Advertisement

Science China Earth Sciences

, Volume 62, Issue 1, pp 189–222 | Cite as

Triassic integrative stratigraphy and timescale of China

  • Jinnan TongEmail author
  • Daoliang Chu
  • Lei Liang
  • Wenchao Shu
  • Haijun Song
  • Ting Song
  • Huyue Song
  • Yuyang Wu
Review
  • 70 Downloads

Abstract

The Triassic rocks are widespread in China, and both marine and terrestrial strata are well developed. The Triassic stratigraphic architecture of China is very complex in both spatial variation of the so-called “South Marine and North Continental”, i.e. the southern areas of China occupied mostly by marine facies while the northern China by terrestrial facies during the Triassic Period, and temporal transition of the “Lower Marine and Upper Continental”, i.e. the lower part of the Triassic System composed mainly of marine facies and the upper part of terrestrial strata especially in South China. Although the Global Stratotype Section and Point (GSSP) of the Permian-Triassic boundary is located in South China, the Triassic of China except for some marine Lower-Middle Triassic depositions shows significantly local characteristics and is hardly correlated with the global chronostratigraphic chart. Consequently, the Triassic of China contains not only the international research hotspots but also difficult points in stratigraphic study. This paper aims to present a brief review of the Triassic in China, including chronostratigraphy, biostratigraphy, magnetostratigraphy and chemostratigraphy, and summarize an integrated Triassic stratigraphic framework of China. Accordingly, a stratigraphic correlation is proposed for the lithostratigraphic sequences among the three tectono-paleogeographic stratigraphic regions. The comprehensive study indicates that ammonoids are the classic index fossils in Triassic biostratigraphy but conodonts are more advantageous in the study and definition of the Triassic chronostratigraphic boundaries. China still has the potential to optimize the GSSPs of the Induan-Olenekian boundary and Olenekian-Anisian boundary. The correlation of the Permian-Triassic boundary between marine and terrestrial facies might be achieved with the help of the Permian-Triassic “transitional bed” and its related biotic and environmental events in association with the biostratigraphic study of conchostracan, vertebrate and plant fossils. In addition, the carbon isotopes have been proved to be one of the powerful methods in marine Triassic stratigraphic study, whereas the oxygen and strontium isotopes may be additional important bridges to establish the correlation between the marine and terrestrial strata, but as yet lacking of relevant studies in terrestrial strata. Considering the most stratigraphic intervals of the Triassic and the terrestrial Triassic in China are difficult to be correlated to the global chart, the proposed Chinese (regional) Triassic chronostratigraphic chart of marine and terrestrial stages would be of importance to the study of Chinese Triassic stratigraphy and related aspects, but the stages must be conceptually in line with international standards and studied as soon as possible in order to finalize the definition.

Keywords

Triassic Chronostratigraphy Biostratigraphy Magnetostratigraphy Chemostratigraphy Lithostratigraphy Stratigraphic correlation China 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41530104 & 41661134047).

References

  1. Bernasconi S M, Meier I, Wohlwend S, Brack P, Hochuli P A, Bläsi H, Wortmann U G, Ramseyer K. 2017. An evaporite–based high–resolution sulfur isotope record of Late Permian and Triassic seawater sulfate. Geochim Cosmochim Acta, 204: 331–349Google Scholar
  2. Botha J, Smith R M H. 2007. Lystrosaurus species composition across the Permo–Triassic boundary in the Karoo Basin of South Africa. Lethaia, 40: 125–137Google Scholar
  3. Brack P, Rieber H, Nicora A, Mundil R. 2005. The Global Boundary Stratotype Section and Point (GSSP) of the Ladinian Stage (Middle Triassic) at Bagolino (Southern Alps, Northern Italy) and its implications for the Triassic time scale. Episodes, 28: 233–244Google Scholar
  4. Burgess S D, Bowring S, Shen S. 2014. High–precision timeline for Earth’s most severe extinction. Proc Natl Acad Sci USA, 111: 3316–3321Google Scholar
  5. Cao C Q, Wang W, Liu L J, Summons R E. 2008. Two episodes of 13Cdepletion in organic carbon in the latest Permian: Evidence from the terrestrial sequences in northern Xinjiang, China. Earth Planet Sci Lett, 270: 251–257Google Scholar
  6. Cao C Q, Wang W, Jin Y G. 2002. Carbon isotope excursions across the Permian–Triassic bound–ary in the Meishan section, Zhejiang Province, China. Chin Sci Bull, 47: 1125–1129Google Scholar
  7. Chao K K. 1959. Lower Triassic ammonoids from western Kwuangsi, China. Palaeont Sin New Ser B, 9:155−355Google Scholar
  8. Chen C Z, Chen G X, Chen J H, Sun D L, Wang Z H. 2000. Marine Triassic (in Chinese). In: Stratigraphical Studies in China (1979−1999). Hefei: University of Science and Technology of China Publishing House. 241−258Google Scholar
  9. Chen J, Shen S Z, Li X H, Xu Y G, Joachimski M M, Bowring S A, Erwin D H, Yuan D X, Chen B, Zhang H, Wang Y, Cao C Q, Zheng Q F, Mu L. 2016. High–resolution SIMS oxygen isotope analysis on conodont apatite from South China and implications for the end–Permian mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol, 448: 26–38Google Scholar
  10. Chen J S, Shao M R, Huo W G, Yao Y Y. 1984. Carbon isotope of carbonate strata at Permian–Triassic boundary in Changxing, Zhejiang (in Chinese). Sci Geol Sin, 19: 88–93Google Scholar
  11. Chen Y L, Kolar–Jurkovšek T, Jurkovšek B, Aljinović D, Richoz S. 2016. Early Triassic conodonts and carbonate carbon isotope record of the Idrija–Žiri area, Slovenia. Palaeogeogr Palaeoclimatol Palaeoecol, 444: 84–100Google Scholar
  12. Cheng Z W, Qu L F, Hou J P, Li P X. 1983. The stratigraphic question of Eumorphotis–bearing “Shiqianfeng” Formation in Qishan, Shaanxi Province (in Chinese). J Stratigr, 7: 161–168Google Scholar
  13. Chu D L, Tong J N, Song H J, Benton M J, Song H Y, Yu J X, Qiu X C, Huang Y F, Tian L. 2015. Lilliput effect in freshwater ostracods during the Permian–Triassic extinction. Palaeogeogr Palaeoclimatol Palaeoecol, 435: 38–52Google Scholar
  14. Chu D L, Tong J N, Yu J X, et al. 2013. The conchostracan fauna from the Kayitou Formation of western Guizhou, China (in Chinese). Acta Palaeont Sin, 52: 265–276Google Scholar
  15. Chu D L, Yu J X, Tong J N, Benton M J, Song H J, Huang Y F, Song T, Tian L. 2016. Biostratigraphic correlation and mass extinction during the Permian–Triassic transition in terrestrial–marine siliciclastic settings of South China. Glob Planet Change, 146: 67–88Google Scholar
  16. Ding M H, Huang Q H. 1990. Late Permian–Middle Triassic conodonts fauna and paleoecology in Shitouzhai, Ziyun County, Guizhou Province (in Chinese). Earth Sci, 15: 291–299Google Scholar
  17. Galfetti T, Bucher H, Martini R, Hochuli P A, Weissert H, Crasquin–Soleau S, Brayard A, Goudemand N, Brühwiler T, Guodun K. 2008. Evolution of Early Triassic outer platform paleoenvironments in the Nanpanjiang Basin (South China) and their significance for the biotic recovery. Sediment Geol, 204: 36–60Google Scholar
  18. Galfetti T, Bucher H, Ovtcharova M, Schaltegger U, Brayard A, Brühwiler T, Goudemand N, Weissert H, Hochuli P A, Cordey F, Guodun K. 2007. Timing of the Early Triassic carbon cycle perturbations inferred from new U–Pb ages and ammonoid biochronozones. Earth Planet Sci Lett, 258: 593–604Google Scholar
  19. Geological Institute, Chinese Academy of Geological Sciences. 1980. Mesozoic Stratigraphy and Fossils in Shannxi, Gansu and Ningxia Basin (in Chinese). Beijing: Geological Publishing House. 1−212Google Scholar
  20. Glen J M G, Nomade S, Lyons J J, Metcalfe I, Mundil R, Renne P R. 2009. Magnetostratigraphic correlations of Permian–Triassic marine–to–terrestrial sections from China. J Asian Earth Sci, 36: 521–540Google Scholar
  21. Golding M L, Orchard M J, Zonneveld J P, Henderson C M, Dunn L, Russell–Houston J. 2014. An exceptional record of the sedimentology and biostratigraphy of the Montney and Doig formations in British Columbia. Bull Canad Petrol Geol, 65: 157–176Google Scholar
  22. Goudemand N, Orchard M J, Bucher H, Jenks J. 2012. The elusive origin of Chiosella timorensis (conodont Triassic). Geobios, 45: 199–207Google Scholar
  23. Guo G, Tong J N, Zhang S H, Zhang J, Bai L Y. 2008. Cyclostratigraphy of the Induan (Early Triassic) in West Pingdingshan Section, Chaohu, Anhui Province. Sci China Ser D–Earth Sci, 51: 22–29Google Scholar
  24. Heller F, Lowrie W, Li H M, Wang J D. 1988. Magnetostratigraphy of the Permo–Triassic boundary section at Shangsi (Guangyuan, Sichuan Province, China). Earth Planet Sci Lett, 88: 348–356Google Scholar
  25. Henderson C M, Golding M L, Orchard M J. 2018. Conodont sequence biostratigraphy of the Lower Triassic Montney Formation. Bull Canad Petrol Geol, 66: 1–16Google Scholar
  26. Hou J P, 2004. The sporo–pollen assemblages of Guodikeng Formation and discussion on the Permo–Triassic boundary in Junggar Basin, Xinjiang (in Chinese). Beijing: Geological Publishing House. Prof Pap Stratigr Palaeont, 28: 177–204Google Scholar
  27. Hounslow M W, Muttoni G. 2010. The geomagnetic polarity timescale for the Triassic: Linkage to stage boundary definitions. Geol Soc Lond Spec Publ, 334: 61–102Google Scholar
  28. Hu Z W, Huang S J, Qing H R, Wang Q D, Wang C M, Gao X Y. 2008. Evolution and global correlation for strontium isotopic composition of marine Triassic from Huaying Mountains, eastern Sichuan, China. Sci China Ser D–Earth Sci, 51: 540–549Google Scholar
  29. Huang K, Opdyke N D. 2000. Magnetostratigraphic investigations of the Middle Triassic Badong Formation in South China. Geophys J Int, 142: 74–82Google Scholar
  30. Huang S J, Huang Y, Lan Y F, Huang K K. 2011. A comparative study on strontium isotope composition of dolomites and their coeval seawater in the Late Permian–Early Triassic, NE Sichuan basin (in Chinese). Acta Petrol Sin, 27: 3831–3842Google Scholar
  31. Ji Z, Yao J X, Yang X D, Zang W X, Wu G C. 2003. Conodont zonations of Norian in Lhasa area, Xizang (Tibet) and their global correlation (in Chinese). Acta Palaeont Sin, 42: 382–392Google Scholar
  32. Jiang H S, Lai X L, Sun Y D, Wignall P B, Liu J, Yan C B. 2014. Permian–Triassic conodonts from Dajiang (Guizhou, South China) and their implication for the age of microbialite deposition in the aftermath of the End–Permian mass extinction. J Earth Sci, 25: 413–430Google Scholar
  33. Jiang H S, Lai X L, Yan C B, Aldridge R J, Wignall P B, Sun Y D. 2011. Revised conodont zonation and conodont evolution across the Permian–Triassic boundary at the Shangsi section, Guangyuan, Sichuan, South China. Glob Planet Change, 77: 103–115Google Scholar
  34. Jiang Y F, Tang Y G, Dai S F, Zou X, Qian H D, Zhou G Q. 2006. Pyrite and sulfur isotopic composition near the Permian–Triassic boundary in Meishan, Zhejiang, China (in Chinese). Acta Geol Sin, 80: 1202–1207Google Scholar
  35. Joachimski M M, Lai X L, Shen S Z, Jiang H S, Luo G M, Chen B, Chen J, Sun Y D. 2012. Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology, 40: 195–198Google Scholar
  36. Korte C, Kozur H W. 2010. Carbon–isotope stratigraphy across the Permian–Triassic boundary: A review. J Asian Earth Sci, 39: 215–235Google Scholar
  37. Korte C, Kozur H W, Bruckschen P, Veizer J. 2003. Strontium isotope evolution of Late Permian and Triassic seawater. Geochim Cosmochim Acta, 67: 47–62Google Scholar
  38. Kozur H W, Weems R E. 2011. Detailed correlation and age of continental late Changhsingian and earliest Triassic beds: Implications for the role of the Siberian Trap in the Permian–Triassic biotic crisis. Palaeogeogr Palaeoclimatol Palaeoecol, 308: 22–40Google Scholar
  39. Lehrmann D J, Ramezani J, Bowring S A, Martin M W, Montgomery P, Enos P, Payne J L, Orchard M J, Wang H M, Wei J R. 2006. Timing of recovery from the end–Permian extinction: Geochronologic and biostratigraphic constraints from south China. Geology, 34: 1053–1056Google Scholar
  40. Lehrmann D J, Stepchinski L, Altiner D, Orchard M J, Montgomery P, Enos P, Ellwood B B, Bowring S A, Ramezani J, Wang H M, Wei J Y, Yu M Y, Griffiths J D, Minzoni M, Schaal E K, Li X, Meyer K M, Payne J L. 2015. An integrated biostratigraphy (conodonts and foraminifers) and chronostratigraphy (paleomagnetic reversals, magnetic susceptibility, elemental chemistry, carbon isotopes and geochronology) for the Permian–Upper Triassic strata of Guandao section, Nanpanjiang Basin, south China. J Asian Earth Sci, 108: 117–135Google Scholar
  41. Li D, Dong S, Deng S. 1998. New knowledge of the Upper Triassic in Liupanshan Basin, Ningxia, China. Chin Sci Bull, 43: 1100–1107Google Scholar
  42. Li H M, Wang J D. 1989. Magnetostratigraphy of Permo–Triassic boundary section of Meishan of Changxing, Zhejiang. Sci China Ser B, 32: 1401–1408Google Scholar
  43. Li M S, Ogg J, Zhang Y, Huang C J, Hinnov L, Chen Z Q, Zou Z. 2016. Astronomical tuning of the end–Permian extinction and the Early Triassic Epoch of South China and Germany. Earth Planet Sci Lett, 441: 10–25Google Scholar
  44. Li M S, Zhang Y, Huang C J, Ogg J, Hinnov L, Wang Y, Zou Z, Li L. 2017. Astronomical tuning and magnetostratigraphy of the Upper Triassic Xujiahe Formation of South China and Newark Supergroup of North America: Implications for the Late Triassic time scale. Earth Planet Sci Lett, 475: 207–223Google Scholar
  45. Li Y, Yao J X, Wang S E, Pamg Q Q. 2016. Middle–Late Triassic terrestrial strata and establishment of stages in the Ordos Basin (in Chinese). Acta Geosci Sin, 37: 267–276Google Scholar
  46. Li Y A, Jin X C, Sun D J, Cheng Z W, Pang Q Q, Li P X. 2003. Paleomagnetic properties of non–marine Permo–Triassic transitional succession of the Dalongkou Section, Jimsar, Xinjiang (in Chinese). Geol Rev, 49: 525–536Google Scholar
  47. Li Y A, Li J L, Cheng Z W, Sun D J, Liu J, Zhen J. 2004. Study on paleomagnetism of Permian–Triassic in Taoshuyuan of Turpan, Xinjiang (in Chinese). Xinjiang Geol, 22: 136–142Google Scholar
  48. Liang D, Tong J N, Zhao L S. 2011. Lower Triassic Smithian–Spathian boundary at West Pingdingshan Section in Chaohu, Anhui Province. Sci China Earth Sci, 54: 372–379Google Scholar
  49. Liu J, Abdala F. 2017. Therocephalian (Therapsida) and chroniosuchian (Reptiliomorpha) from the Permo–Triassic transitional Guodikeng Formation of the Dalongkou Section, Jimsar, Xinjiang, China. Vertebr PalAsiat, 55: 24–40Google Scholar
  50. Liu J, Li J, Cheng Z. 2002. The Lystrosaurus fossils from Xinjiang and their bearing on the terrestrial Permian–Triassic boundary (in Chinese). Vertebr PalAsiat, 40: 267–275Google Scholar
  51. Liu J, Ramezani J, Li L, Shang Q, Xu G, Wang H, Yang J. 2018. Highprecision temporal calibration of Middle Triassic vertebrate biostratigraphy: U–Pb zircon constraints for the Sinokannemeyeria Fauna and Yonghesuchus. Vertebr PalAsiat, 56: 16–24Google Scholar
  52. Liu S W. 1994. The nonmarine Permian–Triassic boundary and Triassic conchostracan fossils in China. Albertiana, 13: 12–24Google Scholar
  53. Liu Y Y, Zhu Y M, Tian W H. 1999. New magnetostratigraphic results from Meishan section, Changxing County, Zhejiang, China (in Chinese). Earth Sci, 24: 151–154Google Scholar
  54. Lucas S G. 1998. Global Triassic tetrapod biostratigraphy and biochronology. Palaeogeogr Palaeoclimatol Palaeoecol, 143: 347–384Google Scholar
  55. Lucas S G. 2010. The Triassic timescale based on nonmarine tetrapod biostratigraphy and biochronology. Geol Soc Lond Spec Publ, 334: 447–500Google Scholar
  56. Ma X H, Xing L S, Xu S J, Zhang J X, Yang Z Y. 1992. A preliminary study on the Permian–Triassic magnetic stratigraphic characteristics in the Ordos Basin (in Chinese). Chin Sci Bull, 3: 252–255Google Scholar
  57. Metcalfe I, Nicoll R S, Willink R, Ladjavadi M, Grice K. 2013. Early Triassic (Induan–Olenekian) conodont biostratigraphy, global anoxia, carbon isotope excursions and environmental perturbations: New data from Western Australian Gondwana. Gondwana Res, 23: 1136–1150Google Scholar
  58. Meyer K M, Yu M Y, Jost A B, Kelley B M, Payne J. 2011. δ13C evidence that high primary productivity delayed recovery from end–Permian mass extinction. Earth Planet Sci Lett, 302: 378–384Google Scholar
  59. Meyer K M, Yu M Y, Lehrmann D, van de Schootbrugge B, Payne J L. 2013. Constraints on Early Triassic carbon cycle dynamics from paired organic and inorganic carbon isotope records. Earth Planet Sci Lett, 361: 429–435Google Scholar
  60. Mietto P, Manfrin S, Preto N, Rigo M, Roghi G, Furin S, Gianolla P, Posenato P, Muttoni G, Nicora A, Buratti N, Cirilli S, Spoet C, Ramezani J, Bowring S A. 2012. The Global Boundary Stratotype Section and Point (GSSP) of the Carnian Stage (Late Triassic) at Prati di Stuores/Stuores Wiesen Section (Southern Alps, NE Italy). Episodes, 35: 414–430Google Scholar
  61. Mundil R, Brack P, Meier M, Rieber H, Oberli F. 1996. High resolution UPb dating of Middle Triassic volcaniclastics: Time–scale calibration and verification of tuning parameters for carbonate sedimentation. Earth Planet Sci Lett, 141: 137–151Google Scholar
  62. Nabbefeld B, Grice K, Schimmelmann A, Sauer P E, Böttcher M E, Twitchett R. 2010. Significance of δDkerogen, δ13Ckerogen and δ34Spyrite from several Permian/Triassic (P/Tr) sections. Earth Planet Sci Lett, 295: 21–29Google Scholar
  63. National Commission on Stratigraphy of China. 2002. The Instructions to the Chinese Regional Chronostratigraphic (Chronologic) Chart (in Chinese). Beijing: Geological Publishing House. 72Google Scholar
  64. Orchard M J, Krystyn L. 2007. Conodonts from the Induan–Olenekian boundary interval at Mud, Spiti. Albertiana, 35: 30–34Google Scholar
  65. Ouyang S. 1986. Late Permian and Early Triassic Palynomophs from Fuyuan, Yunnan (in Chinese). Beijing: Science Publishing House.122Google Scholar
  66. Ouyang S, Norris G. 1999. Earliest Triassic (Induan) spores and pollen from the Junggar Basin, Xinjiang, northwestern China. Rev Palaeobot Palynol, 106: 1–56Google Scholar
  67. Ovtcharova M, Bucher H, Schaltegger U, Galfetti T, Brayard A, Guex J. 2006. New Early to Middle Triassic U–Pb ages from South China: Calibration with ammonoid biochronozones and implications for the timing of the Triassic biotic recovery. Earth Planet Sci Lett, 243: 463–475Google Scholar
  68. Ovtcharova M, Goudemand N, Hammer Ø, Guodun K, Cordey F, Galfetti T, Schaltegger U, Bucher H. 2015. Developing a strategy for accurate definition of a geological boundary through radio–isotopic and biochronological dating: The Early–Middle Triassic boundary (South China). Earth–Sci Rev, 146: 65–76Google Scholar
  69. Pang Q Q. 1993. The nonmarine Triassic and Ostracoda in northern China. In: Lucas S G, Morales M, eds. The Nonmarine Triassic. New Mexico Mus Nat Hist Sci Bull, 3: 383–392Google Scholar
  70. Pang Q Q, Jin X C. 2004. Ostrocoda in the Guodikeng formation and continental Permo–Triassic boundary of Dalongkou section, Jimsar, Xinjiang (in Chinese). Prof Pap Stratigr Palaeont, 28: 205–246. Beijing: Geological Publishing HouseGoogle Scholar
  71. Payne J L, Lehrmann D J, Wei J R, Knoll A H. 2006. The pattern and timing of biotic recovery from the end–Permian extinction on the Great Bank of Guizhou, Guizhou Province, China. Palaios, 21: 63–85Google Scholar
  72. Payne J L, Lehrmann D J, Wei J R, Orchard M J, Schrag D P, Knoll A H. 2004. Large perturbations of the carbon cycle during recovery from the end–Permian extinction. Science, 305: 506–509Google Scholar
  73. Payne J L, Summers M, Rego B L, Altiner D, Wei J R, Yu M Y, Lehrmann D J. 2011. Early and Middle Triassic trends in diversity, evenness, and size of foraminifers on a carbonate platform in south China: Implications for tempo and mode of biotic recovery from the end–Permian mass extinction. Paleobiology, 37: 409–425Google Scholar
  74. Peng Y Q, Tong J N, Shi G R, Hansen H J. 2001. The Permian–Triassic boundary stratigraphic set: Characteristics and correlation. Newsl Stratigr, 39: 55–71Google Scholar
  75. Qiu X C, Tong J N, Tian L, Chu D L, Song T, Li D D. 2016. The biostratigraphic correlation of Permian–Triassic boundary in Jinzhong section, Weining, Guizhou, South China (in Chinese). Earth Sci, 41: 1709–1722Google Scholar
  76. Qu L F. 1990. Palynological assemblages of Middle and Late Triassic in Sangzhi, Hunan, and their stratigraphical significance (in Chinese). In: Prof Pap Stratigr Palaeont (17). Beijing: Geological Publishing House. 81−92Google Scholar
  77. Qu L F, Yang J D, Bai Y H, Zhang Z L. 1983. A preliminary discussion on the characteristics and stratigraphic divisions of Triassic spores and pollen in China (in Chinese). Acta Geosci Sin, 1: 82–94Google Scholar
  78. Rao R B, Xu J F, Chen Y M, Zou D B. 1987. The Triassic of the Qinghai–Tibet Plateau (in Chinese). Beijing: Geological Publishing House. 239Google Scholar
  79. Scholze F, Golubev V K, Niedźwiedzki G, Sennikov A G, Schneider J W, Silantiev V V. 2015. Early Triassic Conchostracans (Crustacea: Branchiopoda) from the terrestrial Permian–Triassic boundary sections in the Moscow syncline. Palaeogeogr Palaeoclimatol Palaeoecol, 429: 22–40Google Scholar
  80. Scholze F, Schneider J W, Werneburg R. 2016. Conchostracans in continental deposits of the Zechstein–Buntsandstein transition in central Germany: Taxonomy and biostratigraphic implications for the position of the Permian–Triassic boundary within the Zechstein Group. Palaeogeogr Palaeoclimatol Palaeoecol, 449: 174–193Google Scholar
  81. Shang Y K. 1998. Late Triassic palynofloral provinces of China (in Chinese). Acta Palaeont Sin, 37: 427–445Google Scholar
  82. Shao J A, Tang K D. 1995. Terranes in Northeast China and Evolution of Northeast Asia Continental Margin (in Chinese). Beijing: Seismological Press. 314Google Scholar
  83. Shen S Z, Crowley J L, Wang Y, Bowring S A, Erwin D H, Sadler P M, Cao C Q, Rothman D H, Henderson C M, Ramezani J, Zhang H, Shen Y, Wang X D, Wang W, Mu L, Li W Z, Tang Y G, Liu X L, Liu L J, Zeng Y, Jiang Y F, Jin Y G. 2011. Calibrating the end–Permian mass extinction. Science, 334: 1367–1372Google Scholar
  84. Smith R M H, Botha–Brink J. 2014. Anatomy of a mass extinction: Sedimentological and taphonomic evidence for drought–induced die–offs at the Permo–Triassic boundary in the main Karoo Basin, South Africa. Palaeogeogr Palaeoclimatol Palaeoecol, 396: 99–118Google Scholar
  85. Smith R M H, Ward P D. 2001. Pattern of vertebrate extinctions across an event bed at the Permian–Triassic boundary in the Karoo Basin of South Africa. Geology, 29: 1147–1150Google Scholar
  86. Song H J, Wignall P B, Chen Z Q, Tong J N, Bond D P G, Lai X L, Zhao X M, Jiang H S, Yan C B, Niu Z J, Chen J, Yang H, Wang Y B. 2011. Recovery tempo and pattern of marine ecosystems after the end–Permian mass extinction. Geology, 39: 739–742Google Scholar
  87. Song H J, Wignall P B, Tong J N, Bond D P G, Song H Y, Lai X L, Zhang K X, Wang H M, Chen Y L. 2012. Geochemical evidence from bioapatite for multiple oceanic anoxic events during Permian–Triassic transition and the link with end–Permian extinction and recovery. Earth Planet Sci Lett, 353–354: 12–21Google Scholar
  88. Song H J, Wignall P B, Tong J N, Song H Y, Chen J, Chu D L, Tian L, Luo M, Zong K Q, Chen Y L, Lai X L, Zhang K X, Wang H M. 2015. Integrated Sr isotope variations and global environmental changes through the Late Permian to early Late Triassic. Earth Planet Sci Lett, 424: 140–147Google Scholar
  89. Song H Y, Tong J N, Algeo T J, Song H J, Qiu H O, Zhu Y Y, Tian L, Bates S, Lyons T W, Luo G M, Kump L R. 2014. Early Triassic seawater sulfate drawdown. Geochim Cosmochim Acta, 128: 95–113Google Scholar
  90. Song H Y, Tong J N, Algeo T J, Horacek M, Qiu H O, Song H J, Tian L, Chen Z Q. 2013. Large vertical δ13C gradients in Early Triassic seas of the South China craton: Implications for oceanographic changes related to Siberian Traps volcanism. Glob Planet Change, 105: 7–20Google Scholar
  91. Song T, Tong J N, Tian L, Chu D L, Huang Y F. 2018. Taxonomic and ecological variations of Permian–Triassic transitional bivalve communities from the littoral clastic facies in southwestern China. Palaeogeogr Palaeoclimatol Palaeoecol, doi: 10.1016/j.palaeo.2018.02.027Google Scholar
  92. Steiner M, Ogg J, Zhang Z, Sun S. 1989. The Late Permian/Early Triassic magnetic polarity time scale and plate motions of South China. J Geophys Res, 94: 7343–7363Google Scholar
  93. Su P, Fan X Z, Reidar L, Shi R P. 2001. Magnetostratigraphy of Lower Triassic in Shuiyuguan, Jiaocheng, Shanxi. Chin J Geophys, 44: 216–222Google Scholar
  94. Sun D Y, Tong J N, Xiong Y L, Tian L, Ying H F. 2012. Conodont biostratigraphy and evolution across Permian–Triassic boundary at Yangou Section, Leping, Jiangxi Province, South China. J Earth Sci, 23: 311–325Google Scholar
  95. Sun G, Meng F S, Qian L J, Ouyang S. 1995. Triassic flora. In: Li X X, ed. Fossil Floras of China Through the Geological Ages (in Chinese). Guangzhou: Guangdong Science & Technology Press. 229−259Google Scholar
  96. Sun Y D, Joachimski M M, Wignall P B, Yan C B, Yan C B, Chen Y L, Jiang H S, Wang L N, Lai X L. 2012. Lethally hot temperatures during the Early Triassic greenhouse. Science, 338: 366–370Google Scholar
  97. Sun Y D, Wignall P B, Joachimski M M, Bond D P G, Grasby S E, Lai X L, Wang L N, Zhang Z T, Sun S. 2016. Climate warming, euxinia and carbon isotope perturbations during the Carnian (Triassic) Crisis in South China. Earth Planet Sci Lett, 444: 88–100Google Scholar
  98. Sun Z M, Hounslow M W, Pei J, Zhao L S, Tong J N, Ogg J G. 2009. Magnetostratigraphy of the Lower Triassic beds from Chaohu (China) and its implications for the Induan–Olenekian stage boundary. Earth Planet Sci Lett, 279: 350–361Google Scholar
  99. Sun Z Y, Jiang D Y, Ji C, Hao W C. 2016. Integrated biochronology for Triassic marine vertebrate faunas of Guizhou Province, South China. J Asian Earth Sci, 118: 101–110Google Scholar
  100. Tian C R. 1982. Triassic conodonts in the Tulong section from Nyalam County, Xizang (Tibet), China (in Chinese). In: Contribution to the Geology of Qinghai–Tibet Plateau (7). Beijing: Geological Publishing House. 153−165Google Scholar
  101. Tong J N. 1997. The Middle Triassic Environstratigraphy of Central–South Guizhou, SW China (in Chinese). Wuhan: China University of Geosciences Press. 128Google Scholar
  102. Tong J N. 1998. The Middle Triassic environstratigraphy of central–south Guizhou, southwest China. Palaeogeogr Palaeoclimatol Palaeoecol, 143: 293–305Google Scholar
  103. Tong J N. 2005. Triassic (in Chinese). In: Wang X F, Chen X H, eds. Stratigraphic Divisions and Correlations in Geological Time in China. Beijing: Geological Publishing House. 343−390Google Scholar
  104. Tong J N, Hansen H J, Zhao L S, Zuo J X. 2005a. High–resolution Induan–Olenekian boundary sequence in Chaohu, Anhui Province. Sci China Ser D–Earth Sci, 48: 291–297Google Scholar
  105. Tong J N, Huang Y F, Liang L. 2014. Early Triassic biological–environmental–chronological stratigraphy (in Chinese). Earth Sci Front, 21: 144–156Google Scholar
  106. Tong J N, Xiong X Q. 2006. Marine ecosystem evolution at the beginning of the Mesozoic in South China (in Chinese). In: Rong J Y, Fang Z J, Zhou Z H, eds. Originations, Radiations and Biodiversity Changes—Evidences from the Chinese Fossil Record. Beijing: Science Press. 567−582Google Scholar
  107. Tong J, Yin H, Zhang J, Laishi Z. 2001. Proposed new Lower Triassic stages in South China. Sci China Ser D–Earth Sci, 44: 961–967Google Scholar
  108. Tong J N, Yin H F. 2015. Triassic chronostratigraphy and Chinese stages (in Chinese). Earth Sci, 40: 189–197Google Scholar
  109. Tong J N, Zakharov D Y, Wu S. 2004. Early Triassic ammonoid succession in Chaohu, Anhui Province (in Chinese). Acta Palaeont Sin, 43: 192–204Google Scholar
  110. Tong J N, Zakharov Y D, Orchard M J, Yin H F, Hansen H J. 2003. A candidate of the Induan–Olenekian boundary stratotype in the Tethyan region. Sci China Ser D–Earth Sci, 46: 1182–1200Google Scholar
  111. Tong J N, Zhao L S, Zuo J X, Hansen H J, Zakharov Y D. 2005b. An integrated Lower Triassic sequence in Chaohu, Anhui Province (in Chinese). Earth Sci, 30: 40–46Google Scholar
  112. Tong J N, Zuo J X, Chen Z Q. 2007. Early Triassic carbon isotope excursions from south China: Proxies for devastation and restoration of marine ecosystems following the end–Permian mass extinction. Geol J, 42: 371–389Google Scholar
  113. Trotter J A, Williams I S, Nicora A, Mazza M, Rigo M. 2015. Long–term cycles of Triassic climate change: A new δ18O record from conodont apatite. Earth Planet Sci Lett, 415: 165–174Google Scholar
  114. von Alberti F. 1834. Beitrag zu einer Monographie des Buntensandsteins, Muschelkalks und Keupers und die Verbindung dieser Gebilde zu einer Formation. Verlag der J. G, Cottaishen Buchhandlung, Stuttgart und TuebingenGoogle Scholar
  115. Wang C Y, Wang H Z. 1976. Triassic conodonts in the Qomolangma (Everest) area (in Chinese). In: the Scientific Report on the Investigation of the Qomolangma (Everest) Area (1966−1968). Part 2—Paleontology. Beijing: Science Press. 387−424Google Scholar
  116. Wang H M, Wang X L, Li R X, Wei J Y. 2005. Triassic conodont succession and stage subdivision of the Guandao section, Bianyang, Luodian, Guizhou (in Chinese). Acta Palaeont Sin, 44: 611–626Google Scholar
  117. Wang Y G. 1983. Ammonoids from Falang formation (Ladinian–E. Carnian) of southern Guizhou, China (in Chinese). Acta Palaeont Sin, 22: 153–162Google Scholar
  118. Wang Y G. 1984. Earliest Triassic ammonoid faunas from Jiangsu and Zhejiang and their bearing on the definition of Permo–Triassic boundary (in Chinese). Acta Palaeont Sin, 23: 257–270Google Scholar
  119. Wang Y G, He G X. 1976. Triassic ammonoids in the Qomolangma (Everest) area (in Chinese). In: The Scientific Report on the Investigation of the Qomolangma (Everest) Area (1966−1968). Part 3—Paleontology. Beijing: Science Press. 223−502Google Scholar
  120. Wang Z H. 1982. Discovery of Early Triassic Neospathodus timorensis fauna in Ziyun of Guizhou (in Chinese). Acta Palaeont Sin, 21: 584–587Google Scholar
  121. Wang Z H, Zhong R. 1990. Triassic conodonts from the different facies in eastern Yunnan, western Guizhou and northern Guangxi (in Chinese). J Stratigr, 14: 15–35Google Scholar
  122. Wotzlaw J F, Brack P, Storck J C. 2018. High–resolution stratigraphy and zircon U–Pb geochronology of the Middle Triassic Buchenstein Formation (Dolomites, northern Italy): Precession–forcing of hemipelagic carbonate sedimentation and calibration of the Anisian–Ladinian boundary interval. J Geol Soc, 175: 71–85Google Scholar
  123. Wu H C, Zhang S H, Feng Q L, Jiang G Q, Li H Y, Yang T. 2012. Milankovitch and sub–Milankovitch cycles of the early Triassic Daye Formation, South China and their geochronological and paleoclimatic implications. Gondwana Res, 22: 748–759Google Scholar
  124. Xiao J F, Li R X, Wang X L, Wei J Y. 2009. The characteristics of strontium isotopes composition about Permian–Triassic Boundary in the Great Bank of Guizhou (in Chinese). Geol Rev, 55: 647–652Google Scholar
  125. Xu D Y, Yan Z, Zhang Q W. 1986. Three main mass extinctions, significant indicators of major natural divisions of geological history in the Phanerozoic. Modern Geol, 10: 365–375Google Scholar
  126. Yang S R, Chu Q C. 1992. Study on the conodonts from Triassic Yongningzhen Formation, southwestern Guizhou Province with a discussion on Lower/Middle Triassic boundary (in Chinese). Acta Sci Nat Univ Pekin, 28: 722–732Google Scholar
  127. Yang Z Y, Yang F Q, Wu S B. 1996. The ammonoid Hypophiceras fauna near the Permian–Triassic boundary at Meishan section and in South China: stratigraphic significance. In: Yin H F, ed. The Palaeozoic–Mesozoic Boundary Candidates of Global Stratotype Section and Point of the Permian–Triassic Boundary. Wuhan: China University of Geosciences Press. 49−56Google Scholar
  128. Yang Z Y, Yin H F, Lin H M. 1979. Marine Triassic faunas from Shihchienfeng Group in the northern Weihe River Basin, Shaanxi Province (in Chinese). Acta Palaeont Sin, 18: 465–474Google Scholar
  129. Yang Z Y, Zhang S X, Yang J D, Zhou H Q, Cao H S. 2000. Chinese Stratigraphic Book: Triassic (in Chinese). Beijing: Geological Publishing House. 139Google Scholar
  130. Yao J X, Ji Z S, Wang L T, Wang Y B, Wu G C. 2004. Research on conodont biostratigraphy near the bottom boundary of the Middle Triassic Qingyan Stage in the southern Guizhou Province (in Chinese). Acta Geol Sin, 55: 161–169Google Scholar
  131. Yin H F, Jiang H S, Xia W C, Zhang N, Shen J. 2014. The end–Permian regression in South China and its implication on mass extinction. Earth–Sci Rev, 137: 19–33Google Scholar
  132. Yin H F, Lin H M. 1979. Triassic Marine fossil beds in the northern Weihe River Basin, Shaanxi Province and the age of the Shihchienfeng Group (in Chinese). Acta Stratigr Sin, 3: 233–241Google Scholar
  133. Yin H F, Yang F Q, Yu J X, Peng Y Q, Wang S Y, Zhang S X. 2007. An accurately delineated Permian–Triassic Boundary in continental successions. Sci China Ser D–Earth Sci, 50: 1281–1292Google Scholar
  134. Yin H F, Zhang K X, Tong J N, Yang Z Y, Wu S B. 2001. The Global Stratotype Section and Point (GSSP) of the Permian–Triassic boundary. Episodes, 24: 102–114Google Scholar
  135. Yin J R. 2005. Rhaetian and Hettangian ammonoid assemblages from the Tibetan Himalayas and their biostratigraphic correlation (in Chinese). Acta Geol Sin, 79: 577–586Google Scholar
  136. Yu J X, Broutin J, Chen Z Q, Shi X, Li H, Chu D L, Huang Q S. 2015. Vegetation changeover across the Permian–Triassic Boundary in Southwest China. Earth–Sci Rev, 149: 203–224Google Scholar
  137. Yuan D X, Chen J, Zhang Y C, Zheng Q F, Shen S Z. 2015. Changhsingian conodont succession and the end–Permian mass extinction event at the Daijiagou section in Chongqing, Southwest China. J Asian Earth Sci, 105: 234–251Google Scholar
  138. Yuan D X, Shen S Z, Henderson C M, Chen J, Zhang H, Feng H Z. 2014. Revised conodont–based integrated high–resolution timescale for the Changhsingian Stage and end–Permian extinction interval at the Meishan sections, South China. Lithos, 204: 220–245Google Scholar
  139. Zhang H, Cao C Q, Liu X L, Mu L, Zheng Q F, Liu F, Xiang L, Liu L J, Shen S Z. 2016. The terrestrial end–Permian mass extinction in South China. Palaeogeogr Palaeoclimatol Palaeoecol, 448: 108–124Google Scholar
  140. Zhang K. 1984. The Triassic marine strata of south margin of Ordos basin and discussions on some problems concerned. Chin Sci Bull, 29: 233–236Google Scholar
  141. Zhang K X, Lai X L, Tong J N, Jiang H S. 2009. Progresses on study of conodont sequence for the GSSP section at Meishan, Changxing, Zhejiang Province, South China (in Chinese). Acta Palaeont Sin, 48: 485–495Google Scholar
  142. Zhang W T, Chen P J, Shen Y B. 1976. Chinese Conchostracan Fossils (in Chinese). Beijing: Geological Publishing House. 1−450Google Scholar
  143. Zhang Y W, Jiang B Y, Niu Y Z. 2014. Bivalve biostratigraphy in Upper Triassic and Lower Jurassic and Triassic–Jurassic boundary in Nanling region (in Chinese). Geol J China Univ, 20: 570–581Google Scholar
  144. Zhang Y, Li M S, Ogg J G, Montgomery P, Huang C J, Chen Z Q, Shi Z, Enos P, Lehrmann D J. 2015. Cycle–calibrated magnetostratigraphy of middle Carnian from South China: Implications for Late Triassic time scale and termination of the Yangtze Platform. Palaeogeogr Palaeoclimatol Palaeoecol, 436: 135–166Google Scholar
  145. Zhang Y, Zhang K X, Shi G R, He W H, Yuan D, Yue M, Yang T L. 2014. Restudy of conodont biostratigraphy of the Permian–Triassic boundary section in Zhongzhai, southwestern Guizhou Province, South China. J Asian Earth Sci, 80: 75–83Google Scholar
  146. Zhang Z L, Meng F S. 1987. Biostratigraphy in Three Gorges Area of Yangtze River, Part 4: Triassic–Jurassic (in Chinese). Beijing: Geological Publishing House. 1−408Google Scholar
  147. Zhao L S, Orchard M J, Tong J N, Sun Z M, Zuo J X, Zhang S X, Yu A L. 2007. Lower Triassic conodont sequence in Chaohu, Anhui Province, China and its global correlation. Palaeogeogr Palaeoclimatol Palaeoecol, 252: 24–38Google Scholar
  148. Zhao L S, Orchard M J, Tong J N. 2004. Lower Triassic conodont biostratigraphy and speciation of Neospathodus waageni around the Induan–Olenekian boundary of Chaohu, Anhui Province, China. Albertiana, 29: 41–43Google Scholar
  149. Zhao L S, Tong J N, Sun Z M, Orchard M J. 2008. A detailed Lower Triassic conodont biostratigraphy and its implications for the GSSP candidate of the Induan–Olenekian boundary in Chaohu, Anhui Province. Prog Nat Sci, 18: 79–90Google Scholar
  150. Zheng L D, Yao J X, Tong Y B, Song B, Wang L T, Yang Z Y. 2010. Zircon U–Pb dating for the boundary of Olenekian–Anisian at Wangmo, Guizhou Province (in Chinese). Acta Geol Sin, 84: 1112–1117Google Scholar
  151. Zhou T S, Li P X, Yang J D, Hou J P, Liu S W, Cheng Z W, Wu S Z, Li Y A. 1997. Stratotype section of non–marine Permian–Triassic boundary in China (in Chinese). Xinjiang Geol, 15: 211–226Google Scholar
  152. Zhou T S, Zhou H Q. 1985. Triassic non–marine strata and flora of China (in Chinese). Chinese Acad Geol Sci Bull, 5: 95–111Google Scholar
  153. Zhou Z Y, Chen J H, Zhang L J. 2000. Terrestrial Triassic. In: Stratigraphical Studies in China (1979−1999) (in Chinese). Hefei: University of Science and Technology of China Publishing House. 259−282Google Scholar
  154. Zhou Z Y, Li B X. 1979. A preliminary study of the Early Triassic plants from the Qinghai district, Hainan Island (in Chinese). Acta Palaeont Sin, 18: 444–462Google Scholar
  155. Zou G F, Zhuang Z H, Pan Z X, Zhu T X, Feng X T. 2006. Triassic magnetostratigraphy of the north slope of Mount Qomolangma, Tibet (in Chinese). Geol China, 33: 987–998Google Scholar
  156. Zuo J X, Tong J N, Qiu H O, Zhao L S. 2006. Carbon isotope composition of the Lower Triassic marine carbonates, Lower Yangtze Region, South China. Sci China Ser D–Earth Sci, 49: 225–241Google Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jinnan Tong
    • 1
    Email author
  • Daoliang Chu
    • 1
  • Lei Liang
    • 1
  • Wenchao Shu
    • 1
  • Haijun Song
    • 1
  • Ting Song
    • 1
  • Huyue Song
    • 1
  • Yuyang Wu
    • 1
  1. 1.State Key Laboratory of Biogeology and Environmental Geology and School of Earth SciencesChina University of GeosciencesWuhanChina

Personalised recommendations