Advertisement

Mapping global forest biomass and its changes over the first decade of the 21st century

  • Anping ChenEmail author
  • Shushi Peng
  • Songlin Fei
Research Paper
  • 36 Downloads

Abstract

Forests played an important role in carbon sequestration during the past two decades. Using a model tree ensemble method (MTE) to regress the seven reflectance bands of EOS-Terra-MODIS satellite data against country level forest biomass carbon density (BCD) of 2001–2005 provided by United Nations’s Forest Resource Assessment (FRA), we developed a global map of forest BCD at 1 km×1 km resolution for both 2001–2005 and 2006–2010. For 2006–2010, the total global forest biomass carbon stock is estimated as 279.6±7.1 Pg C, and the tropical forest biomass carbon stock is estimated as 174.4±5.4 Pg C. During the first decade of the 21st century, we estimated an increase of global forest biomass of 0.28±0.75 Pg C yr−1. Tropical forest biomass carbon stock slightly decreased (−0.31±0.60 Pg C yr−1); by contrast, temperate and boreal forest biomass increased (0.58±0.28 Pg C yr−1) during the same period. Our estimation of the global forest biomass carbon stock and its changes is subject to uncertainties due to lack of extensive ground measurements in the tropics, spatial heterogeneity in large countries, and different definitions of forest. The continuously monitoring of forest biomass carbon stock with MODIS satellite data will provide useful information for detecting forest changes.

Keywords

Forest biomass Carbon stock Model tree ensemble (MTE) MODIS Remote sensing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Dr. Cleo Chou for her comments on an early version of this manuscript. The work was supported by the Purdue University Forestry and Natural Resources research scholarship and the U. S. Forest Services contract grant to the Woods Hole Research Center.

Supplementary material

11430_2018_9277_MOESM1_ESM.pdf (50.8 mb)
Supplementary material, approximately 52032 KB.

References

  1. Allen C D, Macalady A K, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears D D, Hogg E H, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J H, Allard G, Running S W, Semerci A, Cobb N. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage, 259: 660–684CrossRefGoogle Scholar
  2. Arora V K, Montenegro A. 2011. Small temperature benefits provided by realistic afforestation efforts. Nat Geosci, 4: 514–518CrossRefGoogle Scholar
  3. Asner G P, Powell G V, Mascaro J, Knapp D E, Clark J K, Jacobson J, Kennedy-Bowdoin T, Balaji A, Paez-Acosta G, Victoria E, Secada L. 2010. High-resolution forest carbon stocks and emissions in the Amazon. Proc Natl Acad Sci USA, 107: 16738–16742CrossRefGoogle Scholar
  4. Baccini A, Goetz S J, Walker W S, Laporte N T, Sun M, Sulla-Menashe D, Hackler J, Beck P S A, Dubayah R, Friedl M A, Samanta S. 2012. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat Clim Change, 2: 182–185CrossRefGoogle Scholar
  5. Baccini A, Laporte N, Goetz S J, Sun M, Dong H. 2008. A first map of tropical Africa’s above-ground biomass derived from satellite imagery. Environ Res Lett, 3: 045011CrossRefGoogle Scholar
  6. Baccini A, Walker W, Carvalho L, Farina M, Sulla-Menashe D, Houghton R A. 2017. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science, 358: 230–234CrossRefGoogle Scholar
  7. Baker T R, Phillips O L, Malhi Y, Almeida S, Arroyo L, Di F A, Erwin T, Higuchi N, Killeen T J, Laurance S G, Laurance W F, Lewis S L, Monteagudo A, Neill D A, Núñez V P, Pitman N C A, Silva J N M, Vásquez M R. 2004. Increasing biomass in Amazonian forest plots. Philos Trans R Soc B-Biol Sci, 359: 353–365CrossRefGoogle Scholar
  8. Betts R A. 2000. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature, 408: 187–190CrossRefGoogle Scholar
  9. Blackard J A, Finco M V, Helmer E H, Holden G R, Hoppus M L, Jacobs D M, Lister A J, Moisen G G, Nelson M D, Riemann R, Ruefenacht B, Salajanu D, Weyermann D L. 2008. Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information. Remote Sens Environ, 112: 1658–1677CrossRefGoogle Scholar
  10. Bonan G B. 2008. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320: 1444–1449CrossRefGoogle Scholar
  11. Bond-Lamberty B, Peckham S D, Ahl D E, Gower S T. 2007. Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature, 450: 89–92CrossRefGoogle Scholar
  12. Breiman L. 2001. Random forests. Mach Learn, 45: 5–32CrossRefGoogle Scholar
  13. Canadell J G, Le Q C, Raupach M R, Field C B, Buitenhuis E T, Ciais P, Conway T J, Gillett N P, Houghton R A, Marland G. 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA, 104: 18866–18870CrossRefGoogle Scholar
  14. Chave J, Condit R, Aguilar S, Hernandez A, Lao S, Perez R. 2004. Error propagation and scaling for tropical forest biomass estimates. Philos Trans R Soc B-Biol Sci, 359: 409–420CrossRefGoogle Scholar
  15. Chazdon R L, Broadbent E N, Rozendaal D M, Bongers F, Zambrano A M A, Aide T M, Balvanera P, Becknell J M, Boukili V, Brancalion P H, Craven D. 2016. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci Adv, 2: e1501639CrossRefGoogle Scholar
  16. Ciais P, Schelhaas M J, Zaehle S, Piao S L, Cescatti A, Liski J, Luyssaert S, Le-Maire G, Schulze E D, Bouriaud O, Freibauer A, Valentini R, Nabuurs G J. 2008. Carbon accumulation in European forests. Nat Geosci, 1: 425–429CrossRefGoogle Scholar
  17. Davin E L, de Noblet-Ducoudre N. 2010. Climatic impact of global-scale deforestation: Radiative versus nonradiative processes. J Clim, 23: 97–112CrossRefGoogle Scholar
  18. DeFries R S, Houghton R A, Hansen M C, Field C B, Skole D, Townshend J. 2002. Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s. Proc Natl Acad Sci USA, 99: 14256–14261CrossRefGoogle Scholar
  19. Dewar R C, Cannell M G R. 1992. Carbon sequestration in the trees, products and soils of forest plantations: An analysis using UK examples. Tree Physiol, 11: 49–71CrossRefGoogle Scholar
  20. Dixon R K, Solomon A M, Brown S, Houghton R A, Trexier M C, Wisniewski J. 1994. Carbon pools and flux of global forest ecosystems. Science, 263: 185–190CrossRefGoogle Scholar
  21. Fang J Y, Chen A P, Peng C H, Zhao S Q, Ci L J. 2001. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292: 2320–2322CrossRefGoogle Scholar
  22. Fang J Y, Chen A P. 2001. Dynamic forest biomass carbon pools in China and their significance. Acta Bot Sin, 43: 967–973Google Scholar
  23. Fang J Y, Guo Z D, Piao S L, Chen A P. 2007. Terrestrial vegetation carbon sinks in China, 1981–2000. Sci China Ser D-Earth Sci, 50: 1341–1350CrossRefGoogle Scholar
  24. Gallaun H, Zanchi G, Nabuurs G J, Hengeveld G, Schardt M, Verkerk P J. 2010. EU-wide maps of growing stock and above-ground biomass in forests based on remote sensing and field measurements. For Ecol Manage, 260: 252–261CrossRefGoogle Scholar
  25. Hansen M C, DeFries R S, Townshend J R G, Carroll M, Dimiceli C, Sohlberg R A. 2003. Global percent tree cover at a spatial resolution of 500 meters: First results of the MODIS vegetation continuous fields algorithm. Earth Interact, 7: 1–15CrossRefGoogle Scholar
  26. Hansen M C, Potapov P V, Moore R, Hancher M, Turubanova S, Tyukavina A, Thau D, Stehman S V, Goetz S J, Loveland T R, Kommareddy A. 2013. High-resolution global maps of 21st-century forest cover change. Science, 342: 850–853CrossRefGoogle Scholar
  27. Houghton R A, Butman D, Bunn A G, Krankina O N, Schlesinger P, Stone T A. 2007. Mapping Russian forest biomass with data from satellites and forest inventories. Environ Res Lett, 2: 045032CrossRefGoogle Scholar
  28. Houghton R A. 2007. Balancing the global carbon budget. Annu Rev Earth Planet Sci, 35: 313–347CrossRefGoogle Scholar
  29. Huete A, Didan K, Miura T, Rodriguez E P, Gao X, Ferreira L G. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ, 83: 195–213CrossRefGoogle Scholar
  30. Jung M, Reichstein M, Bondeau A. 2009. Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6: 2001–2013Google Scholar
  31. Jung M, Reichstein M, Ciais P, Seneviratne S I, Sheffield J, Goulden M L, Bonan G, Cescatti A, Chen J, de J R, Dolman A J, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law B E, Montagnani L, Mu Q, Mueller B, Oleson K, Papale D, Richardson A D, Roupsard O, Running S, Tomelleri E, Viovy N, Weber U, Williams C, Wood E, Zaehle S, Zhang K. 2010. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467: 951–954CrossRefGoogle Scholar
  32. Kauppi P E, Ausubel J H, Fang J Y, Mather A S, Sedjo R A, Waggoner P E. 2006. Returning forests analyzed with the forest identity. Proc Natl Acad Sci USA, 103: 17574–17579CrossRefGoogle Scholar
  33. Kurz W A, Stinson G, Rampley G J, Dymond C C, Neilson E T. 2008. Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc Natl Acad Sci USA, 105: 1551–1555CrossRefGoogle Scholar
  34. Le Quéré, Raupach M R, Canadell J G, Marland G, Bopp L, Ciais P, Conway T J, Doney S C, Feely R A, Foster P, Friedlingstein P, Gurney K, Houghton R A, House J I, Huntingford C, Levy P E, Lomas M R, Majkut J, Metzl N, Ometto J P, Peters G P, Prentice I C, Randerson J T, Running S W, Sarmiento J L, Schuster U, Sitch S, Takahashi T, Viovy N, van W G R, Woodward F I. 2009. Trends in the sources and sinks of carbon dioxide. Nat Geosci, 2: 831–836CrossRefGoogle Scholar
  35. Lewis S L, Brando P M, Phillips O L, van H G M F, Nepstad D. 2011. The 2010 Amazon drought. Science, 331: 554CrossRefGoogle Scholar
  36. Lewis S L, Lopez-Gonzalez G, Sonké B, Affum-Baffoe K, Baker T R, Ojo L O, Phillips O L, Reitsma J M, White L, Comiskey J A, Djuikouo M N K, Ewango C E N, Feldpausch T R, Hamilton A C, Gloor M, Hart T, Hladik A, Lloyd J, Lovett J C, Makana J R, Malhi Y, Mbago F M, Ndangalasi H J, Peacock J, Peh K S H, Sheil D, Sunderland T, Swaine M D, Taplin J, Taylor D, Thomas S C, Votere R, Wöll H. 2009. Increasing carbon storage in intact African tropical forests. Nature, 457: 1003–1006CrossRefGoogle Scholar
  37. Liski J, Korotkov A V, Prins C F L, Karjalainen T, Victor D G, Kauppi P E. 2003. Increased carbon sink in temperate and boreal forests. Clim Change, 61: 89–99CrossRefGoogle Scholar
  38. Loarie S R, Lobell D B, Asner G P, Mu Q Z, Field C B. 2011. Direct impacts on local climate of sugar-cane expansion in Brazil. Nat Clim Change, 1: 105–109CrossRefGoogle Scholar
  39. Luyssaert S, Ciais P, Piao S L, Schulze E D, Jung M, Zaehle S, Schelhaas M J, Reichstein M, Churkina G, Papale D, Abril G, Beer C, Grace J, Loustau D, Matteucci G, Magnani F, Nabuurs G J, Verbeeck H, Sulkava M, Van D W G R, Janssens I A. 2010. The European carbon balance. Part 3: Forests. Glob Change Biol, 16: 1429–1450CrossRefGoogle Scholar
  40. Magill A H, Aber J D, Currie W S, Nadelhoffer K J, Martin M E, McDowell W H, Melillo J M, Steudler P. 2004. Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. For Ecol Manage, 196: 7–28CrossRefGoogle Scholar
  41. Malhi Y. 2010. The carbon balance of tropical forest regions, 1990–2005. Curr Opin Environ Sustain, 2: 237–244CrossRefGoogle Scholar
  42. Melillo J M, Butler S, Johnson J, Mohan J, Steudler P, Lux H, Burrows E, Bowles F, Smith R, Scott L, Vario C, Hill T, Burton A, Zhou Y M, Tang J. 2011. Soil warming, carbon-nitrogen interactions, and forest carbon budgets. Proc Natl Acad Sci USA, 108: 9508–9512CrossRefGoogle Scholar
  43. Norby R J, DeLucia E H, Gielen B, Calfapietra C, Giardina C P, King J S, Ledford J, McCarthy H R, Moore D J, Ceulemans R, De A P, Finzi A C, Karnosky D F, Kubiske M E, Lukac M, Pregitzer K S, Scarascia-Mugnozza G E, Schlesinger W H, Oren R. 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci USA, 102: 18052–18056CrossRefGoogle Scholar
  44. Pacala S W, Hurtt G C, Baker D, Peylin P, Houghton R A, Birdsey R A, Heath L, Sundquist E T, Stallard R F, Ciais P, Moorcroft P, Caspersen J P, Shevliakova E, Moore B, Kohlmaier G, Holland E, Gloor M, Harmon M E, Fan S M, Sarmiento J L, Goodale C L, Schimel D, Field C B. 2001. Consistent land- and atmosphere-based U.S. carbon sink estimates. Science, 292: 2316–2320CrossRefGoogle Scholar
  45. Pan Y, Birdsey R A, Fang J, Houghton R, Kauppi P E, Kurz W A, Phillips O L, Shvidenko A, Lewis S L, Canadell J G, Ciais P, Jackson R B, Pacala S W, McGuire A D, Piao S, Rautiainen A, Sitch S, Hayes D. 2011a. A large and persistent carbon sink in the world’s forests. Science, 333: 988–993CrossRefGoogle Scholar
  46. Pan Y, Chen J M, Birdsey R, McCullough K, He L, Deng F. 2011b. Age structure and disturbance legacy of North American forests. Biogeosciences, 8: 715–732CrossRefGoogle Scholar
  47. Phillips O L, Aragão L E O C, Lewis S L, Fisher J B, Lloyd J, López-González G, Malhi Y, Monteagudo A, Peacock J, Quesada C A, van H G, Almeida S, Amaral I, Arroyo L, Aymard G, Baker T R, Bánki O, Blanc L, Bonal D, Brando P, Chave J, de O Á C A, Cardozo N D, Czimczik C I, Feldpausch T R, Freitas M A, Gloor E, Higuchi N, Jiménez E, Lloyd G, Meir P, Mendoza C, Morel A, Neill D A, Nepstad D, Patiño S, Peñuela M C, Prieto A, Ramírez F, Schwarz M, Silva J, Silveira M, Thomas A S, ter S H, Stropp J, Vásquez R, Zelazowski P, Dávila E A, Andelman S, Andrade A, Chao K J, Erwin T, Di F A, Honorio E C, Keeling H, Killeen T J, Laurance W F, Cruz A P, Pitman N C A, Vargas P N, Ramírez-Angulo H, Rudas A, Salamão R, Silva N, Terborgh J, Torres-Lezama A. 2009. Drought sensitivity of the Amazon rainforest. Science, 323: 1344–1347CrossRefGoogle Scholar
  48. Piao S, Fang J, Ciais P, Peylin P, Huang Y, Sitch S, Wang T. 2009. The carbon balance of terrestrial ecosystems in China. Nature, 458: 1009–1013CrossRefGoogle Scholar
  49. Piao S, Fang J, Zhu B, Tan K. 2005. Forest biomass carbon stocks in China over the past 2 decades: Estimation based on integrated inventory and satellite data. J Geophys Res, 110: G01006CrossRefGoogle Scholar
  50. Piao S, Liu Z, Wang T, Peng S, Ciais P, Huang M, Ahlstrom A, Burkhart J F, Chevallier F, Janssens I A, Jeong S J, Lin X, Mao J, Miller J, Mohammat A, Myneni R B, Peñuelas J, Shi X, Stohl A, Yao Y, Zhu Z, Tans P P. 2017. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nat Clim change, 7: 359–363CrossRefGoogle Scholar
  51. Piao S, Liu Z, Wang Y, Ciais P, Yao Y, Peng S, Chevallier F, Friedlignstein P, Janssesns I A, Penuelas J, Sitch S, Wang T. 2018. On the causes of trends in the seasonal amplitude of atmospheric CO2. Glob Change Biol, 24: 608–616CrossRefGoogle Scholar
  52. Saatchi S S, Harris N L, Brown S, Lefsky M, Mitchard E T A, Salas W, Zutta B R, Buermann W, Lewis S L, Hagen S, Petrova S, White L, Silman M, Morel A. 2011. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci USA, 108: 9899–9904CrossRefGoogle Scholar
  53. Saatchi S S, Houghton R A, Alvala R C D S, Soares J V, Yu Y. 2007. Distribution of aboveground live biomass in the Amazon basin. Glob Change Biol, 13: 816–837CrossRefGoogle Scholar
  54. Schaaf C B, Gao F, Strahler A H, Lucht W, Li X, Tsang T, Strugnell N C, Zhang X, Jin Y, Muller J P, Lewis P, Barnsley M, Hobson P, Disney M, Roberts G, Dunderdale M, Doll C, d'Entremont R P, Hu B, Liang S, Privette J L, Roy D. 2002. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens Environ, 83: 135–148CrossRefGoogle Scholar
  55. Schulze E D, Hessenmoeller D, Knohl A, Luyssaert S, Boerner A, Grace J. 2009. Temperate and boreal old-growth forests: How do their growth dynamics and biodiversity differ from young stands and managed forests? In: Wirth C, Gleixner G, Heimann M, eds. Old-Growth Forests. Berlin, Heidelberg: Springer. 343–366CrossRefGoogle Scholar
  56. Stephens B B, Gurney K R, Tans P P, Sweeney C, Peters W, Bruhwiler L, Ciais P, Ramonet M, Bousquet P, Nakazawa T, Aoki S, Machida T, Inoue G, Vinnichenko N, Lloyd J, Jordan A, Heimann M, Shibistova O, Langenfelds R L, Steele L P, Francey R J, Denning A S. 2007. Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science, 316: 1732–1735CrossRefGoogle Scholar
  57. Wang X, Piao S, Ciais P, Friedlingstein P, Myneni R B, Cox P, Heimann M, Miller J, Peng S, Wang T, Yang H, Chen A. 2014. A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature, 506: 212–215CrossRefGoogle Scholar
  58. Zhao M S, Running S W. 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329: 940–943CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteUSA
  2. 2.The Woods Hole Research CenterFalmouthUSA
  3. 3.Laboratoire des Sciences du Climat et de l’Environnement (LSCE), CEA-CNRS-UVSQGif-sur-YvetteFrance

Personalised recommendations