Advertisement

Science China Earth Sciences

, Volume 62, Issue 1, pp 25–60 | Cite as

Cambrian integrative stratigraphy and timescale of China

  • Maoyan ZhuEmail author
  • Aihua Yang
  • Jingliang Yuan
  • Guoxiang Li
  • Junming Zhang
  • Fangchen Zhao
  • Soo-Yeun Ahn
  • Lanyun Miao
Review

Abstract

The Cambrian Period is the first period of the Phanerozoic Eon and witnessed the explosive appearance of the metazoans, representing the beginning of the modern earth-life system characterized by animals in contrary to the Precambrian earth-life system dominated by microbial life. However, understanding Cambrian earth-life system evolution is hampered by regional and global stratigraphic correlations due to an incomplete chronostratigraphy and consequent absence of a highresolution timescale. Here we briefly review the historical narrative of the present international chronostratigraphic framework of the Cambrian System and summarize recent advances and problems of the undefined Cambrian stage GSSPs, in particular we challenge the global correlation of the GSSP for the Cambrian base, in addition to Cambrian chemostratigraphy and geochronology. Based on the recent advances of the international Cambrian chronostratigraphy, revisions to the Cambrian chronostratigraphy of China, which are largely based on the stratigraphic record of South China, are suggested, and the Xiaotanian Stage is newly proposed for the Cambrian Stage 2 of China. We further summarize the integrative stratigraphy of South China, North China and Tarim platforms respectively with an emphasis on the facies variations of the Precambrian-Cambrian boundary successions and problems for identification of the Cambrian base in the different facies and areas of China. Moreover, we discuss stratigraphic complications that are introduced by poorly fossiliferous dolomite successions in the upper Cambrian System which are widespread in South China, North China and Tarim platforms.

Keywords

Cambrian Stratigraphy Golden Spike GSSP Geochronology South China North China Tarim 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Jiayu Rong and Shuzhong Shen for their encouragement and support for this review, Shanchi Peng, Yuanlong Zhao and an anonymous reviewer for their critical comments and suggestions, and Frederick Bowyer for language improvement. The review benefited from discussions and collaborations with numerous colleagues all over China and abroad in the past two decades. The study was supported by the National Natural Science Foundation of China (Grant Nos. 41672029, 41661134048) and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos. XDB18000000, XDB10010101).

References

  1. Ahn S Y, Zhu M Y. 2017. Lowermost Cambrian acritarchs from the Yanjiahe Formation, South China: Implication for defining the base of the Cambrian in the Yangtze Platform. Geol Mag, 154: 1217–1231Google Scholar
  2. All China Commission of Stratigraphy. 2002. Explanatory Memorandum of the Regional Chronosytratigraphic Chart (Geological Time Table) of China (in Chinese). Beijing: Geological Publishing House. 1–72Google Scholar
  3. Álvaro J J, Ahlberg P, Babcock L E, Bordonaro, O L, Choi D K, Cooper, R A, Ergaliev G K, Gapp I W, Pour M G, Hughes N C, Jago J B, Korovnikov I, Laurie J R, Lieberman B S, Paterson J R, Pegel T V, Popov L E, Rushton A W A, Sukhov S S, Tortello M F, Zhou Z Y, Zylinska A, 2014. Global Cambrian trilobite palaeobiogeography assessed using parsimony analysis of endemicity. In: Harper D A T, Servais T, eds. Early Palaeozoic Palaeobiogeography and Palaeogeography. Geol Soc Lond Memoirs, 38: 273–296Google Scholar
  4. Amthor J E, Grotzinger J P, Schröder S, Bowring S A, Ramezani J, Martin M W, Matter A. 2003. Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology, 31: 431–434Google Scholar
  5. An T X, Zhang F, Xiang W D, Zhang Y Q, Xu W H, Zhang H J, Jiang D B, Yang C S, Lin L D, Cui Z T, Yang X C. 1983. The Conodonts of North China and the Adjacent Regions (in Chinese with English abstract). Beijing: Science Press. 223Google Scholar
  6. Aubry M P, Ouda K, Dupuis C, Berggren W A, van Couvering J A, the Members of the Working Group on the Paleocene/Eocene Boundary. 2007. The global standard stratotype-section and point (GSSP) for the base of the Eocene Series in the Dababiya section (Egypt). Episodes, 30: 271–286Google Scholar
  7. Babcock L E, Peng S, Geyef G, Shergold J H. 2005. Changing perspectives on Cambrian chronostratigraphy and progress toward subdivision of the Cambrian System. Geosci J, 9: 101–106Google Scholar
  8. Babcock L E, Peng S, Zhu M, Xiao S, Ahlberg P. 2014. Proposed reassessment of the Cambrian GSSP. J Afr Earth Sci, 98: 3–10Google Scholar
  9. Babcock L E, Robison R A, Peng S C. 2011. Cambrian stage and series nomenclature of Laurentia and the developing global chronostratigraphic scale. Museum Northern Arizona Bull, 67: 12–26Google Scholar
  10. Babcock L E, Robison R A, Rees M N, Peng S C, Saltzman M R. 2007. The global boundary stratotype section and point (GSSP) of the Drumian Stage (Cambrian) in the Drum Mountains, Utah, USA. Episodes, 30: 85–95Google Scholar
  11. Bagnoli G, Peng S C, Qi Y P, Wang C Y. 2017. Conodonts from the Wa’ergang section, China, a potential GSSP for the uppermost stage of the Cambrian. Riv Paleontol Strat, 123: 1–10Google Scholar
  12. Bagnoli G, Qi Y P, Zuo J X, Du S X, Liu S C, Zhang Z Q. 2014. Integrated biostratigraphy and carbon isotopes from the Cambrian Tangwangzhai section, North China. Palaeoworld, 23: 112–124Google Scholar
  13. Benton M J. 1995. Diversification and extinction in the history of life. Science, 268: 52–58Google Scholar
  14. Bergeron J N. 1899. Étude de quelques trilobites de Chine. Bulletin de la Société Géologique du France, Series 3, 27: 499–516Google Scholar
  15. Betts M J, Paterson J R, Jago J B, Jacquet S M, Skovsted C B, Topper T P, Brock G A. 2016. A new lower Cambrian shelly fossil biostratigraphy for South Australia. Gondwana Res, 36: 176–208Google Scholar
  16. Blackwelder E. 1907. Stratigraphy of Shantung. In: Willis B, Blackwelder E, Sargent R H, eds. Descriptive Topography and Geology. Research in China, Vol. 1. Pt. 1. Carnegie Inst Washington Publ, 54: 19–58Google Scholar
  17. Bowring S A, Grotzinger J P, Condon D J, Ramezani J, Newall M J, Allen P A. 2007. Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. Am J Sci, 307: 1097–1145Google Scholar
  18. Brasier M D, Cowie J, Taylor M. 1994a. Decision on the Precambrian- Cambrian boundary. Episodes, 17: 3–8Google Scholar
  19. Brasier M D, Corfield R M, Derry L A, Rozanov A Y, Zhuravlev A Y. 1994b. Multiple δ13C excursions spanning the Cambrian explosion to the Botomian crisis in Siberia. Geology, 22: 455–458Google Scholar
  20. Brasier M D, Magaritz M, Corfield R, Luo H, Wu X, Ouyang L, Jiang Z, Hamdi B, He T, Fraser A G. 1990. The carbon- and oxygen-isotope record of the Precambrian-Cambrian boundary interval in China and Iran and their correlation. Geol Mag, 127: 319–332Google Scholar
  21. Buatois L A. 2017. Treptichnus pedum and the Ediacaran-Cambrian boundary: Significance and caveats. Geol Mag, 155: 174–180Google Scholar
  22. Buggisch W, Keller M, Lehnert O. 2003. Carbon isotope record of Late Cambrian to Early Ordovician carbonates of the Argentine Precordillera. Palaeogeogr Palaeoclimatol Palaeoecol, 195: 357–373Google Scholar
  23. Bushuev E, Goryaeva I, Pereladov V. 2014. New discoveries of the oldest trilobites Profallotaspis and Nevadella in the northeastern Siberian Platform, Russia. Bull Geosci, 89: 347–364Google Scholar
  24. Chang W T. 1980. A review of the Cambrian of China. J Geol Soc Aust, 27: 137–150Google Scholar
  25. Chen D, Wang J, Qing H, Yan D, Li R. 2009. Hydrothermal venting activities in the Early Cambrian, South China: Petrological, geochronological and stable isotopic constraints. Chem Geol, 258: 168–181Google Scholar
  26. Chen D, Zhou X, Fu Y, Wang J, Yan D. 2014. New U-Pb zircon ages of the Ediacaran-Cambrian boundary strata in South China. Terra Nova, 27: 62–68Google Scholar
  27. Chen J Y, Gong W L. 1986. Conodonts. In: Chen J Y, ed. Aspects of Cambrian-Ordovician Boundary in Dayangcha, China. Beijing: China Prospect Publishing House. 93–204Google Scholar
  28. Chen J Y, Zhang J M, Nicoll R S, Nowlan G S. 1995. Carbon and oxygen isotope in carbonate rocks within Cambrian-Ordovician boundary interval at Dayangcha, China. Acta Palaeont Sin, 34: 393–409Google Scholar
  29. Chen J Y, Zhou G Q, Zhu M Y, Yeh G Y. 1996. The Chengjiang biota: A unique window of the Cambrian explosion (in Chinese). Taichung: National Museum of Natural Science. 222Google Scholar
  30. Chen J Y, Zou X P, Chen T E, Qi D L. 1979. Late Cambrian Ellesmerocerida (cephalopoda) of North China (in Chinese with English abstract). Acta Palaeont Sin, 18: 103–122Google Scholar
  31. Chen Z, Chen X, Zhou C M, Yuan X L, Xiao S H. 2018. Late Ediacaran trackways produced by bilaterian animals with paired appendages. Sci Adv, 4: eaao6691Google Scholar
  32. Chen Z, Zhou C M, Meyer M, Xiang K, Schiffbauer J D, Yuan X L, Xiao S H. 2013. Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors. Precambrian Res, 224: 690–701Google Scholar
  33. Chiang N J, Wang Z Z, Cheng Y G. 1964. Cambrian stratigraphy of eastern Yunnan (in Chinese with English abstract). Acta Geol Sin, 44: 137–155Google Scholar
  34. Compston W, Zhang Z, Cooper J A, Ma G, Jenkins R J F. 2008. Further SHRIMP geochronology on the early Cambrian of South China. Am J Sci, 308: 399–420Google Scholar
  35. Cowie J W. 1964. The Cambrian period. In: Harland W B, Gilbert S A, Wilcock N, eds. The Phanerozoic Time-scale: A Symposium. Geol Soc Lond Spec Publ, 1: 255–258Google Scholar
  36. Cowie J W, Glaessner M F. 1975. The Precambrian-Cambrian boundary: A symposium. Earth-Sci Rev, 11: 209–251Google Scholar
  37. Cowie J M, Ziegler W, Boucot A J, Bassett M G, Remane J. 1986. Guidelines and statutes of the international commission on stratigraphy (ISC). Cour Forsch-Inst Senckenberg, 83: 1–14Google Scholar
  38. Dames W. 1883. Cambrische Trilobiten von Liaonung. In: Richthofen F, ed. Beiträge zur Paläontologie von China. Besondere Ausgabe von F v Richthofens China. Part 4. Berlin: Verlag von Dietrich Reimer. 3–33Google Scholar
  39. Demindenko Y E, Parkhaev P Yu, Rozanov A Yu. 2012. Morphological variability and types of preservation of Mobergella radiolata—A potential index species for the GSSP of Cambrian Stage 3. J Guizhou Univ, 29: 157–158Google Scholar
  40. Deprat J. 1912. Pt. I, Géologie Générate. In: Depart J, Mansuy H, eds. Etude géologique du Yunnan Oriental. Mém Servo Géol Indochine, v.I, Fasc. I.: 1–62Google Scholar
  41. Devaere L, Clausen S, Steiner M, Álvaro J J, Vachard D. 2013. Chronostratigraphic and palaeogeographic significance of an early Cambrian microfauna from the Heraultia Limestone, northern Montagne Noire, France. Palaeont Electron, 16: 17A. 1–91Google Scholar
  42. Dong L, Song W M, Xiao S H, Yuan X L, Chen Z, Zhou C M. 2012. Microand Macrofossils from the Piyuancun Formation and their implications for the Ediacaran-Cambrian boundary in southern Anhui (in Chinese with English abstract). J Stratigr, 36: 600–610Google Scholar
  43. Dong L, Xiao S H, Shen B, Zhou C M, Li G X, Yao J X. 2009. Basal Cambrian microfossils from the Yangtze Gorges area (south China) and the Aksu area (Tarim Block, northwestern China). J Paleontol, 83: 30–44Google Scholar
  44. Dong X P, Repetski J E, Bergström S M. 2004. Conodont biostratigraphy of the Middle Cambrian through lowermost Ordovician in Hunan, South China. Acta Geol Sin-Engl Ed, 78: 1185–1206Google Scholar
  45. Dong L, Xiao S, Shen B, Zhou C. 2008. Silicified Horodyskia and Palaeopascichnus from upper Ediacaran cherts in South China: Tentative phylogenetic interpretation and implications for evolutionary stasis. J Geol Soc, 165: 367–378Google Scholar
  46. Dong X P, Zhang H. 2017. Middle Cambrian through lowermost Ordovician conodonts from Hunan, South China. J Paleontol, 91: 1–89Google Scholar
  47. Du X D, Liu W, Wang D P. 1994. Carbon, oxygen isotope and sea level changes: A case study of δ 13C, δ 18O section of Upper Sinian to Ordovician in Keping area, Xinjiang (in Chinese). Glob Geol, 13: 120–123Google Scholar
  48. Duan J Y, An S L, Liu P J, Peng X D, Zhang L Q. 2005. The Cambrian stratigraphy, fauna and Palaeogeography in eastern of North China Plate (in Chinese with English abstract). Hong Kong: Yayuan Publishing Company. 255Google Scholar
  49. Fan R, Lu Y Z, Zhang X L, Zhang S B, Deng S H, Li X. 2013. Conodonts from the Cambrian-Ordovician boundary interval in the southeastMargin of the Sichuan Basin, China. J Asian Earth Sci, 64: 115–124Google Scholar
  50. Feng W M, Qian Y, Rong Z Q. 1994. Study of monoplacophora and gastropoda from the Lower Cambrian Xinji Formation in Ye Xian, Henan (in Chinese with English abstract). Acta Micropal Sin, 11: 1–19Google Scholar
  51. Feng Z Z, Bao Z D, Wu M B, Jin Z K, Shi X Z. 2006. Lithofacies palaeogeography of the Cambrian in Tarim area (in Chinese with English abstract). J Palaeogeogr, 8: 427–439Google Scholar
  52. Fletcher T P. 2001. Ovatoryctocara granulata Bergstrom: A key species for the correlation of a global Cambrian stage boundary. In: Peng S, Babcock L E, Zhu M, eds. Cambrian System of South China. Palaeoworld, 13: 257–260Google Scholar
  53. Fletcher T P. 2003. Ovatoryctocara granulata: The key to a global Cambrian stage boundary and the correlation of the olenellid, redlichiid and paradoxidid realms. Spec Pap Palaeontol, 70: 73–102Google Scholar
  54. Gao Z J, Peng C W, Li Y A, Zhu C S, Zhang S G. 1984. Subdivision and correlation of the Sinian and Cambrian in Quruqtagh, Xinjiang China (in Chinese). In: Gao Z J, Zhu C S, eds. Precambrian Geology in Xinjiang China. Urumuqi: Xinjiang People’s Publishing House. 1–105Google Scholar
  55. Gehling J G, Jensen S, Droser M L, Myrow P M, Narbonne G M. 2001. Burrowing below the basal Cambrian GSSP, fortune head, Newfoundland. Geol Mag, 138: 213–218Google Scholar
  56. Gerhardt A M, Gill B C. 2016. Elucidating the relationship between the later Cambrian end-Marjuman extinctions and SPICE Event. Palaeogeogr Palaeoclimatol Palaeoecol, 461: 362–373Google Scholar
  57. Geyer G. 1990. Correlation along the Lower/Middle Cambrian boundary—A puzzling story with an elusory end? In: Repina L N, Zhuravlev A Yu, eds. Tretiy Mezhdunarodnyy Simpozium Po Kembriyskoy Sisteme. Novosibirsk: Tezisy dokladov. 100–102Google Scholar
  58. Geyer G. 1996. The Moroccan fallotaspidid trilobites revisited. Beringeria, 18: 89–199Google Scholar
  59. Geyer G. 2005. The base of a revised Middle Cambrian: Are suitable concepts for a series boundary in reach? Geosci J, 9: 81–99Google Scholar
  60. Geyer G. 2015. Exotic trilobites from the Lower-Middle Cambrian boundary interval in Morocco and their bearing on the Cambrian Series 3 lower boundary. Paläontol Z, 89: 749–781Google Scholar
  61. Geyer G, Landing E. 2016. The Precambrian-Phanerozoic and Ediacaran- Cambrian boundaries: A historical approach to a dilemma. In: Brasier A T, McIlroy D, McLoughlin N, eds. Earth System Evolution and Early Life: A Celebration of the Work ofMartin Brasier. Geol Soc Lond Spec Publ, 448: 311–349Google Scholar
  62. Geyer G, Palmer A R. 1995. Neltneriidae and Holmiidae (Trilobita) from Morocco and the problem of Early Cambrian intercontinental correlation. J Paleontol, 69: 459–474Google Scholar
  63. Geyer G, Shergold J. 2000. The quest for internationally recognized divisions of Cambrian time. Episodes, 23: 188–195Google Scholar
  64. Gill B C, Lyons T W, Young S A, Kump L R, Knoll A H, Saltzman M R. 2011. Geochemical evidence for widespread euxinia in the Later Cambrian ocean. Nature, 469: 80–83Google Scholar
  65. Gozalo R, Álvarez M E D, Vintaned J A G, Zhuravlev A Y, Bauluz B, Subías I, ChirivellaMartorell J B, Mayoral E, Gursky H J, Andrés J A, Liñán E. 2013. Proposal of a reference section and point for the Cambrian Series 2–3 boundary in the Mediterranean subprovince in Murero (NE Spain) and its intercontinental correlation. Geol J, 48: 142–155Google Scholar
  66. Gradstein F M, Ogg J G, Smith A G, Bleeker W, Lourens L J. 2004. A new geologic time scale, with special reference to Precambrian and Neogene. Episodes, 27: 83–100Google Scholar
  67. Grossman E L. 2012. Oxygen isotope stratigraphy. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G M, eds. The Geologic Time Scale 2012, vol. 2. Amsterdam: Elsevier BV. 181–206Google Scholar
  68. Grotzinger J P, Bowring S A, Saylor B Z, Kaufman A J. 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science, 270: 598–604Google Scholar
  69. Gubanov A P. 1998. The Early Cambrian molluscan evolution and its palaeogeographic implications. Acta Univ Carol Geol, 42: 419–422Google Scholar
  70. Gubanov A P. 2001. The biostratigraphic potential of early Cambrian molluscs. In: Peng S C, Babcock L E, Zhu M Y, eds. Cambrian System of South China. Palaeoworld, 13: 262Google Scholar
  71. Gubanov A P, Kouchinsky A V, Peel J S. 1999. The first evolutionaryadaptive lineage within fossil molluscs. Lethaia, 32: 155–157Google Scholar
  72. Guo Q J, Deng Y N, Hu J, Wang L. 2017. Carbonate carbon isotope evolution of seawater across the Ediacaran-Cambrian transition: Evidence from the Keping area, Tarim Basin, NW China. Geol Mag, 154: 1244–1256Google Scholar
  73. Guo Q J, Strauss H, Zhu M Y, Zhang J M, Yang X L, Lu M, Zhao F C. 2013. High resolution organic carbon isotope stratigraphy from a slope to basinal setting on the Yangtze Platform, South China: Implications for the Ediacaran-Cambrian transition. Precambrian Res, 225: 209–217Google Scholar
  74. Guo Q J, StraussHLiu C Q, Zhao Y L, Yang X L, Peng J, Yang H. 2010. A negative carbon isotope excursion defines the boundary from Cambrian Series 2 to Cambrian Series 3 on the Yangtze Platform, South China. Palaeogeogr Palaeoclimatol Palaeoecol, 285: 143–151Google Scholar
  75. Halverson G P, Dudás F Ö, Maloof A C, Bowring S A. 2007. Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeogr Palaeoclimatol Palaeoecol, 256: 103–129Google Scholar
  76. Harland W B, Armstrong R L, Cox A V, Craig L E, Smith A G, Smith, D G. 1990. A Geologic Time Scale 1989. Cambridge: Cambridge University Press. 263Google Scholar
  77. Harland W B, Cox A V, Llewellyn P G, Smith A G, Pickton C A G, Walters R. 1982. A Geologic Time Scale. Cambridge: Cambridge University Press. 131Google Scholar
  78. Harvey T H P, Williams M, Condon D J, Wilby P R, Siveter D J, Rushton A W A, Leng M J, Gabbott S E. 2011. A refined chronology for the Cambrian succession of southern Britain. J Geol Soc, 168: 705–716Google Scholar
  79. He T C, Zhou Y, Vermeesch P, Rittner M, Miao L Y, Zhu M Y, Carter A, von S P A E P, Shields G A. 2017. Measuring the ‘great unconformity’ on the North China Craton using new detrital zircon age data. Geol Soc Lond Spec Publ, 448: 145–159Google Scholar
  80. He T G, Pei F, Fu G H. 1984. Some small shelly fossils from the Lower Cambrian Xinji Formation in Fangcheng County, Henan Province (in Chinese with English abstract). Acta Palaeont Sin, 23: 350–357Google Scholar
  81. Hollingsworth J S. 2007. Fallotaspidoid trilobite assemblage from the Esmeralda Basin (western Nevada, U.S.A.). AAP Memoir, 33: 123–140Google Scholar
  82. Hollingsworth J S. 2011. Lithostratigraphy and biostratigraphy of Cambrian Stage 3 in western Nevada and eastern California. Museum Northern Arizona Bull, 67: 26–42Google Scholar
  83. Hough M L, Shields G A, Evins L Z, Strauss H, Henderson R A,Mackenzie S. 2006. AMajor sulphur isotope event at c. 510 Ma: A possible anoxiaextinction- volcanism connection during the Early-Middle Cambrian transition? Terr Nova, 18: 257–263Google Scholar
  84. Howley R A, Jiang G. 2010. The Cambrian drumian carbon isotope excursion (DICE) in the Great Basin, western United States. Palaeogeogr Palaeoclimatol Palaeoecol, 296: 138–150Google Scholar
  85. Ishikawa T, Ueno Y, Shu D, Li Y, Han J, Guo J, Yoshida N, Komiya T. 2013. Irreversible change of the oceanic carbon cycle in the earliest Cambrian: High-resolution organic and inorganic carbon chemostratigraphy in the Three Gorges area, South China. Precambrian Res, 225: 190–208Google Scholar
  86. Ishikawa T, Ueno Y, Komiya T, Sawaki Y, Han J, Shu D, Li Y, Maruyama S, Yoshida N. 2008. Carbon isotope chemostratigraphy of a Precambrian/Cambrian boundary section in the Three Gorge area, South China: Prominent global-scale isotope excursions just before the Cambrian explosion. Gondwana Res, 14: 193–208Google Scholar
  87. Jacquet S M, Brougham T, Skovsted C B, Jago J B, Laurie J R, Betts M J, Topper T P, Brock G A. 2017. Watsonella crosbyi from the lower Cambrian (Terreneuvian, Stage 2) Normanville Group in South Australia. Geol Mag, 154: 1088–1104Google Scholar
  88. Jell P A. 1990. Trilobita. In: Bengtson S, Conway Morris S, Cooper B J, Jell P A, Runnegar B N, eds. Early Cambrian Fossils from South Australia. AAP Memoir, 9: 257–322Google Scholar
  89. Jensen S. 1997. Trace fossils from the Lower Cambrian Mickwitzia Sandstone, south-central Sweden. Fossils Strata, 42: 1–110Google Scholar
  90. Jensen S, Harper D A T, Stouge S. 2016. Trace fossils from the lower Cambrian Kløftelv Formation, Ella Ø, North-East Greenland. GFF, 138: 369–376Google Scholar
  91. Jensen S, Runnegar B N. 2005. A complex trace fossil from the Spitskop Member (terminal Ediacaran-Lower Cambrian) of southern Namibia. Geol Mag, 142: 561–569Google Scholar
  92. Jensen S, Saylor B Z, Gehling J G, Germs G J B. 2000. Complex trace fossils from the terminal Proterozoic of Namibia. Geology, 28: 143–146Google Scholar
  93. Jiang G, Wang X, Shi X, Xiao S, Zhang S, Dong J. 2012. The origin of decoupled carbonate and organic carbon isotope signatures in the early Cambrian (ca. 542–520 Ma) Yangtze platform. Earth Planet Sci Lett, 317-318: 96–110Google Scholar
  94. Jiang S Y, Pi D H, Heubeck C, Frimmel H, Liu Y P, Deng H L, Ling H F, Yang J H. 2009. Early Cambrian ocean anoxia in South China. Nature, 459: E5–E6Google Scholar
  95. Jing X C, Deng S H, Zhao Z J, Lu Y Z, Zhang S B. 2008. Carbon isotope composition and correlation across the Cambrian-Ordovician boundary in Kalpin Region of the Tarim Basin, China. Sci China Ser D-Earth Sci, 51: 1317–1329Google Scholar
  96. Jourdan F, Hodges K, Sell B, Schaltegger U, Wingate M T D, Evins L Z, Soderlund U, Haines P W, Phillips D, Blenkinsop T. 2014. High-precision dating of the Kalkarindji large igneous province, Australia, and synchrony with the Early-Middle Cambrian (Stage 4–5) extinction. Geology, 42: 543–546Google Scholar
  97. Khomentovsky V V, Karlova G A. 2005. The Tommotian Stage base as the Cambrian Lower Boundary in Siberia. Stratigr Geol Correl, 13: 21–34Google Scholar
  98. Kimura H, Matsumoto R, Kakuwa Y, Hamdi B, Zibaseresht H. 1997. The Vendian-Cambrian δ13C record, North Iran: Evidence for overturning of the ocean before the Cambrian Explosion. Earth Planet Sci Lett, 147: E1–E7Google Scholar
  99. Knoll A H, Kaufman A J, Semikhatov M A, Grotzinger J P, Adams W. 1995. Sizing up the sub-Tommotian unconformity in Siberia. Geology, 23: 1139–1143Google Scholar
  100. Korovnikov I V. 2012. Correlation potential FADs of the Triangulaspis annio and Hebediscus attleborensis on the Siberian platform (a possible GSSP for the lower boundary of the Cambrian Stage 4). J Guizhou Univ, 29: 169–170Google Scholar
  101. Kouchinsky A, Bengtson S, Landing E, Steiner M, Vendrasco M, Ziegler K. 2017. Terreneuvian stratigraphy and faunas from the Anabar Uplift, Siberia. Acta Palaeont Pol, 62: 311–440Google Scholar
  102. Kouchinsky A, Bengtson S, Pavlov V, Runnegar B, Torssander P, Young E, Ziegler K. 2007. Carbon isotope stratigraphy of the Precambrian- Cambrian Sukharikha River section, northwestern Siberian platform. Geol Mag, 144: 609Google Scholar
  103. Kruse P D, Zhuravlev A Yu, Parkhaev P Yu, Zhu M. 2017. Comment: A new lower Cambrian shelly fossil biostratigraphy for South Australia by Marissa J. Betts, John R. Paterson, James B. Jago, Sarah M. Jacquet, Christian B. Skovsted, Timothy P. Topper & Glenn A. Brock. Gondwana Res, 44: 258–261Google Scholar
  104. Landing E. 1994. Precambrian-Cambrian boundary global stratotype ratified and a new perspective of Cambrian time. Geology, 22: 179–182Google Scholar
  105. Landing E, Geyer G, Brasier M D, Bowring S A. 2013. Cambrian evolutionary radiation: Context, correlation, and chronostratigraphy—Overcoming deficiencies of the first appearance datum (FAD) concept. Earth-Sci Rev, 123: 133–172Google Scholar
  106. Landing E, Geyer G. 2012. Misplaced faith-limitations of the first appearance datum (FAD) in chronostratigraphy and proposal of more robust Lower Cambrian correlation standards. J Guizhou Univ, 29: 170–171Google Scholar
  107. Landing E, Kouchinsky A. 2016. Correlation of the Cambrian evolutionary radiation: Geochronology, evolutionary stasis of earliest Cambrian (Terreneuvian) small shelly fossil (SSF) taxa, and chronostratigraphic significance. Geol Mag, 153: 750–756Google Scholar
  108. Landing E, Kruse P D. 2017. Integrated stratigraphic, geochemical, and paleontological late Ediacaran to early Cambrian records from southwestern Mongolia: Comment. Geol Soc Am Bull, 129: 1012–1015Google Scholar
  109. Landing E, Peng S C, Babcock L E, Geyer G, Moczydlowska-Vidal M. 2007. Global standard names for the Lowermost Cambrian Series and Stage. Episodes, 30: 287–299Google Scholar
  110. Landing E, Westrop S R, Adrain J M. 2011. The Lawsonian Stage-the Eoconodontus notchpeakensis FAD and HERB carbon isotope excursion define a globally correlatable terminal Cambrian stage. Bull Geosci, 86: 621–640Google Scholar
  111. Landing E, Westrop S R. 1998. AVALON 1997-the Cambrian standard: Third international field conference of the Cambrian chronostratigraphy working group and I.G.C.P. Project 366, ecological aspects of the Cambrian radiation. New York State Museum Bull, 49Google Scholar
  112. Lantenois H. 1907. Résultats de la mission géologique et miniére du Yunnan méridional. I: Note sur la géologie et les mines de la region comprise entre Lao-Kay et Yunnan-Sen. Ann. Mines. 1–134Google Scholar
  113. Lapworth C. 1879. On the tripartite classification of the Lower Paleozoic rocks. Geol Mag, 6: 1–15Google Scholar
  114. Lazarenko N P, Gogin I Y, Pegel T V, Abaimova G P. 2011. The Khos- Nelege River section of the Ogon’or Formation: A potential candidate for the GSSP of Stage 10, Cambrian System. Bull Geosci, 86: 555–568Google Scholar
  115. Lee L S, Chao Y T. 1924. Geology of the Gorge district of the Yangtze (from Ichang to Tzekuei) with special reference to the development of the Gorges. Bull Geol Soc China, 3: 351–391Google Scholar
  116. Li D D, Zhang X L, Chen K F, Zhang G J, Chen X Y, Huang W, Peng S C, Shen Y A. 2017. High-resolution C-isotope chemostratigraphy of the uppermost Cambrian stage (Stage 10) in South China: Implications for defining the base of Stage 10 and palaeoenvironmental change. Geol Mag, 154: 1232–1243Google Scholar
  117. Li D, Ling H F, Shields-Zhou G A, Chen X, Cremonese L, Och L, Thirlwall M, Manning C J. 2013. Carbon and strontium isotope evolution of seawater across the Ediacaran-Cambrian transition: Evidence from the Xiaotan section, NE Yunnan, South China. Precambrian Res, 225: 128–147Google Scholar
  118. Li D, Ling H F, Jiang S Y, Pan J Y, Chen Y Q, Cai Y F, Feng H Z. 2009. New carbon isotope stratigraphy of the Ediacaran-Cambrian boundary interval from SW China: Implications for global correlation. Geol Mag, 146: 465–483Google Scholar
  119. Li G X, Zhang J M, Zhu M Y. 2001. Litho- and biostratigraphy of the Lower Cambrian Meishucunian Stage in the Xiaotan section, eastern Yunnan. Acta Palaeont Sin, 40(Suppl): 40–53Google Scholar
  120. Li G, Zhao X, Gubanov A, Zhu M, Na L. 2011. Early Cambrian mollusc Watsonella crosbyi: A potential GSSP index fossil for the base of the Cambrian Stage 2. Acta Geol Sin-Engl Ed, 85: 309–319Google Scholar
  121. Li L Z. 1984. The discovery of new graptolites in the Changshan Formation (Upper Cambrian) from Dawenkou, Shandong (in Chinese with English abstract). Geol Rev, 30: 511–515Google Scholar
  122. Lin H L. 2008. Chapter 3, Early Cambrian (Chiungchussuan, Tsanglangpuan and Lungwangmian). In: Zhou Z Y, Zhen Y Y, eds. Trilobite Record of China. Beijing: Science Press. 36–76Google Scholar
  123. Lin T R. 2015. Discussion on Chinese Parabadiella, Moroccan Abadiella and Australian Abadiella huoi, and on the taxonomic problem of the abadiellid trilobites viewed from cluster analysis (in Chinese with English abstract). Acta Palaeont Sin, 54: 458–468Google Scholar
  124. Lin T R, Peng S C. 2009. Further discussion on the invalidity of Megapalaeolenus Chang, 1966 (in Chinese with English abstract). Acta Palaeont Sin, 48: 695–700Google Scholar
  125. Linnemann U, Ovtcharova M, Schaltegger U, Vickers-Rich P, Gärtner A, Hofmann M, Zieger J, Krause R, Kriesfeld L, Smith J. 2017. New chronological and stratigraphic constrains on the Precambrian-Cambrian boundary (Swaetpunt section, South Namibia). In: McIlroy G, ed. Abstract Volume of the International Symposium on the Ediacaran-Cambrian Transition. 63Google Scholar
  126. Liu H, Liao Z, Zhang H, Tian Y, Cheng B, Yang S. 2016. Stable isotope (δ 13Cker, δ 13Ccarb, δ 18Ocarb) distribution along a Cambrian outcrop section in the eastern Tarim Basin, NW China and its geochemical significance. Geosci Front, 8: 163–170Google Scholar
  127. Lu Y H. 1941. Lower Cambrian stratigraphy and trilobite fauna of Kunming, Yunnan. Bull Geol Soc China, 21: 71–90Google Scholar
  128. Lu Y H. 1945. Early Middle Cambrian faunas from Meitan. Bull Geol Soc China, 25: 185–199Google Scholar
  129. Lu Y H. 1962. Cambrian System of China. In: All China Commission of Stratigraphy, ed. Collection of the Scientific Reports for 1st All China Conference on Stratigraphy (in Chinese). Beijing: Science Press. 1–117Google Scholar
  130. Lu Y H, Zhang W T, Zhu Z L, Xiang L W, Lin H L, Zhou Z Y, Yuan J L, Peng S C, Qian Y, Zhang S G, Li S J, Guo H J, Luo H L. 1994. Suggestions on the establishment of Chinese Cambrian Stages (in Chinese). J Stratigr, 18: 318Google Scholar
  131. Lu Y H, Zhu Z L, Qian Y Y, Lin H L, Yuan J L. 1982. Correlation chart of Cambrian in China with explanatory text. In: Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, ed. Stratigraphic Correlation Chart in China with Explanatory Text (in Chinese). Beijing: Science Press. 28–54Google Scholar
  132. Lu Y H, Zhu Z L, Qian Y Y, Lin H L, Zhou Z Y, Yuan K X. 1974. Bioenvironmental control hypothesis and its application to the Cambrian biostratigraphy and palaeozoogeography (in Chinese). Memoir Nanjing Inst Geol Palaeontol, 5: 27–116Google Scholar
  133. Luo H L, Hu S X, Hou S G, Gao H G, Zhan D Q, Li W C. 2009. Cambrian stratigraphy and trilobites from Southeastern Yunnan, China (in Chinese with English abstract). Kunming: Yunnan Science and Technology Press. 252Google Scholar
  134. Luo H L, Jiang Z W, Tang L D. 1994. Stratotype section for Lower Cambrian stages in China (in Chinese with English abstract). Kunming: Yunnan Science and Technology Press. 181Google Scholar
  135. Luo H L, Jiang Z W, Wu X C, Song X L, Ouyang L, Xing Y S, Liu G Z, Zhang S S, Tao Y H. 1984. Sinian-Cambrian Boundary Stratotype Section at Meishucun, Jinning, Yunnan, China (in Chinese with English abstract). Kunming: People’s Publishing House. 154Google Scholar
  136. Luo H L, Jiang Z W, Wu X C, Song X L, Ouyang L. 1982. The Sinian-Cambrian Boundary in Eastern Yunnan, China (in Chinese with English abstract). Kunming: People’s Publishing House. 263Google Scholar
  137. Macdonald F A, Pruss S B, Strauss J V. 2014. Trace fossils with spreiten from the Late Ediacaran Nama Group, Namibia: Complex feeding patterns five million years before the Precambrian-Cambrian boundary. J Paleontol, 88: 299–308Google Scholar
  138. Magaritz M, Holser W T, Kirschvink J L. 1986. Carbon-isotope events across the Precambrian/Cambrian boundary on the Siberian Platform. Nature, 320: 258–259Google Scholar
  139. Magaritz M, Kirschvink J L, Latham A J, Zhuravlev A Y, Rozanov A Y. 1991. Precambrian/Cambrian boundary problem: Carbon isotope correlations for Vendian and Tommotian time between Siberia and Morocco. Geology, 19: 847–850Google Scholar
  140. Maloof A C, Porter S M, Moore J L, Dudas F O, Bowring S A, Higgins J A, Fike D A, Eddy M P. 2010. The earliest Cambrian record of animals and ocean geochemical change. Geol Soc Am Bull, 122: 1731–1774Google Scholar
  141. Mansuy H. 1907. Résultats de la mission géologique et miniére du Yunnan méridional. III: Résultats Paléontologiques. Ann Mines, 153–200Google Scholar
  142. Mansuy H. 1912. Pt. II, Paléontogie. In: Deprat J. and Mansuy, Etude géologique du Yunnan Oriental. Mém. Servo Géol. Indochine, v.I, Fasc. II: 1–31Google Scholar
  143. McArthur J M, Howarth R J, Shields G A. 2012. Strontium isotope stratigraphy. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G M, eds. The Geologic Time Scale 2012, vol. 2. Amsterdam: Elsevier BV. 127–144Google Scholar
  144. McNamara K, Feng Y, Zhou Z. 2003. Ontogeny and heterochrony in the oryctocephalid trilobite Arthricocephalus from the Early Cambrian of China. Spec Pap Palaeontol, 70: 103–126Google Scholar
  145. Miller J F, Evans K R, Ethington R L, Holmer L E, Loch J D, Popov L E, Ripperdan R L. 2005. GSSP candidate for the base of the highest Cambrian stage at Lawson Cove, Utah, USA. In: Peng S C, Zhu M Y, Li G X, Van Iten H, eds. Abstract and Short Papers. Acta Micropalaeont Sin(Suppl): 115–116Google Scholar
  146. Miller J F, Evans K R, Freeman R L, Ripperdan R L, Taylor J F. 2011. Proposed stratotype for the base of the Lawsonian Stage (Cambrian Stage 10) at the First Appearance Datum of Eoconodontus notchpeakensis (Miller) in the House Range, Utah, USA. Bull Geosci, 86: 595–620Google Scholar
  147. Miller J F, Ripperdan R L, Loch J D, Freeman R L, Evans K R, Taylor J F, Tolbart Z C. 2015. Proposed GSSP for the base of Cambrian Stage 10 at the lowest occurrence of Eoconodontus notchpeakensis in the House Range, Utah, USA. Annales de Paléontologie, 101: 199–211Google Scholar
  148. Miller J F, Ethington R L, Evans K R, Holmer L E, Loch J D, Popov L E, Repetski J E, Ripperdan R L, Taylor J F. 2006. Proposed stratotype for the base of the highest Cambrian stage at the first appearance datum of Cordylodus andresi, Lawson Cove section, Utah, USA. Palaeoworld, 15: 384–405Google Scholar
  149. Missarzhevsky V V. 1989. The earliest skeletal fossils and stratigraphy of the Precambrian-Cambrian Boundary Beds. Tr Geol Inst Akad Nauk SSSR, 443: 1–237Google Scholar
  150. Moczydłowska M. 1991. Acritarch biostratigraphy of the Lower Cambrian and the Precambrian-Cambrian boundary in southeastern Poland. Fossils Strata, 29: 1–127Google Scholar
  151. Moczydłowska M, Yin L M. 2012. The lower Cambrian phytoplankton record in China and global perspective for stage subdivision. J Guizhou Univ-Nat Sci, 29: 176–177Google Scholar
  152. Moczydłowska M, Zang W L. 2006. The Early Cambrian acritarch Skiagia and its significance for global correlation. Palaeoworld, 15: 328–347Google Scholar
  153. Monke H. 1903. Bietrage zur Geology van Schantung. 1, Obercambriche Trilobiten van Yen-Tsy-Tai. Berlin: Jahrbuch der Königliche Preussische Geologische Landesanstalt, 23: 103–151Google Scholar
  154. Montañez I P, Osleger D A, Banner J L. 2000. Evolution of the Sr and C isotope composition of Cambrian oceans. GSA Today, 10: 1–7Google Scholar
  155. Narbonne G M, Myrow P M, Landing E, Anderson M M. 1987. A candidate stratotype for the Precambrian-Cambrian boundary, Fortune Head, Burin Peninsula, southeastern Newfoundland. Can J Earth Sci, 24: 1277–1293Google Scholar
  156. Narbonne G M, Xiao S, Shields G A. 2012. The Ediacaran Period. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G M, eds. The Geologic Time Scale 2012, vol. 2. Amsterdam: Elsevier BV. 413–435Google Scholar
  157. Ng T W, Yuan J L, Lin J P. 2014a. The North China steptoean positive carbon isotope excursion and its global correlation with the base of the Paibian Stage (early Furongian Series), Cambrian. Lethaia, 47: 153–164Google Scholar
  158. Ng T W, Yuan J L, Lin J P. 2014b. The North China steptoean positive Carbon isotope event: New insights towards understanding a global phenomenon. Geobios, 47: 371–387Google Scholar
  159. Nielsen A T, Schovsbo N H. 2015. The regressive Early-Mid Cambrian ‘Hawke Bay Event’ in Baltoscandia: Epeirogenic uplift in concert with eustasy. Earth-Sci Rev, 151: 288–350Google Scholar
  160. Norin E. 1937. Geology of western Quruq Tagh, eastern T’ien Shan. In: Reports from the scientific expedition to the northwestern provinces of China under leadership of Dr. Sven Hedin. Sino-Swedish Expeditio III. Geology (1). Stockholm: Tryckeri Aktiebolaget Thule. 1–194Google Scholar
  161. Okada Y, Sawaki Y, Komiya T, Hirata T, Takahata N, Sano Y, Han J, Maruyama S. 2014. New chronological constraints for Cryogenian to Cambrian rocks in the Three Gorges, Weng’an and Chengjiang areas, South China. Gondwana Res, 25: 1027–1044Google Scholar
  162. Pagès A, Schmid S. 2016. Euxinia linked to the Cambrian Drumian carbon isotope excursion (DICE) in Australia: Geochemical and chemostratigraphic evidence. Palaeogeogr Palaeoclimatol Palaeoecol, 461: 65–76Google Scholar
  163. Palmer A R. 1998a. A proposed nomenclature for stages and series for the Cambrian of Laurentia. Can J Earth Sci, 35: 323–328Google Scholar
  164. Palmer A R. 1998b. Why is intercontinental correlation within the Lower Cambrian so difficult? Revista Española de Paleontología, No. extr. Homenaje al Prof. Gonzalo Vidal. 17–21Google Scholar
  165. Parkhaev P Yu, Karlova G A, Rozanov A Yu. 2011. Taxonomy, stratigraphy and biogeography of Aldanella attleborensis—A possible candidate for defining the base of Cambrian Stage 2. Museum Northern Arizona Bull, 67: 298–300Google Scholar
  166. Parkhaev P Yu, Karlova G A, Rozanov A Yu. 2012. Stratigraphic distribution of two potential species for the GSSP of Cambrian Stage 2-Aldanella attleborensis and Watsonella crosbyi. J Guizhou Univ, 29 (Suppl): 179–180Google Scholar
  167. Peng S C. 2000. Cambrian of slope facies (of China). In: Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, ed. Stratigraphical Studies in China (1979–1999) (in Chinese). Hefei: University of Science and Technology of China Press. 23–38Google Scholar
  168. Peng S C. 2003. Chronostratigraphic subdivision of the Cambrian of China. Geol Acta, 1: 135–144Google Scholar
  169. Peng S C. 2004. Suggested global subdivision of Cambrian System and two potential GSSPs in Hunan, China for defining Cambrian stages. In: Choi D K, ed. Ninth International Conference of the Cambrian Stage Subdivision Working Group. Abstracts with Program. Taebaek, Korea. 25Google Scholar
  170. Peng S C. 2008. Revision on Cambrian chronostratigraphy of South China and related remarks (in Chinese with English abstract). J Stratigr, 32: 239–245Google Scholar
  171. Peng S C. 2009a. The newly-developed Cambrian biostratigraphic succession and chronostratigraphic scheme for South China (in Chinese). Chin Sci Bull, 54: 2691–2698Google Scholar
  172. Peng S C. 2009b. Review on the studies of Cambrian trilobite faunas from Jiangnan slope belt, South China, with notes on Cambrian correlation between South and North China (in Chinese with English abstract). Acta Palaeont Sin, 48: 437–452Google Scholar
  173. Peng S C, Babcock L E. 2005. Two Cambrian agnostoid trilobites, Agnostotes orientalis (Kobayashi, 1935) and Lotagnostus americanus (Billings, 1860): Key species for defining global stages of the Cambrian System. Geosci J, 9: 107–115Google Scholar
  174. Peng S C, Babcock L E. 2011. Continuing progress on chronostratigraphic subdivision of the Cambrian System. Bull Geosci, 86: 391–396Google Scholar
  175. Peng S C, Babcock L E, Cooper R. 2012a. The Cambrian Period. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G M. eds. The Geologic Time Scale 2012, vol. 2. Amsterdam: Elsevier BV. 437–488Google Scholar
  176. Peng S C, Babcock L E, Robison R A, Lin H L, Ress M N, Saltzman M R. 2004. Global standard stratotype-section and point (GSSP) of the Furongian Series and Paibian Stage (Cambrian). Lethaia, 37: 365–379Google Scholar
  177. Peng S C, Babcock L E, Zhu X J, Ahlberg P, Terfelt F, Dai T. 2015. Intraspecific variation and taphonomic alteration in the Cambrian (Furongian) agnostoid Lotagnostus americanus: New information from China. Bull Geosci, 90: 281–306Google Scholar
  178. Peng S C, Babcock L E, Zhu X J, Lei Q, Dai T. 2017. Revision of the oryctocephalid trilobite genera Arthricocephalus Bergeron and Oryctocarella Tomashpolskaya and Karpinski (Cambrian) from South China and Siberia. J Paleontol, 91: 933–959Google Scholar
  179. Peng S C, Babcock L E, Zhu X J, Zuo J X, Dai T. 2014. A potential GSSP for the base of the uppermost Cambrian stage, coinciding with the first appearance of Lotagnostus americanus at Wa’ergang, Hunan, China. GFF, 136: 208–213Google Scholar
  180. Peng S C, Babcock L E, Zhu X J, Zuo J X. 2013. A potential GSSP for the base of the uppermost Cambrian stage (Furongian Series) coinciding with the first appearance of Lotagnostus americanus at Waergang, Hunan, China. In: Lindskog A, Mehlqvist K, eds. Proceedings of the 3rd IGCP 591 Annual Meeting-Lund, Sweden, 9–19 June 2013. Lund University. 265–266Google Scholar
  181. Peng S C, Babcock L E, Zuo J X, Lin H L, Zhu X J, Yang X F, Robison R A, Qi Y P, Bagnoli G, Chen Y. 2009. The global boundary stratotype section and point of the Guzhangian Stage (Cambrian) in the Wuling Mountains, northwestern Hunan, China. Episodes, 32: 41–55Google Scholar
  182. Peng S C, Babcock L E, Zuo J X, Zhu X J, Lin H L, Yang X F, Qi Y P, Bagnoli G, Wang L W. 2012b. Global standard stratotype-section and point (GSSP) for the base of the Jiangshanian Stage (Cambrian: Furongian) at Duibian, Jiangshan, Zhejiang, Southeast China. Episodes, 35: 462–477Google Scholar
  183. Peng S C, Robison R A. 2000. Agonstoid biostratigraphy across the Middle-Upper Cambrian boundary in China. Paleontological Society Memoir 53. J Paleont, 74: 1–104Google Scholar
  184. Peng S C, Babcock L E, Cooper R. 2012a. The Cambrian Period. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G M, eds. The Geologic Time Scale 2012, vol. 2. Amsterdam: Elsevier BV. 437–488Google Scholar
  185. Peng S C, Zhou Z Y, Lin T R, Yuan J L. 2000b. Cambrian chronostratigraphy research: Present and tendency (in Chinese with English abstract). J Stratigr, 24: 8–17Google Scholar
  186. Peng S C, Zhou Z Y, Lin T R. 1998. Late Middle-Late Upper Cambrian chronostratigraphy of China. In: Ahlberg P, Eriksson M, Olsson I, eds. Abstract for the IV Field Conference of the Cambrian Stage Subdivision Working Group, International Subcommission on Cambrian. Lund: Lund University. 20Google Scholar
  187. Qian J X, Xiao B. 1984. An early Cambrian small shelly fauna from Aksu- Wushi region, Xinjiang (in Chinese with English abstract). Professional Papers Stratigraphy Palaeontol, 13: 65–90Google Scholar
  188. Qian M P, Yuan X L, Li J H, Yan Y K, Wang Y P. 2001. Comments on the Cambrian-Neoproterozoic boundary in Huaibei district, northern Anhui- Jiangsu (in Chinese with English abstract). J Stratigr, 25: 135–143Google Scholar
  189. Qian Y. 1977. Hyolitha and some problematica from the Lower Cambrian Meishucun Stage in central and S. W. China (in Chinese with English abstract). Acta Palaeont Sin, 16: 255–278Google Scholar
  190. Qian Y. 1999. Taxonomy and Biostratigraphy of Small Shelly Fossils in China (in Chinese with English abstract). Beijing: Science Press. 247Google Scholar
  191. Qian Y, Li G X, Zhu M Y. 2001. The Meishucunian Stage and its small shelly fossil sequences in China. Acta Palaeont Sin, 40(Suppl): 54–62Google Scholar
  192. Qian Y, Zhu M Y, He T G, Jiang Z W. 1996. New investigation of Precambrian- Cambrian boundary sections in eastern Yunnan (in Chinese with English abstract). Acta Micropal Sin, 13: 225–240Google Scholar
  193. Qian Y, Zhu M Y, Li G X, Jiang Z W, Van Iten H. 2002. A supplemental Precambrian-Cambrian boundary global stratotype section in SW China. Acta Palaeont Sin, 41: 19–26Google Scholar
  194. Remané J, Bassett M G, Cowie J W, Gohrbandt K H, Lane H R, Michelsen O, Wang N. 1996. Revised guidelines for the establishment of global chronostratigraphic standards by the International Commission on Stratigraphy (ICS). Episodes, 19: 77–81Google Scholar
  195. Richthofen F F von 1877. China, Parts 1. Berlin: Verlag von Dietrich Reimer. 758Google Scholar
  196. Ripperdan R L. 2002. The HERB Event: End of Cambrian carbon cycle paradigm? Geol Soc Am Abstract Program, 34: 413Google Scholar
  197. Ripperdan R L, Magaritz M, Nicoll R S, Shergold J H. 1992. Simultaneous changes in carbon isotopes, sea level, and conodont biozones within the Cambrian-Ordovician boundary interval at Black Mountain, Australia. Geology, 20: 1039–1042Google Scholar
  198. Ripperdan R L, Miller J F. 1995. Carbon isotope ratios from the Cambrian-Ordovician boundary section at Lawson Cove, Ibex area, Utah. In: Cooper J D, Droser M L, Finney S C, eds. Ordovician Odyssey: Short Papers for the Seventh International Symposium on the Ordovician System. Pacific Section SEPM, Fullerton, California. 129–132Google Scholar
  199. Robison R A, Rosova A V, Rowell A J, Fletcher T P. 1977. Cambrian boundaries and divisions. Lethaia, 10: 257–262Google Scholar
  200. Rogov V I, Karlova G A, Marusin V V, Kochnev B B, Nagovitsin K E, Grazhdankin D V. 2015. Duration of the first biozone in the Siberian hypostratotype of the Vendian. Rus Geol Geophys, 56: 573–583Google Scholar
  201. Rozanov A Yu. 1992. Some problems concerning the Precambrian-Cambrian transition and the Cambrian faunal radiation. J Geol Soc, 149: 593–598Google Scholar
  202. Rozanov A Au, Semikhatov M A, Sokolov B S, Fedonkin M A, Khomentovskii V V. 1997. The decision on the Precambrian-Cambrian boundary Stratotype: A breakthrough or misleading action? Stratigr Geol Correl, 5: 19–28Google Scholar
  203. Rozanov A Yu, Missarzhevsky V V, Volkova N A, Voronova L G, Krylov I N, Keller B M, Korolyuk I K, Lenozion K, Mikhnyak R, Pykhova N G, Sidorov A D. 1969. The Tommotian stage and the Cambrian lower boundary problem. Tr Geol Inst Akad Nauk SSSR, 206: 1–379Google Scholar
  204. Rozanov A Yu, Khomentovsky V V, Shabanov Yu Ya, Karlova G A, Varlamov A I, Luchinina V A, Pegel T V, Demidenko Yu E, Parkhaev P Yu, Korovnikov I V, Skorlotova N A. 2008a. To the problem of stage subdivision of the Lower Cambrian. Stratigr Geol Correl, 16: 1–19Google Scholar
  205. Rozanov A Yu, Parkhaev P Yu, Demidenko Yu E, Skorlotova N A. 2011. Mobergella radiolata—A possible candidate for defining the base of Cambrian Series 2 and Stage 3. Mus Northern Arizona Bull, 67: 304–306Google Scholar
  206. Rozanov A Yu, Zhu M Y, Pak K L, Parkhaev P Yu. 2008b. The second Sino-Russian Symposium on the Lower Cambrian Subdivision. Palaeont J, 42: 442–416Google Scholar
  207. Saltzman M R. 2005. Phosphorus, nitrogen, and the redox evolution of the Paleozoic oceans. Geology, 33: 573–576Google Scholar
  208. Saltzman M R, Ripperdan R L, Brasier M D, Lohmann K C, Robison R A, Chang W T, Peng S, Ergaliev E K, Runnegar B. 2000. A global carbon isotope excursion (SPICE) during the Late Cambrian: Relation to trilobite extinctions, organic-matter burial and sea level. Palaeogeogr Palaeoclimatol Palaeoecol, 162: 211–223Google Scholar
  209. Saltzman M R, Thomas E. 2012. Carbon isotope stratigraphy. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G M, eds. The Geologic Time Scale 2012, vol. 2. Amsterdam: Elsevier BV. 207–232Google Scholar
  210. Saltzman M R, Young S A, Kump L R, Gill B C, Lyons T W, Runnegar B. 2011. Pulse of atmospheric oxygen during the late Cambrian. Proc Natl Acad Sci USA, 108: 3876–3881Google Scholar
  211. Salvador A. 1994. International stratigraphic guide-a guide to stratigraphic classification, terminology and procedure. Second Edition. IUGS & Geol Soc Am, Inc. 1–214Google Scholar
  212. Schmitz M D. 2012. Radiogenic isotope geochronology. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G M, eds. The Geologic Time Scale 2012, vol. 2. Amsterdam: Elsevier BV. 115–126Google Scholar
  213. Sedgwick A. 1852. On the classification and nomenclature of the Lower Palaeozoic rocks of England and Wales. Q J Geol Soc, 8:136–168Google Scholar
  214. Shergold J, Geyer G. 2001. The international subcommission on Cambrian stratigraphy: Progress report 2001. Acta Palaeont Sin, 40(Suppl): 1–3Google Scholar
  215. Shergold J, Geyer G. 2003. The subcommission on Cambrian stratigraphy: The status quo. Geol Acta, 1: 5–9Google Scholar
  216. Shields G A. 2007. A normalised seawater strontium isotope curve: Possible implications for Neoproterozoic-Cambrian weathering rates and the further oxygenation of the Earth. eEarth, 2: 35–42Google Scholar
  217. Sial A N, Peralta S, Ferreira V P, Toselli A J, Aceñolaza F G, Parada M A, Gaucher C, Alonso R N, Pimentel M M. 2008. Upper Cambrian carbonate sequences of the Argentine Precordillera and the Steptoean CIsotope Positive Excursion (SPICE). Gondwana Res, 13: 437–452Google Scholar
  218. Skovsted C B. 2003. Mobergellans (Problematica) from the Cambrian of Greenland, Siberia and Kazakhstan. Paläontol Z, 77: 429–443Google Scholar
  219. Smith E F, Macdonald F A, Petach T A, Bold U, Schrag D P. 2016b. Integrated stratigraphic, geochemical, and paleontological late Ediacaran to early Cambrian records from southwestern Mongolia. Geol Soc Am Bull, 128: 442–468Google Scholar
  220. Smith E F, Nelson L L, Strange M A, Eyster A E, Rowland S M, Schrag D P, Macdonald F A. 2016a. The end of the Ediacaran: Two new exceptionally preserved body fossil assemblages from Mount Dunfee, Nevada, USA. Geology, 44: 911–914Google Scholar
  221. Southern Xinjiang Petroleum Prospecting Corporation, Xinjiang Petroleum Administration Bureau, Institute of Petroleum Geological Sciences, Yunnan-Guizhou-Guangxi Petroleum Prospecting Bureau. 1990}. Sinian to Permian stratigraphy and Palaeontology of the Tarim Basin, Xinjiang (I), Kuruktag Region (in Chinese with English abstract). Nanjing: Nanjing University Press. 25Google Scholar
  222. Steiner M, Li G X, Qian Y, Zhu M Y, Erdtmann B D. 2007. Neoproterozoic to Early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China). Palaeogeogr Palaeoclimatol Palaeoecol, 254: 67–99Google Scholar
  223. Steiner M, Li G X, Yang B, Ergaliev G. 2013. Chemostratigraphy versus biostratigraphy for a chronostratigraphic subdivision of the traditional “Lower Cambrian”. In: Lindskog A, Mehlqvist K, eds. Proceedings of the 3rd IGCP 591 Annual Meeting-Lund, Sweden, 9–19 June 2013. Lund University. 303–304Google Scholar
  224. Steiner M, Li G X. 2009. The potential of small shelly fossils for subdivision of the traditional Lower Cambrian. In: Ergaliev G Kh, Nikitina O I, Zhemchuzhnikov Y G, Popov L E, Basset M G, eds. Stratigraphy, Fossils and Progress of International Stratigraphic Scale of Cambrian System. Materials of the 14th International Field Conference of Excursion of the Cambrian Stages Subdivision Working Group. Almaty-Lesser Kalatau Ridge, South Kazakhstan, August 24–September 2, 2009. Almaty: Gylym. 33–34Google Scholar
  225. Steiner M, Li G, Ergaliev G. 2011. Toward a subdivision of the traditional “Lower Cambrian”. Museum Northern Arizona Bull, 67: 306–308Google Scholar
  226. Steiner M, Yang B. 2017. The chronostratigraphic subdivision of the traditional “Lower Cambrian”—How reliable are chemostratigraphy and biostratigraphy? In: McIlroy G, ed. Abstract Volume of the International Symposium on the Ediacaran-Cambrian Transition. 113Google Scholar
  227. Steiner M, Zhu M Y, Weber B, Geyer G. 2001. The Lower Cambrian in eastern Yunnan: Trilobite-based biostratigraphy and related faunas. Acta Palaeont Sin, 40(Suppl): 63–79Google Scholar
  228. Sun Y C. 1924. Contribution to the Cambrian fauna of North China. Plaleontol Sin-Ser B, 1: 1–109Google Scholar
  229. Sun Y C. 1935. The Upper Cambrian trilobite fauna of North China. Plaleontol Sin-Ser B, 7: 1–93Google Scholar
  230. Sun Y Z. 1961. Problems of classification of Cambrian System in China (in Chinese). Acta Geol Sin, 41: 285–289Google Scholar
  231. Sundberg F A, Geyer G, Kruse P D, McCollum L B, Pegel T V, Żylińska A, Zhuravlev A Y. 2016. International correlation of the Cambrian Series 2–3, Stages 4–5 boundary interval. A P Memoirs, 49: 83–124Google Scholar
  232. Tang Q, Pang K, Yuan X L, Wan B, Xiao S H. 2015. Organic-walled microfossils from the Tonian Gouhou Formation, Huaibei region, North China Craton, and their biostratigraphic implications. Precambrian Res, 266: 296–318Google Scholar
  233. Ting V K, Wang Y L. 1937. Cambrian and Silurian Formnations of Malung and Chütsing district, Yunnan. Bull Geol Soc China, 16: 1–28Google Scholar
  234. Troedsson G T. 1937. On the Cambrian-Ordovician faunas of western Quruq Tagh, eastern Tien-Shan. Palaeont Sin, 106B, 2: 1–74Google Scholar
  235. Walcott C D. 1905. Cambrian faunas of China. Proc United States Natl Mus, 29: 1–106Google Scholar
  236. Walcott C D. 1906. Cambrian faunas of China. Proc United States Natl Mus, 30: 563–595Google Scholar
  237. Wang C Y, Peng S C. 2017. Promoting the international chronostratigraphic chart in China (in Chinese with English abstract). J Stratigr, 41: 216–220Google Scholar
  238. Wang D, Ling H F, Li D, Chen X. 2012. Carbon isotope stratigraphy of Yanjiahe Formation across the Ediacaran-Cambrian boundary in the area of Three Gorges (in Chinese with English abstract). J Stratigr, 36: 21–30Google Scholar
  239. Wang J G, Chen D Z, Wan D, Yan D T, Zhou X Q. 2012b. Petrology and geochemistry of chert on theMarginal zone of Yangtze Platform, western Hunan, South China, during the Ediacaran-Cambrian transition. Sedimentology, 59: 809–829Google Scholar
  240. Wang X L, Hu W X, Yao S P, Chen Q, Xie X M. 2011. Carbon and strontium isotopes and global correlation of Cambrian Series 2-Series 3 carbonate rocks in the Keping area of the northwestern Tarim Basin, NW China. Mar Pet Geol, 28: 992–1002Google Scholar
  241. Wang X Q, Shi X Y, Jiang G Q, Zhang S H. 2012a. New U-Pb age from the basal Niutitang Formation in South China: Implications for diachronous development and condensation of stratigraphic units across the Yangtze platform at the Ediacaran-Cambrian transition. J Asian Earth Sci, 48: 1–8Google Scholar
  242. Wang Y. 1938. Age problem of the Yichang limestone, Hsiatung, Hupeh (in Chinese). Geol Rev, 3: 131–142Google Scholar
  243. Wang Y. 1945. Subdivison of the Yangtze Gorges’s type Lower Palaeozoic stratigraphy (in Chinese). Geol Rev, 10: 9–14Google Scholar
  244. Wang Z J, Huang Z G, Yao J X, Ma X L. 2014. Characteristics and main progress of the stratigraphic chart of China and directions (in Chinese with English abstract). Acta Geosci Sin, 35: 271–276Google Scholar
  245. Wang Z Z, Yang J D. 1994. Features of the carbon isotope changes in the Early Palaeozoic rocks of the Kalpin area, Xinjiang and their significance (in Chinese with English abstract). J Stratigr, 18: 45–52Google Scholar
  246. Wood R A, Poulton S W, Prave A R, Hoffmann K H, Clarksona M O, Guilbaud R, Lyne J W, Tostevin R, Bowyer F, Penny A M, Curtis A, Kasemann S A. 2015. Dynamic redox conditions control late Ediacaran metazoan ecosystems in the Nama Group, Namibia: Precambrian Res, 261: 252–271Google Scholar
  247. Xiang L W, Lai C G, Lin B Y, Hou H F, Zhan L P. 1980. Subdivision of the Paleozoic into Series and Stages for China. In: Scientific Papers on Geology for International Exchange Prepared for the 26th International Geological Congress (4), Stratigraphy and Palaeontology (in Chinese with English abstract). Beijing: Publishing House of Geology. 56–60Google Scholar
  248. Xiang L W, Zhu Z L, Li S J, Zhou Z Q. 1999. Stratigraphic Lexicon of China (in Chinese). Cambrian System. Beijing: Publishing House of Geology. 95Google Scholar
  249. Xiang W L, Li S J, Nan R S, Guo Z M, Yang J L, Zhou Z Q, An T Y, Yuan K X, Qian Y. 1981. Stratigraphy of China (4), the Cambrian System of China (in Chinese). Beijing: Publishing House of Geology. 210Google Scholar
  250. Xiao S H, Shen B, Tang Q, Kaufman A J, Yuan X L, Li J, Qian M. 2014. Biostratigraphic and chemostratigraphic constraints on the age of early Neoproterozoic carbonate successions in North China. Precambrian Res, 246: 208–225Google Scholar
  251. Xing Y S, Ding Q X, Lin W X, Yan Y K, Zhang L Y. 1985. Metazoans and trace fossils. In: Xing Y S, Duan C H, Liang Y Z, Cao R G, eds. Late Precambrian Palaeontology of China (in Chinese with English abstract). Beijing: Publishing House of Geology. 182–192Google Scholar
  252. Xing Y S, Ding Q X, Luo H L, He T G, Wang Y G. 1984. The Sinian-Cambrian boundary of China (in Chinese with English abstract). Bull Inst Geol, Chinese Academy of Geological Sciences, No. 10. Beijing: Publishing House of Geology. 262Google Scholar
  253. Xu L G, Lehmann B, Mao J W, Qu W J, Du A D. 2011. Re-Os age of polymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian Black Shales of South China—A Reassessment. Econ Geol, 106: 511–522Google Scholar
  254. Yang A H, Zhu M Y, Zhang J M, Li G X. 2003. Early Cambrian eodiscoid trilobites of the Yangtze Platform and their stratigraphic implications. Prog Nat Sci, 13: 861–866Google Scholar
  255. Yang A H, Zhu M Y, Zhang J M. 2005. Stratigraphic distribution and palaeogeographic control on the Early Cambrian Eodiscoids in Yangtze Platform (in Chinese with English abstract). J Palaeogeogr, 7: 219–232Google Scholar
  256. Yang A H, Zhu M Y, Zhuravlev A Y, Yuan K X, Zhang J M, Chen Y Q. 2016. Archaeocyathan zonation of the Yangtze Platform: Implications for regional and global correlation of lower Cambrian stages. Geol Mag, 153: 388–409Google Scholar
  257. Yang B, Steiner M, Zhu M Y, Li G X, Liu J, Liu P J. 2016. Transitional Ediacaran-Cambrian small skeletal fossil assemblages from South China and Kazakhstan: Implications for chronostratigraphy and metazoan evolution. Precambrian Res, 285: 202–215Google Scholar
  258. Yang C, Li X H, Zhu M Y, Condon D J, Chen J Y. 2018. Geochronological constraint on the Cambrian Chengjiang biota, South China. J Geol Soc, 175: 659–666Google Scholar
  259. Yang X L, Zhao Y L, Zhu M Y, Cui T, Yang K D. 2010. Sponges from the Early Cambrian Niutitang Formation at Danzhai, Guizhou and their environmental background (in Chinese with English abstract). Acta Palaeont Sin, 49: 348–359Google Scholar
  260. Yao J X, Xiao S H, Yin L M, Li G X, Yuan X L. 2005. Basal Cambrian microfossils from the Yurtus and Xishanblaq formations (Tarim, Northwest China): Systematic revision and biostratigraphic correlation of Micrhystridium-like acritarchs from China. Palaeontology, 48: 687–708Google Scholar
  261. Yin G Z, Wang Y G, Qian Y. 1982. A preliminary study of Sinian-Cambrian boundary in Guizhou Province (in Chinese). J Stratigr, 6: 286–293Google Scholar
  262. Yuan J L, Li Y, Mu X N, Lin R B, Zhu X J. 2012. Trilobite fauna of the Changhia Formation (Cambrian Series 3) from Shandong and adjacent area, North China (part 1) (in Chinese with English abstract). Palaeont Sin, 197 B (3). Beijing: Science Press. 467Google Scholar
  263. Yuan J L, Li Y. 1999. Lower-Middle Cambrian boundary and trilobite fauna at Laoyingshan, Huainan, Anhui (in Chinese with English abstract). Acta Palaeont Sin, 38: 407–422Google Scholar
  264. Yuan J L, Li Y. 2014. Trilobites of the uppermost part of the Manto Formation (Hsuchuangian) at the Shiliuyuan, Yicheng District, Zaozhuang city, Shandong (in Chinese with English abstract). Acta Palaeont Sin, 53: 497–526Google Scholar
  265. Yuan J L, Ng T W. 2014. Tentative correlation of the Duyunian (Cambrian Series 2, Stage 4) and the Taijiangian (Cambrian Series 3, Stage 5) between South China and the Mediterranean region. GFF, 136: 314–319Google Scholar
  266. Yuan J L, Zhao Y L, Li Y, Huang Y Z. 2002. Trilobite fauna of the Kaili Formation (uppermost Lower Cambrian-lower Middle Cambrian) from southeastern Guizhou, South China (in Chinese with English abstract). Shanghai: Shanghai Scientific and Technical Publishers. 422Google Scholar
  267. Yuan J L, Zhao Y L, Li Y. 2001. Biostratigraphy of oryctocephalid trilobites. Acta Palaeont Sin, 40(Suppl): 143–156Google Scholar
  268. Yuan J L, Zhao Y L, Peng J, Zhu X J, Lin J P. 2009. Cambrian trilobite Ovatoryctocara granulataTchernysheva, 1962 and its biostratigraphic significance. Prog Nat Sci, 19: 213–221Google Scholar
  269. Yuan J L, Zhao Y L, Wang Z Z, Zhou Z, Chen X Y. 1997. A preliminary study on Lower-Middle Cambrian boundary and trilobite fauna at Balang, Taijiang, Guizhou, South China (in Chinese with English abstract). Acta Palaeont Sin, 36: 494–524Google Scholar
  270. Yuan J L, Zhao Y L, Yang X L. 2006. Speciation of the genus Arthricocephalus Bergeron, 1899 (Trilobita) from the late early cambrian and its stratigraphic significance. Prog Nat Sci, 16: 614–623Google Scholar
  271. Yuan J L, Zhao Y L. 1999. Subdivision and correlation of Lower Cambrian in southwest China, with a discussion of the age of Early Cambrian series biota (in Chinese with English abstract). Acta Palaeont Sin, 39 (S1): 116–130Google Scholar
  272. Yuan J L, Zhu X J, Lin J P, Zhu M Y. 2011. Tentative correlation of Cambrian Series 2 between South China and other continents. Bull Geosci, 86: 397–404Google Scholar
  273. Yue Z, Gao L Z, Qiao X F, Liu G Z. 1990. On the age of lower boundary of the Cambrian and the lower Cambrian sedimentary environment in Tonghua, Jilin Province (in Chinese with English abstract). Geol Rev, 36: 229–237Google Scholar
  274. Yue Z, Gao L Z. 1992. Paleontology, biostratigraphy and geological significance of the Early Cambrian protoconodonts and other skeletal microfossils from Aksu-Wushi region, Xinjiang, China (in Chinese with English abstract). Bull Inst Geol Chin Acad Geol Sci, 23: 133–160Google Scholar
  275. Yun H, Zhang X L, Li L Y, Zhang M Q, Liu W. 2016. Skeletal fossils and microfacies analysis of the lowermost Cambrian in the southwesternMargin of the North China Platform. J Asian Earth Sci, 129: 54–66Google Scholar
  276. Zhamoida A I. 2015. General Stratigraphic Scale of Russia: State of the art and problems. Rus Geol Geophys, 56: 511–523Google Scholar
  277. Zhang J M, Li G X, Zhou C M, Zhu M Y, Yu Z Y. 1997. Carbon isotope profiles and their correlation across the Neoproterozoic-Cambrian boundary interval on the Yangtze Platform, China. Bull Natl Mus Nat Sci, 10: 107–116Google Scholar
  278. Zhang J M, Wang H F, Li G X. 1999. Study on Sequence-stratigraphy and Chemostratigraphy of the Upper Cambrian Fengshan Formation— Lower Ordovician Yehli Formation at Dayangcha (Jilin) (in Chinese with English abstract). J Stratigr, 23: 81–106Google Scholar
  279. Zhang S B, Gao Q Q. 1992. Sinian to Permian stratigraphy and Palaeontology of the Tarim Basin, Xinjiang (II). Kalpin-Bachu Region (in Chinese with English abstract). Beijing: Petroleum Industry Press. 329Google Scholar
  280. Zhang S G. 1983. Early Cambrian Archaeocyathids from Kuruktag, Xinjiang (in Chinese with English abstract). Acta Palaeont Sin, 22: 9–20Google Scholar
  281. Zhang S G, Zhang Y B, Yan H J. 2015. Introduction to the stratigraphic chart of China (2014) (in Chinese with English abstract). J Stratigr, 39: 359–366Google Scholar
  282. Zhang W T. 1987. World’s oldest Cambrian trilobites from eastern Yunnan. In: Nanjing Institute of Geology and Palaeontology, Academia Sinica, ed. Stratigraphy and Palaeontology of Systemic Boundaries in China. Precambrian-Cambrian Boundary 1. Hefei: Anhui Science and Technology Publishing House. 1–16Google Scholar
  283. Zhang W T. 2006. Problems of Cambrian trilobite biogeography (in Chinese with English abstract). Earth Sci Frontiers, 13: 139–144Google Scholar
  284. Zhang W T, Babcock L E, Xiang L W, Sun W G, Luo H L, Jiang Z W. 2001. Lower Cambrian stratigraphy of Chengjiang, eastern Yunnan, China, with special notes on Chinese Parabadiella, Moroccan Abadiella and Australian Abadiella huoi. Acta Palaeont Sin, 40: 294–309Google Scholar
  285. Zhang W T, Lu Y H, Zhu Z L, Qian Y Y, Lin H L, Zhou Z Y, Zhang S G, Yuan J L. 1980b. Cambrian trilobite fauna of southwestern China (in Chinese with English abstract). Palaeont Sin, 159 B (16). Beijing: Science Press. 497Google Scholar
  286. Zhang W T, Xiang L W, Liu Y H, Meng X S. 1995. Cambrian stratigraphy and trilobites from Henan. Palaeont Cathayana, 6: 1–166Google Scholar
  287. Zhang W T, Yuan K X, Zhou Z Y, Qian Y, Wang Z Z. 1979. Cambrian of Southwest China. Biostratigraphy of Carbonates of Southwest China (in Chinese). Beijing: Science Press. 39–107Google Scholar
  288. Zhang W T, Zhu Z L, Lin H L. 1980a. Stages and zones of the Cambrian System in China and its correlation. In: Scientific Papers on Geology for International Exchange Prepared for the 26th International Geological Congress (4), Stratigraphy and Palaeontology (in Chinese with English abstract). Beijing: Publishing House of Geology. 1–6Google Scholar
  289. Zhang W T, Zhu Z L. 1979. Notes on some trilobites from the Lower Cambrian Houjiashan Formation in southern and southwestern parts of North China (in Chinese with English abstract). Acta Palaeont Sin. 18: 513–525Google Scholar
  290. Zhang W T, Zhu Z L. 2000. Cambrian System. In: Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, ed. Stratigraphical Studies in China (1979–1999) (in Chinese). Hefei: University of Science and Technology of China Press. 3–22Google Scholar
  291. Zhang X L, Ahlberg P, Babcock L E, Choi D K, Geyer G, Gozalo R, Hollingsworth J S, Li G X, Naimark E B, Pegel T, Steiner M, Wotte T, Zhang Z F. 2017. Challenges in defining the base of Cambrian Series 2 and Stage 3. Earth-Sci Rev, 172: 124–139Google Scholar
  292. Zhang Z Q, Zhang S F, Song Z Y, Chi S X. 1994. Suggestions on the division and correlation of the Cambrian-Early Ordovician stratigraphy in Shandong Province (in Chinese with English abstract). Shandong Geol, 10: 28–38Google Scholar
  293. Zhao Y L, Peng J, Yuan J L, Babcock L E, Guo Q J, Yin L M, Yang X L, Tai T S, Wang C J, Lin J P, Gaines R R, Sun H J, Yang Y N. 2012. Discussion of candidate stratotypes for the GSSP defining the conterminous base of Cambrian provisional Series 3 and Stage 5. J Guizhou Univ, 29(Suppl): 35–48Google Scholar
  294. Zhao Y L, Yuan J L, Zhu L J, Guo Q J, Yang R D, Yang X L, Tai T S. 2001a. An advance in the research of the Lower-Middle Cambrian boundary in South China and its prospects. J Stratigr, 25(Suppl): 383–390Google Scholar
  295. Zhao Y L, Yu Y Y, Yuan J L, Yang X L, Guo G J. 2001b. Cambrian stratigraphy at Huanliang, Guozhou Province, China: Reference section for the base of the Nangaoan and Duyunian stages. Palaeoworld, 13: 172–181Google Scholar
  296. Zhao Y L, Yuan J L, Esteve J, Peng J. 2017. The oryctocephalid trilobite zonation across the Cambrian Series 2-Series 3 boundary at Balang, South China: A reappraisal. Lethaia, 50: 400–406Google Scholar
  297. Zhao Y L, Yuan J L, Guo Q J, Peng J, Yin L M, Yang Y L, Wang C J, Sun H J. 2014. Comments on some important issues concerning the establishment of a GSSP for Cambrian Stage 5. GFF, 136: 333–336Google Scholar
  298. Zhong D, Hao Y. 1990. Sinian to Permian Stratigraphy and Palaeontology of the Tarim Basin, Xinjiang, (I) Kuruktag Region (in Chinese with- English abstract). Nangjin: Nanjing University Press. 1–252Google Scholar
  299. Zhou L K, Zhou J Z, Zhao M, Qin T X. 1991. Sedimentation and Hydrocarbon potential of Cambrian and Ordovician continental margins in northeastern Tarim Basin. In: Jia R X, ed. Research of Petroleum Geology of Northern Tarim Basin in China. Stratigraphy and Sedimentology (1) (in Chinese with English abstract). Beijing: China University of Geosciences Press. 126–137Google Scholar
  300. Zhou M Z, Luo T Y, Liu S R, Qian Z K, Xing L C. 2013. SHRIMP zircon age for a K-bentonite in the top of the Laobao Formation at the Pingyin section, Guizhou, South China. Sci China Earth Sci, 56: 1677–1687Google Scholar
  301. Zhou Z Y, Yuan J L, Zhang Z H, Wu X R, Yin G Z. 1980. Classification and correlation of Cambrian in Guizhou (in Chinese). J Stratigr, 4: 273–281Google Scholar
  302. Zhou Z Y, Yuan J L. 1980. Lower Cambrian trilobite succession in southwest China (in Chinese with English abstract). Acta Palaeont Sin, 19: 331–339Google Scholar
  303. Zhou Z Y. 2001. Stratigraphy of the Tarim Basin (in Chinese with English abstract). Beijing: Science Press. 359Google Scholar
  304. Zhu M Y. 1997. Precambrian-Cambrian Trace Fossils from Eastern Yunnan: Implications for Cambrian Explosion. Bull Natl Mus Nat Sci, 10: 275–312Google Scholar
  305. Zhu M Y, Babcock L E, Peng S C. 2006. Advances in Cambrian stratigraphy and paleontology: Integrating correlation techniques, paleobiology, taphonomy and paleoenvironmental reconstruction. Palaeoworld, 15: 217–222Google Scholar
  306. Zhu M Y, Li G X, Zhang J M, Steiner M, Qian Y, Jiang Z W. 2001. Early Cambrian stratigraphy of East Yunnan, southwestern China: A synthesis. Acta Palaeont Sin, 40(Suppl): 4–39Google Scholar
  307. Zhu M Y, Pak K L, Babcock L E, Rozanov A Yu. 2007. Chinese-Russian symposium on the Lower Cambrian Stratigraphy. Palaeont J, 41: 227–228Google Scholar
  308. Zhu M Y, Yang A H, Li G X, Yuan J M. 2008. A working model for subdivision of the lower half Cambrian. In: Voronin T A, ed. 13th International Field Conference of the Cambrian Stage Subdivision Working Group. The Siberian Platform, Western Yakutia. SNIIGGiMS, Novosibirsk. 88–90Google Scholar
  309. Zhu M Y, Yang B, Ahn S Y, Tsukui K, Zhuravlev A Y, Steiner M, Zhao F C, Ramezani J, Wood R A, Bowring S A. 2017b. Insight into the base of the Cambrian: New data from South China and Siberia. In: McIlroy G, ed. Abstract Volume of the International Symposium on the Ediacaran-Cambrian Transition. 135Google Scholar
  310. Zhu M Y, Zhang J M, Babcock L E, Bowring S A, Ahn S Y, He T C, Yang A H, Li G X, Zhao F C, Yin Z J. 2015. Identification and correlation of the Cambrian base: Problems and potential solutions. In: Gülli E, Piller W E. eds. STRATI 2015, Abstract Ber Inst Erdwiss K-F-Univ Graz, Band 21: 436Google Scholar
  311. Zhu M Y, Zhang J M, Li G X, Yang A H. 2004. Evolution of C isotopes in the Cambrian of China: Implications for Cambrian subdivision and trilobiteMass extinctions. Geobios, 37: 287–301Google Scholar
  312. Zhu M Y, Zhang J M, Steiner M, Yang A H, Li G X, Erdtmann B D. 2003. Sinian-Cambrian stratigraphic framework for shallow- to deep-water environments of the Yangtze Platform: An integrated approach. Prog Nat Sci, 13: 951–960Google Scholar
  313. Zhu M Y, Zhang J M, Yang A H, Li G X, Yang X L. 2006. The First Series of the Cambrian of South China. Subdivision and correlation. In: Jago J B, ed. South Australia 2006. XI International Conference of the Cambrian Subdivision Working Group. South Australia, August 14–24, 2006. Geological Society of Australia, Abstracts Number 84: 43–44Google Scholar
  314. Zhu M Y, Zhuravlev A Y, Wood R A, Zhao F C, Sukhov S S. 2017a. A deep root for the Cambrian explosion: Implications of new bio- and chemostratigraphy from the Siberian Platform. Geology, 45: 459–462Google Scholar
  315. Zhu R X, Li X H, Hou X G, Pan Y X, Wang F, Deng C L, He H Y. 2009. SIMS U-Pb zircon age of a tuff layer in the Meishucun section, Yunnan, southwest China: Constraint on the age of the Precambrian-Cambrian boundary. Sci China Ser D-Earth Sci, 52: 1385–1392Google Scholar
  316. Zhu Z L, Xiang W L, Zhang S G, Liu S C, Luo K L, Du S X, Liang Z W. 2007. New knowledge about trilobite biostratigraphy of the Cambrian Gushanian Stage (in Chinese with English abstract). J Strat, 31: 165–168Google Scholar
  317. Zhuravlev A Yu, Liñán E, Vintaned J A G, Debrenne F, Fedorov A B. 2012. New finds of skeletal fossils in the terminal Neoproterozoic of the Siberian Platform and Spain. Acta Palaeontol Polon, 57: 205–224Google Scholar
  318. Zhuravlev A Yu, Wood R A. 1996. Anoxia as the cause of the mid-Early Cambrian (Botomian) extinction event. Geology, 24: 311–314Google Scholar
  319. Zuo J X, Peng S C, Zhu X J. 2008. Carbon isotope composition of Cambrian carbonate rocks in Yangtze Platform, South China and its geological implications (in Chinese with English abstract). Geochemica, 37: 118–128Google Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Maoyan Zhu
    • 1
    • 2
    • 3
    Email author
  • Aihua Yang
    • 3
  • Jingliang Yuan
    • 1
  • Guoxiang Li
    • 1
  • Junming Zhang
    • 1
  • Fangchen Zhao
    • 1
  • Soo-Yeun Ahn
    • 1
  • Lanyun Miao
    • 1
  1. 1.State Key Laboratory of Palaeobiology and Stratigraphy & Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and PalaeontologyChinese Academy of SciencesNanjingChina
  2. 2.College of Earth SciencesUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Centre for Research and Education on Bilogical Evolution and EnvironmentNanjing UniversityNanjingChina

Personalised recommendations