservoirs: A case study of Tarim Basin, NW China and Sichuan Basin, SW China (in Chinese). Petrol Explor Develop, 41: 257–267CrossRefGoogle Scholar
  157. Zhong L, Cantrell K, Mitroshkov A, Shewell J. 2014. Mobilization and transport of organic compounds from reservoir rock and caprock in geological carbon sequestration sites. Environ Earth Sci, 71: 4261–4272CrossRefGoogle Scholar
  158. Zhu D Y, Jin Z J, Hu W X. 2010. Hydrothermal recrystallization of the Lower Ordovician dolomite and its significance to reservoir in northern Tarim Basin. Sci China Earth Sci, 53: 368–381CrossRefGoogle Scholar
  159. Zhu D, Liu Q, Jin Z, Meng Q, Hu W. 2017. Effects of deep fluids on hydrocarbon generation and accumulation in Chinese Petroliferous Basins. Acta Geol Sin-Engl Ed, 91: 301–319CrossRefGoogle Scholar
  160. Zhu D, Meng Q, Jin Z, Liu Q, Hu W. 2015a. Formation mechanism of deep Cambrian dolomite reservoirs in the Tarim basin, northwestern China. Mar Pet Geol, 59: 232–244CrossRefGoogle Scholar
  161. Zhu D, Meng Q, Liu Q, Zhou B, Jin Z, Hu W. 2018. Natural enhancement and mobility of oil reservoirs by supercritical CO2 and implication for vertical multi-trap CO2 geological storage. J Pet Sci Eng, 161: 77–95CrossRefGoogle Scholar
  162. Zhu D, Meng Q, Jin Z, Hu W. 2015b. Fluid environment for preservation of pore spaces in a deep dolomite reservoir. Geofluids, 15: 527–545CrossRefGoogle Scholar
  163. Zhu D Y, Jin Z J, Hu W X, Zhang X F. 2008. Effects of deep fluid on carbonates reservoir in Tarim Basin (in Chinese). Geol Rev, 54: 348–354Google Scholar
  164. Zhu J, Li S, Sun X, Zhu J, Xin M, Xu H. 1994. Discovery of early tertiary hydrothermal activity and its significance in oil/gas geology, Dongpu Depression, Henan Province, China. Chin J Geochem, 13: 270–283CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Quanyou Liu
    • 1
    • 2
  • Dongya Zhu
    • 1
    • 2
  • Qingqiang Meng
    • 1
    • 2
  • Jiayi Liu
    • 1
    • 2
  • Xiaoqi Wu
    • 1
    • 2
  • Bing Zhou
    • 1
    • 2
  • Qi Fu
    • 3
  • Zhijun Jin
    • 1
    • 2
  1. 1.State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective DevelopmentBeijingChina
  2. 2.Structure & Sedimentary Reservoir LaboratoryPetroleum Exploration & Production Research Institute, SINOPECBeijingChina
  3. 3.Department of Earth and Atmospheric SciencesUniversity of HoustonHoustonUSA

Personalised recommendations