Advertisement

Late Holocene hydroclimatic variations and possible forcing mechanisms over the eastern Central Asia

  • Jianghu Lan
  • Hai Xu
  • Keke Yu
  • Enguo Sheng
  • Kangen Zhou
  • Tianli Wang
  • Yuanda Ye
  • Dongna Yan
  • Huixian Wu
  • Peng Cheng
  • Waili Abuliezi
  • Liangcheng Tan
Research Paper Special Topic: China since the Last Glacial Maximum
  • 54 Downloads

Abstract

Hydroclimatic variations over the eastern Central Asia are highly sensitive to changes in hemispheric-scale atmospheric circulation systems. To fully understand the long-term variability and relationship between hydroclimate and atmospheric circulation system, we present a high-resolution lascustrine record of late Holocene hydroclimate from Lake Sayram, Central Tianshan Mountains, China, based on the total organic carbon, total nitrogen, and carbonate contents, carbon/nitrogen ratios, and grain size. Our results reveal four periods of substantially increased precipitation at the interval of 4000–3780, 3590–3210, 2800–2160, and 890–280 cal yr BP, and one period of slightly increased precipitation from 1700–1370 cal yr BP. These wetter periods broadly coincide with those identified in other records from the mid-latitude Westerlies-dominated eastern Central Asia, including the northern Tibetan Plateau. As such, a similar hydroclimatic pattern existed over this entire region during the late Holocene. Based on a close similarity of our record with reconstruction of North Atlantic Oscillation indices and solar irradiance, we propose that decreased solar irradiance and southern migration of the entire circum-North Atlantic circulation system, particularly the main pathway of the mid-latitude Westerlies, significantly influenced hydroclimate in eastern Central Asia during the late Holocene. Finally, the inferred precipitation at Lake Sayram has increased markedly over the past 100 years, although this potential future changes in hydroclimate in Central Asia need for further investigation.

Keywords

Lake Sayram Hydroclimatic variation Late Holocene Mid-latitude Westerlies North Atlantic Oscillation index 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is a part of The “Belt & Road” Project of the Institute of Earth and Environment, Chinese Academy of Sciences. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41672169, 41473120 & 41502171) and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2012295).

References

  1. Aichner B, Feakins S J, Lee J E, Herzschuh U, Liu X. 2015. High-resolution leaf wax carbon and hydrogen isotopic record of the late Holocene paleoclimate in arid Central Asia. Clim Past, 11: 619–633CrossRefGoogle Scholar
  2. Aizen E M, Aizen V B, Melack J M, Nakamura T, Ohta T. 2001. Precipitation and atmospheric circulation patterns at mid-latitudes of Asia. Int J Climatol, 21: 535–556CrossRefGoogle Scholar
  3. Aizen V B, Aizen E M, Joswiak D R, Fujita K, Takeuchi N, Nikitin S A. 2006. Climatic and atmospheric circulation pattern variability from icecore isotope/geochemistry records (Altai, Tien Shan and Tibet). Ann Glaciol, 43: 49–60CrossRefGoogle Scholar
  4. Aizen V B, Aizen E M, Melack J M, Dozier J. 1997. Climatic and hydrologic changes in the Tien Shan, Central Asia. J Clim, 10: 1393–1404CrossRefGoogle Scholar
  5. Anderson N J, Bennion H, Lotter A F. 2014. Lake eutrophication and its implications for organic carbon sequestration in Europe. Glob Change Biol, 20: 2741–2751CrossRefGoogle Scholar
  6. Appleby P G. 2001. Chronostratigraphic techniques in recent sediments. In: Last W M, Smol J P, eds. Tracking Environmental Change Using Lake Sediments: Basin Analysis, Coring, and Chronological Techniques. Dordrecht: Springer Netherlands. 171–203Google Scholar
  7. Appleby P G, Oldfield F, Thompson R, Huttunen P, Tolonen K. 1979. 210Pb dating of annually laminated lake sediments from Finland. Nature, 280: 53–55CrossRefGoogle Scholar
  8. Bard E, Raisbeck G, Yiou F, Jouzel J. 2000. Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus B-Chem Phys Meteorol, 52: 985–992CrossRefGoogle Scholar
  9. Bond G, Kromer B, Beer J, Muscheler R, Evans M N, Showers W, Hoffmann S, Lotti-Bond R, Hajdas I, Bonani G. 2001. Persistent solar influence on North Atlantic climate during the Holocene. Science, 294: 2130–2136CrossRefGoogle Scholar
  10. Buckley B M, Anchukaitis K J, Penny D, Fletcher R, Cook E R, Sano M, Canh Nam L, Wichienkeeo A, That Minh T, Hong T M. 2010. Climate as a contributing factor in the demise of Angkor, Cambodia. Proc Natl Acad Sci USA, 107: 6748–6752CrossRefGoogle Scholar
  11. Chen F H, Chen J H, Holmes J, Boomer I, Austin P, Gates J B, Wang N L, Brooks S J, Zhang J W. 2010. Moisture changes over the last millennium in arid central Asia: A review, synthesis and comparison with monsoon region. Quat Sci Rev, 29: 1055–1068CrossRefGoogle Scholar
  12. Chen F H, Huang X Z, Zhang J W, Holmes J A, Chen J H. 2006. Humid little ice age in arid central Asia documented by Bosten Lake, Xinjiang, China. Sci China Ser-Earth Sci, 49: 1280–1290CrossRefGoogle Scholar
  13. Chen F H, Yu Z C, Yang M L, Huang X, Zhao Y, Sato T, Birks H J B, Boomer I, Chena J, Ana C, Wunnemannj B. 2008. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat Sci Rev, 27: 351–364CrossRefGoogle Scholar
  14. Chen J H, Chen F H, Feng S, Huang W, Liu J B, Zhou A F. 2015. Hydroclimatic changes in China and surroundings during the Medieval climate anomaly and little ice age: Spatial patterns and possible mechanisms. Quat Sci Rev, 107: 98–111CrossRefGoogle Scholar
  15. Chen Y N, Li W H, DengH J, Fang G H, Li Z. 2016. Changes in central Asia’s water tower: Past, present and future. Sci Rep, 6: 35458CrossRefGoogle Scholar
  16. Cheng H, Zhang P Z, Spötl C, Edwards R L, Cai Y J, Zhang D Z, Sang W C, Tan M, An Z S. 2012. The climatic cyclicity in semiarid-arid central Asia over the past 500000 years. Geophys Res Lett, 39: L01705CrossRefGoogle Scholar
  17. Cook E R, Woodhouse C A, Eakin C M, Meko D M, Stahle D W. 2004. Long-term aridity changes in the western United States. Science, 306: 1015–1018CrossRefGoogle Scholar
  18. Deininger M, McDermott F, Mudelsee M, Werner M, Frank N, Mangini A. 2017. Coherency of late Holocene European speleothem d18O records linked to North Atlantic Ocean circulation. Clim Dyn, 49: 595–618CrossRefGoogle Scholar
  19. Diaz H F, Trigo R, Hughes M K, Mann M E, Xoplaki E, Barriopedro D. 2011. Spatial and temporal characteristics of climate in Medieval Times revisited. Bull Amer Meteorol Soc, 92: 1487–1500CrossRefGoogle Scholar
  20. Feng Z D, Wu H N, Zhang C J, Ran M, Sun A Z. 2013. Bioclimatic change of the past 2500 years within the Balkhash Basin, eastern Kazakhstan, Central Asia. Quat Int, 311: 63–70CrossRefGoogle Scholar
  21. Fontes J C, Gasse F, Gibert E. 1996. Holocene environmental changes in Lake Bangong basin (western Tibet). Part 1: Chronology and stable isotopes of carbonates of a Holocene lacustrine core. Palaeogeogr Palaeoclimatol Palaeoecol, 120: 25–47Google Scholar
  22. Graham N E, Ammann C M, Fleitmann D, Cobb K M, Luterbacher J. 2011. Support for global climate reorganization during the “Medieval Climate Anomaly”. Clim Dyn, 37: 1217–1245CrossRefGoogle Scholar
  23. Gray L J, Beer J, Geller M, Haigh J D, Lockwood M, Matthes K, Cubasch U, Fleitmann D, Harrison G, Hood L, Luterbacher J, Meehl G A, Shindell D, van Geel B, White W. 2010. Solar influences on climate. Rev Geophys, 48: RG4001CrossRefGoogle Scholar
  24. Heathcote A J, Anderson N J, Prairie Y T, Engstrom D R, del Giorgio P A. 2015. Large increases in carbon burial in northern lakes during the Anthropocene. Nat Commun, 6: 10016CrossRefGoogle Scholar
  25. Herzschuh U. 2006. Palaeo-moisture evolution in monsoonal Central Asia during the last 50000 years. Quat Sci Rev, 25: 163–178CrossRefGoogle Scholar
  26. Hodell D A, Brenner M, Curtis J H, Guilderson T. 2001. Solar forcing of drought frequency in the Maya lowlands. Science, 292: 1367–1370CrossRefGoogle Scholar
  27. Hodell D A, Curtis J H, Brenner M. 1995. Possible role of climate in the collapse of Classic Maya civilization. Nature, 375: 391–394CrossRefGoogle Scholar
  28. Hou J Z, D’Andrea W J, Liu Z H. 2012. The influence of 14C reservoir age on interpretation of paleolimnological records from the Tibetan Plateau. Quat Sci Rev, 48: 67–79CrossRefGoogle Scholar
  29. Hu R J. 2004. Physical Geography of the Tianshan Mountaions in China (in Chinese). Beijing: China Environmental Science Press. 278–284Google Scholar
  30. Huang X T, Oberhansli H, von S H, Prasad S, Sorrel P, Plessen B, Mathis M, Usubaliev R. 2014. Hydrological changes in western Central Asia (Kyrgyzstan) during the Holocene as inferred from a palaeolimnological study in lake Son Kul. Quat Sci Rev, 103: 134–152CrossRefGoogle Scholar
  31. IPCC. 2007. Climate Change 2007: The Physical Science Basis. Cambridge: Cambridge University Press. 996Google Scholar
  32. Jiang Q F, Ji J F, Shen J, Matsumoto R, Tong G B, Qian P, Ren X M, Yan D Z. 2013. Holocene vegetational and climatic variation in westerlydominated areas of Central Asia inferred from the Sayram Lake in northern Xinjiang, China. Sci China Earth Sci, 56: 339–353CrossRefGoogle Scholar
  33. Klaminder J, Appleby P, Crook P, Renberg I. 2012. Post-deposition diffusion of 137Cs in lake sediment: Implications for radiocaesium dating. Sedimentology, 59: 2259–2267CrossRefGoogle Scholar
  34. Lamb A L, Wilson G P, Leng M J. 2006. A review of coastal palaeoclimate and relative sea-level reconstructions using d13C and C/N ratios in organic material. Earth-Sci Rev, 75: 29–57CrossRefGoogle Scholar
  35. Lan J H, Xu H, Sheng E G, Yu K K, Wu H X, Zhou K E, Yan D N, Ye Y D, Wang T L. 2018. Climate changes reconstructed from a glacial lake in High Central Asia over the past two millennia. Quat Int, 487: 43–53CrossRefGoogle Scholar
  36. Lauterbach S, Witt R, Plessen B, Dulski P, Prasad S, Mingram J, Gleixner G, Hettler-Riedel S, Stebich M, Schnetger B, Schwalb A, Schwarz A. 2014. Climatic imprint of the mid-latitude Westerlies in the Central Tian Shan of Kyrgyzstan and teleconnections to North Atlantic climate variability during the last 6000 years. Holocene, 24: 970–984CrossRefGoogle Scholar
  37. Lei Y B, Tian L D, Bird B W, Hou J Z, Ding L, Oimahmadov I, Gadoev M. 2014. A 2540-year record of moisture variations derived from lacustrine sediment (Sasikul Lake) on the Pamir Plateau. Holocene, 24: 761–770CrossRefGoogle Scholar
  38. Li X Q, Zhao K L, Dodson J, Zhou X Y. 2011. Moisture dynamics in central Asia for the last 15 kyr: New evidence from Yili Valley, Xinjiang, NW China. Quat Sci Rev, 30: 3457–3466CrossRefGoogle Scholar
  39. Li Y, Qiang M R, Zhang J W, Huang X Z, Zhou A F, Chen J H, Wang G G, Zhao Y. 2017. Hydroclimatic changes over the past 900 years documented by the sediments of Tiewaike Lake, Altai Mountains, Northwestern China. Quat Int, 452: 91–101CrossRefGoogle Scholar
  40. Liu K, Yao Z, Thompson L G. 1998. A pollen record of Holocene climatic changes from the Dunde ice cap, Qinghai-Tibetan Plateau. Geology, 26: 135CrossRefGoogle Scholar
  41. Liu W, Wu J, Ma L, Zeng H. 2014. A 200-year sediment record of environmental change from Lake Sayram, Tianshan Mountains in China. GFF, 136: 548–555CrossRefGoogle Scholar
  42. Liu W, Wu J L, Ma L, Zeng H A. 2011. Wet climate during the ‘Little Ice Age’ in the arid Tarim Basin, northwestern China. Holocene, 21: 409–416CrossRefGoogle Scholar
  43. Liu X Q, Dong H L, Yang X D, Herzschuh U, Zhang E L, Stuut J B W, Wang Y B. 2009. Late Holocene forcing of the Asian winter and summer monsoon as evidenced by proxy records from the northern Qinghai-Tibetan Plateau. Earth Planet Sci Lett, 280: 276–284CrossRefGoogle Scholar
  44. Liu X Q, Herzschuh U, Wang Y B, Kuhn G, Yu Z T. 2014. Glacier fluctuations of Muztagh Ata and temperature changes during the late Holocene in westernmost Tibetan Plateau, based on glaciolacustrine sediment records. Geophys Res Lett, 41: 6265–6273CrossRefGoogle Scholar
  45. Liu Y, An Z S, Linderholm H W, Chen D L, Song H M, Cai Q F, Sun J Y, Tian H. 2009. Annual temperatures during the last 2485 years in the mid-eastern Tibetan Plateau inferred from tree rings. Sci China Ser DEarth Sci, 52: 348–359CrossRefGoogle Scholar
  46. Long H, Shen J, Chen J, Tsukamoto S, Yang L, Cheng H, Frechen M. 2017. Holocene moisture variations over the arid central Asia revealed by a comprehensive sand-dune record from the central Tian Shan, NW China. Quat Sci Rev, 174: 13–32CrossRefGoogle Scholar
  47. Ma L, Wu J, Yu H, Haiao Z, Abuduwaili J. 2011. The medieval warm period and the little ice age from a sediment record of Lake Ebinur, northwest China. Boreas, 40: 518–524CrossRefGoogle Scholar
  48. Meyers P A. 1990. Impacts of late Quaternary fluctuations in water level on the accumulation of sedimentary organic matter in Walker Lake, Nevada. Palaeogeogr Palaeoclimatol Palaeoecol, 78: 229–240CrossRefGoogle Scholar
  49. Meyers P A. 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol, 114: 289–302CrossRefGoogle Scholar
  50. Meyers P A. 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org Geochem, 27: 213–250CrossRefGoogle Scholar
  51. Meyers P A. 2003. Applications of organic geochemistry to paleolimnological reconstructions: A summary of examples from the Laurentian Great Lakes. Org Geochem, 34: 261–289CrossRefGoogle Scholar
  52. Meyers P A, Ishiwatari R. 1993. Lacustrine organic geochemistry—An overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem, 20: 867–900CrossRefGoogle Scholar
  53. Meyers P A, Teranes J L. 2001. Sediment organic matter. In: Last W M, Smol J P, eds. Tracking Environmental Change Using Lake Sediments. Volume 2: Physical and Geochemical Methods. Netherlands: Kluwer Academic Publishers. 239–240Google Scholar
  54. Mischke S, Wunnemann B. 2006. The Holocene salinity history of Bosten Lake (Xinjiang, China) inferred from ostracod species assemblages and shell chemistry: Possible palaeoclimatic implications. Quat Int, 154-155: 100–112CrossRefGoogle Scholar
  55. Moffa-Sánchez P, Born A, Hall I R, Thornalley D J R, Barker S. 2014. Solar forcing of North Atlantic surface temperature and salinity over the past millennium. Nat Geosci, 7: 275–278CrossRefGoogle Scholar
  56. Muller A, Mathesius U. 1999. The palaeoenvironments of coastal lagoons in the southern Baltic Sea, I. The application of sedimentary C-org/N ratios as source indicators of organic matter. Palaeogeogr Palaeoclim Palaeoeco, 145: 1–16CrossRefGoogle Scholar
  57. Olsen J, Anderson N J, Knudsen M F. 2012. Variability of the North Atlantic oscillation over the past 5200 years. Nat Geosci, 5: 808–812CrossRefGoogle Scholar
  58. Orme L C, Charman D J, Reinhardt L, Jones R T, Mitchell F J G, Stefanini B S, Barkwith A, Ellis M A, Grosvenor M. 2017. Past changes in the North Atlantic storm track driven by insolation and sea-ice forcing. Geology, 45: 335–338CrossRefGoogle Scholar
  59. Pederson N, Hessl A E, Baatarbileg N, Anchukaitis K J, Di Cosmo N. 2014. Pluvials, droughts, the Mongol Empire, and modern Mongolia. Proc Natl Acad Sci USA, 111: 4375–4379CrossRefGoogle Scholar
  60. Peng Y J, Xiao J, Nakamura T, Liu B L, Inouchi Y. 2005. Holocene East Asian monsoonal precipitation pattern revealed by grain-size distribution of core sediments of Daihai Lake in Inner Mongolia of northcentral China. Earth Planet Sci Lett, 233: 467–479CrossRefGoogle Scholar
  61. Pennington W, Tutin T G, Cambray R S, Fisher E M. 1973. Observations on lake sediments using fallout 137Cs as a tracer. Nature, 242: 324–326CrossRefGoogle Scholar
  62. Putnam A E, Putnam D E, Andreu-Hayles L, Cook E R, Palmer J G, Clark E H, Wang C, Chen F, Denton G H, Boyle D P, Bassett S D, Birkel S D, Martin-Fernandez J, Hajdas I, Southon J, Garner C B, Cheng H, Broecker W S. 2016. Little Ice Age wetting of interior Asian deserts and the rise of the Mongol Empire. Quat Sci Rev, 131: 33–50CrossRefGoogle Scholar
  63. Putyrskaya V, Klemt E, Röllin S. 2009. Migration of 137Cs in tributaries, lake water and sediment of Lago Maggiore (Italy, Switzerland)— Analysis and comparison with Lago di Lugano and other lakes. J Environ Radioact, 100: 35–48CrossRefGoogle Scholar
  64. Reimer P J, Baillie M G L, Bard E, Bayliss A, Warren Beck J, Bertrand C J H, Blackwell P G, Buck C E, Burr G S, Cutler K B, Damon P E, Lawrence Edwards R, Fairbanks R G, Friedrich M, Guilderson T P, Hogg A G, Hughen K A, Kromer B, McAffmac G, Manning S, Bronk Ramsey C, Reimer R W, Remmele S, Southon J R, Stuiver M, Talamo S, Taylor F W, van der Plicht J, Weyhenmeyer C E. 2004. Intcal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon, 46: 1029–1058CrossRefGoogle Scholar
  65. Reimer P J, Baillie M G L, Bard E, Bayliss A, Beck J W, Blackwell P G, Bronk Ramsey C, Buck C E, Burr G S, Edwards R L, Friedrich M, Grootes P M, Guilderson T P, Hajdas I, Heaton T J, Hogg A G, Hughen K A, Kaiser K F, Kromer B, McCormac F G, Manning S W, Reimer R W, Richards D A, Southon J R, Talamo S, Turney C S M, van der Plicht J, Weyhenmeyer C E. 2009. Intcal09 and marine09 radiocarbon age calibration curves, 0–50000 years cal BP. Radiocarbon, 51: 1111–1150CrossRefGoogle Scholar
  66. Rhodes T E, Gasse F, Lin R, Fontes J C, Wei K, Bertrand P, Gibert E, Mélières F, Tucholka P, Wang Z, Cheng Z Y. 1996. A late Pleistocene- Holocene lacustrine record from Lake Manas, Zunggar (northern Xinjiang, western China). Palaeogeogr Palaeoclimatol Palaeoecol, 120: 105–121CrossRefGoogle Scholar
  67. Robbins J A, Edgington D N. 1975. Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137. Geochim Cosmochim Acta, 39: 285–304CrossRefGoogle Scholar
  68. Rudaya N, Tarasov P, Dorofeyuk N, Solovieva N, Kalugin I, Andreev A, Daryin A, Diekmann B, Riedel F, Tserendash N, Wagner M. 2009. Holocene environments and climate in the Mongolian Altai reconstructed from the Hoton-Nur pollen and diatom records: A step towards better understanding climate dynamics in Central Asia. Quat Sci Rev, 28: 540–554CrossRefGoogle Scholar
  69. Sanchez-Cabeza J A, Ruiz-Fernández A C. 2012. 210Pb sediment radiochronology: An integrated formulation and classification of dating models. Geochim Cosmochim Acta, 82: 183–200CrossRefGoogle Scholar
  70. Schurer A P, Tett S F B, Hegerl G C. 2014. Small influence of solar variability on climate over the past millennium. Nat Geosci, 7: 104–108CrossRefGoogle Scholar
  71. Seong Y B, Owen L A, Yi C, Finkel R C, Schoenbohm L. 2009. Geomorphology of anomalously high glaciated mountains at the northwestern end of Tibet: Muztag Ata and Kongur Shan. Geomorphology, 103: 227–250CrossRefGoogle Scholar
  72. Sha L, Jiang H, Seidenkrantz M S, Knudsen K L, Olsen J, Kuijpers A, Liu Y. 2014. A diatom-based sea-ice reconstruction for the Vaigat Strait (Disko Bugt, West Greenland) over the last 5000 yr. Palaeogeogr Palaeoclimatol Palaeoecol, 403: 66–79CrossRefGoogle Scholar
  73. Sha L, Jiang H, Seidenkrantz M S, Muscheler R, Zhang X, Knudsen M F, Olsen J, Knudsen K L, Zhang W. 2016. Solar forcing as an important trigger for West Greenland sea-ice variability over the last millennium. Quat Sci Rev, 131: 148–156CrossRefGoogle Scholar
  74. Sigl M, Winstrup M, McConnell J R, Welten K C, Plunkett G, Ludlow F, Büntgen U, Caffee M, Chellman N, Dahl-Jensen D, Fischer H, Kipfstuhl S, Kostick C, Maselli O J, Mekhaldi F, Mulvaney R, Muscheler R, Pasteris D R, Pilcher J R, Salzer M, Schüpbach S, Steffensen J P, Vinther B M, Woodruff T E. 2015. Timing and climate forcing of volcanic eruptions for the past 2500 years. Nature, 523: 543–549CrossRefGoogle Scholar
  75. Song M, Zhou A F, Zhang X N, Zhao C, He Y X, Yang W Q, Liu W G, Li S H, Liu Z H. 2015. Solar imprints on Asian inland moisture fluctuations over the last millennium. Holocene, 25: 1935–1943CrossRefGoogle Scholar
  76. Stuiver M, Reimer P J. 1993. Extended 14C data base and revised calib 3.0 14C age calibration program. Radiocarbon, 35: 215–230CrossRefGoogle Scholar
  77. Stuiver M, Reimer P J, Bard E, Beck J W, Burr G S, Hughen K A, Kromer B, McCormac G, Van Der Plicht J, Spurk M. 1998. Intcal98 radiocarbon age calibration, 24000–0 cal BP. Radiocarbon, 40: 1041–1083CrossRefGoogle Scholar
  78. Sun Y B, Clemens S C, Morrill C, Lin X P, Wang X L, An Z S. 2011. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon. Nat Geosci, 5: 46–49CrossRefGoogle Scholar
  79. Sun Y B, Kutzbach J, An Z S, Clemens S, Liu Z Y, Liu W G, Liu X D, Shi Z G, Zheng W P, Liang L J, Yan Y, Li Y. 2015. Astronomical and glacial forcing of East Asian summer monsoon variability. Quat Sci Rev, 115: 132–142CrossRefGoogle Scholar
  80. Swingedouw D, Terray L, Cassou C, Voldoire A, Salas-Mélia D, Servonnat J. 2011. Natural forcing of climate during the last millennium: Fingerprint of solar variability. Clim Dyn, 36: 1349–1364CrossRefGoogle Scholar
  81. Talbot M R, Johannessen T. 1992. A high resolution palaeoclimatic record for the last 27500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth Planet Sci Lett, 110: 23–37CrossRefGoogle Scholar
  82. Tan L C, Cai Y J, An Z S, Cheng H, Shen C C, Breitenbach S F M, Gao Y L, Edwards R L, Zhang H W, Du Y J. 2015. A Chinese cave links climate change, social impacts, and human adaptation over the last 500 years. Sci Rep, 5: 12284CrossRefGoogle Scholar
  83. Thiéblemont R, Matthes K, Omrani N E, Kodera K, Hansen F. 2015. Solar forcing synchronizes decadal North Atlantic climate variability. Nat Commun, 6: 8268CrossRefGoogle Scholar
  84. Thompson L G, Yao T, Davis M E, Henderson K A, MosleyThompson E, Lin P N, Beer J, Synal H A, ColeDai J, Bolzan J F. 1997. Tropical climate instability: The last glacial cycle from a Qinghai-Tibetan ice core. Science, 276: 1821–1825CrossRefGoogle Scholar
  85. Trouet V, Esper J, Graham N E, Baker A, Scourse J D, Frank D C. 2009. Persistent positive North Atlantic oscillation mode dominated the medieval climate anomaly. Science, 324: 78–80CrossRefGoogle Scholar
  86. Wan G J. 1995. Progresses on 137Cs and 210Pbex dating of lake sediments (in Chinese). Adv Earth Sci, 10: 188–192Google Scholar
  87. Wang S J. 1978. The relationship between formation and evolution of Lake Sayram and glacier activity during the Quaternary (in Chinese). Arid Land Geogr, 1: 47–55Google Scholar
  88. Wang S M, Dou H S. 1998. China Lakes Record (in Chinese). Beijing: Science Press. 348–349Google Scholar
  89. Wang W Z, Liu X H, Xu G B, Shao X M, Qin D H, Sun W Z, An W L, Zeng X M. 2013. Moisture variations over the past millennium characterized by Qaidam Basin tree-ring d18O. Chin Sci Bull, 58: 3956–3961CrossRefGoogle Scholar
  90. Wang W, Feng Z D, Ran M, Zhang C J. 2013. Holocene climate and vegetation changes inferred from pollen records of Lake Aibi, northern Xinjiang, China: A potential contribution to understanding of Holocene climate pattern in East-central Asia. Quat Int, 311: 54–62CrossRefGoogle Scholar
  91. Wieland E, Santschi P H, Höhener P, Sturm M. 1993. Scavenging of chernobyl 137Cs and natural 210Pb in Lake Sempach, Switzerland. Geochim Cosmochim Acta, 57: 2959–2979CrossRefGoogle Scholar
  92. Wirth S B, Glur L, Gilli A, Anselmetti F S. 2013. Holocene flood frequency across the Central Alps-solar forcing and evidence for variations in North Atlantic atmospheric circulation. Quat Sci Rev, 80: 112–128CrossRefGoogle Scholar
  93. Wittkop C A, Teranes J L, Dean W E, Guilderson T P. 2009. A lacustrine carbonate record of Holocene seasonality and climate. Geology, 37: 695–698CrossRefGoogle Scholar
  94. Wolff C, Plessen B, Dudashvilli A S, Breitenbach S F, Cheng H, Edwards L R, Strecker M R. 2017. Precipitation evolution of Central Asia during the last 5000 years. Holocene, 27: 142–154CrossRefGoogle Scholar
  95. Wu J L, Zeng H A, Ma L, Bai R D. 2012. Recent changes of selected lake water resoures in arid Xinjiang, Northwestern China (in Chinese). Quat Sci, 32: 142–150Google Scholar
  96. Xiao J L, Fan J W, Zhai D Y, Wen R L, Qin X G. 2015. Testing the model for linking grain-size component to lake level status of modern clastic lakes. Quat Int, 355: 34–43CrossRefGoogle Scholar
  97. Xiao J L, Fan J W, Zhou L, Zhai D Y, Wen R L, Qin X G. 2013. A model for linking grain-size component to lake level status of a modern clastic lake. J Asian Earth Sci, 69: 149–158CrossRefGoogle Scholar
  98. Xiao J L, Chang Z, Si B, Qin X, Itoh S, Lomtatidze Z. 2009. Partitioning of the grain-size components of Dali Lake core sediments: Evidence for lake-level changes during the Holocene. J Paleolimnol, 42: 249–260CrossRefGoogle Scholar
  99. Xiao J L, Si B, Zhai D Y, Itoh S, Lomtatidze Z. 2008. Hydrology of Dali Lake in central-eastern Inner Mongolia and Holocene East Asian monsoon variability. J Paleolimnol, 40: 519–528CrossRefGoogle Scholar
  100. Xiao J L, Wu J, Si B, Liang W, Nakamura T, Liu B, Inouchi Y. 2006. Holocene climate changes in the monsoon/arid transition reflected by carbon concentration in Daihai Lake of Inner Mongolia. Holocene, 16: 551–560CrossRefGoogle Scholar
  101. Xu H, Ai L, Tan L, An Z. 2006a. Geochronology of a surface core in the northern basin of Lake Qinghai: Evidence from 210Pb and 137Cs radionuclides. Chin J Geochem, 25: 301–306CrossRefGoogle Scholar
  102. Xu H, Ai L, Tan L, An Z. 2006b. Stable isotopes in bulk carbonates and organic matter in recent sediments of Lake Qinghai and their climatic implications. Chem Geol, 235: 262–275CrossRefGoogle Scholar
  103. Xu H, Lan J, Liu B, Sheng E, Yeager K M. 2013. Modern carbon burial in Lake Qinghai, China. Appl Geochem, 39: 150–155CrossRefGoogle Scholar
  104. Xu H, Liu X Y, An Z S, Hou Z H, Dong J B, Liu B. 2010. Spatial pattern of modern sedimentation rate of Qinghai Lake and a preliminary estimate of the sediment flux. Chin Sci Bull, 55: 621–627CrossRefGoogle Scholar
  105. Xu H, Liu X, Hou Z. 2008. Temperature variations at Lake Qinghai on decadal scales and the possible relation to solar activities. J Atmos Sol- Terr Phys, 70: 138–144CrossRefGoogle Scholar
  106. Xu H, Zhou X Y, Lan J H, Liu B, Sheng E G, Yu K K, Cheng P, Wu F, Hong B, Yeager K M, Xu S. 2015. Late Holocene Indian summer monsoon variations recorded at Lake Erhai, Southwestern China. Quat Res, 83: 307–314CrossRefGoogle Scholar
  107. Yan H, Sun L, Wang Y, Huang W, Qiu S, Yang C. 2011. A record of the Southern Oscillation Index for the past 2000 years from precipitation proxies. Nat Geosci, 4: 611–614CrossRefGoogle Scholar
  108. Yan H, Wei W, Soon W, An Z, Zhou W, Liu Z, Wang Y, Carter R M. 2015. Dynamics of the intertropical convergence zone over the western Pacific during the Little Ice Age. Nat Geosci, 8: 315–320CrossRefGoogle Scholar
  109. Yang B, Wang J, Brauning A, Dong Z, Esper J. 2009. Late Holocene climatic and environmental changes in arid central Asia. Quat Int, 194: 68–78CrossRefGoogle Scholar
  110. Yao T D, Qin D H, Tian L D, Jiao K Q, Yang Z H, Xie C, Thompson L G. 1996. Variations in temperature and precipitation in the past 2000 a on the Xizang (Tibet) Plateau——Guliya ice core record. Sci China Ser DEarth Sci, 39: 425–433Google Scholar
  111. Yu K, Xu H, Lan J, Sheng E, Liu B, Wu H, Tan L, Yeager K M. 2017. Climate change and soil erosion in a small alpine lake basin on the Loess Plateau, China. Earth Surf Process Land, 42: 1238–1247CrossRefGoogle Scholar
  112. Yu S Y, Cheng P, Hou Z F. 2014. A caveat on radiocarbon dating of organic-poor bulk lacustrine sediments in arid China. Radiocarbon, 56: 127–141CrossRefGoogle Scholar
  113. Zhang C, Feng Z, Yang Q, Gou X, Sun F. 2010. Holocene environmental variations recorded by organic-related and carbonate-related proxies of the lacustrine sediments from Bosten Lake, northwestern China. Holocene, 20: 363–373CrossRefGoogle Scholar
  114. Zhang P Z, Cheng H, Edwards R L, Chen F H, Wang Y J, Yang X L, Liu J, Tan M, Wang X F, Liu J H, An C L, Dai Z B, Zhou J, Zhang D Z, Jia J H, Jin L Y, Johnson K R. 2008. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science, 322: 940–942CrossRefGoogle Scholar
  115. Zhao K L, Li X Q, Dodson J, Atahan P, Zhou X Y, Bertuch F. 2012. Climatic variations over the last 4000 cal yr BP in the western margin of the Tarim Basin, Xinjiang, reconstructed from pollen data. Palaeogeogr Palaeoclimatol Palaeoecol, 321-322: 16–23CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jianghu Lan
    • 1
  • Hai Xu
    • 2
  • Keke Yu
    • 3
  • Enguo Sheng
    • 4
  • Kangen Zhou
    • 1
    • 5
  • Tianli Wang
    • 1
    • 5
  • Yuanda Ye
    • 1
    • 5
  • Dongna Yan
    • 1
    • 5
  • Huixian Wu
    • 1
    • 5
  • Peng Cheng
    • 1
  • Waili Abuliezi
    • 6
  • Liangcheng Tan
    • 1
    • 7
  1. 1.State Key Laboratory of Loess and Quaternary Geology, Institute of Earth and EnvironmentChinese Academy of SciencesXi’anChina
  2. 2.Institute of Surface-Earth System ScienceTianjin UniversityTianjinChina
  3. 3.Key Laboratory of Disaster Monitoring and Mechanism Simulating of Shaanxi ProvinceBaoji University of Arts and SciencesShaanxiChina
  4. 4.State Key Laboratory of Environmental Geochemistry, Institute of GeochemistryChinese Academy of SciencesGuiyangChina
  5. 5.University of Chinese Academy of SciencesBeijingChina
  6. 6.Administrative Committee of Lake SayramBozhouChina
  7. 7.Institute of Global Environmental ChangeXi’an Jiaotong UniversityXi’anChina

Personalised recommendations