Advertisement

Science China Earth Sciences

, Volume 61, Issue 11, pp 1564–1582 | Cite as

Carbon fluxes in the China Seas: An overview and perspective

  • Qian Liu
  • Xianghui Guo
  • Zhiqiang Yin
  • Kuanbo Zhou
  • Elliott Gareth Roberts
  • Minhan Dai
Review
  • 67 Downloads

Abstract

This paper aims to provide an overview of regional carbon fluxes and budgets in the marginal seas adjacent to China. The “China Seas” includes primarily the South China Sea, East China Sea, Yellow Sea, and the Bohai Sea. Emphasis is given to CO2 fluxes across the air-sea interface and their controls. The net flux of CO2 degassing from the China Seas is estimated to be 9.5±53 Tg C yr−1. The total riverine carbon flux through estuaries to the China Seas is estimated as 59.6±6.4 Tg C yr−1. Chinese estuaries annually emit 0.74±0.02 Tg C as CO2 to the atmosphere. Additionally, there is a very large net carbon influx from the Western Pacific to the China Seas, amounting to ∼2.5 Pg C yr−1. As a first-order estimate, the total export flux of particulate organic carbon from the upper ocean of the China Seas is 240±80 Tg C yr−1. This review also attempts to examine current knowledge gaps to promote a better understanding of the carbon cycle in this important region.

Keywords

Air-sea CO2 fluxes Marine biogeochemistry Marginal seas Ocean carbon cycle China Seas 

Notes

Acknowledgements

We are grateful to Dr. Zhiqiang Liu (Hong Kong University of Science and Technology) for calculating the area of 38 estuaries and Yan Yang for references compiling. This research was supported by the National Natural Science Foundation of China (Grant Nos. 91328202 & 91428308), the Major Scientific Research Program of the Ministry of Science and Technology (Grant No. 2015CB954001), the Marine Public Welfare Project of the State Oceanic Administration (Grant No. 201505003-3), and the Global Change Program (Grant No. GASI-03-01-02-02).

References

  1. Alongi D M. 2009. The Energetics of Mangrove Forests. New York: Springer. 216Google Scholar
  2. Alongi D M. 2014. Carbon cycling and storage in mangrove forests. Annu Rev Mar Sci, 6: 195–219Google Scholar
  3. Alongi D M, Tirendi F, Dixon P, Trott L A, Brunskill G J. 1999. Mineralization of organic matter in intertidal sediments of a tropical semienclosed delta. Estuar Coast Shelf Sci, 48: 451–467Google Scholar
  4. Alongi D M, Pfitzner J, Trott L A, Tirendi F, Dixon P, Klumpp D W. 2005. Rapid sediment accumulation and microbial mineralization in forests of the mangrove Kandelia candel in the Jiulongjiang Estuary, China. Estuar Coast Shelf Sci, 63: 605–618Google Scholar
  5. Anderson L G, Drange H, Chierici M, Fransson A, Johannessen T, Skjelvan I, Rey F. 2000. Annual carbon fluxes in the upper Greenland Sea based on measurements and a box-model approach. Tellus Ser B-Chem Phys Meteorol, 52: 1013–1024Google Scholar
  6. Arrigo K R, Pabi S, van Dijken G L, Maslowski W. 2010. Air-sea flux of CO2 in the Arctic Ocean, 1998–2003. J Geophys Res, 115: G04024Google Scholar
  7. Bai Y, Cai W J, He X, Zhai W, Pan D, Dai M, Yu P. 2015. A mechanistic semi-analytical method for remotely sensing sea surface pCO2 in riverdominated coastal oceans: A case study from the East China Sea. J Geophys Res, 120: 2331–2349Google Scholar
  8. Bates N R. 2006. Air-sea CO2 fluxes and the continental shelf pump of carbon in the Chukchi Sea adjacent to the Arctic Ocean. J Geophys Res, 111: C10013Google Scholar
  9. Bates N, Cai W J, Mathis J. 2011. The ocean carbon cycle in the western Arctic Ocean: Distributions and air-sea fluxes of carbon dioxide. Oceanography, 24: 186–201Google Scholar
  10. Bégovic M, Copin-Montégut C. 2002. Processes controlling annual variations in the partial pressure of CO2 in surface waters of the central northwestern Mediterranean Sea (Dyfamed site). Deep-Sea Res Part IITop Stud Oceanogr, 49: 2031–2047Google Scholar
  11. Bianchi A A, Pino D R, Perlender H G I, Osiroff A P, Segura V, Lutz V, Clara M L, Balestrini C F, Piola A R. 2009. Annual balance and seasonal variability of sea-air CO2 fluxes in the Patagonia Sea: Their relationship with fronts and chlorophyll distribution. J Geophys Res, 114: C03018Google Scholar
  12. Borges A V. 2011. Present day carbon dioxide fluxes in the coastal ocean and possible feedbacks under global change. In: Duarte P, Santana-Casiano J M, eds. Oceans and the Atmospheric Carbon Content. Dordrecht: Springer. 47–77Google Scholar
  13. Borges A V, Delille B, Frankignoulle M. 2005. Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystems counts. Geophys Res Lett, 32: L14601Google Scholar
  14. Borges A V, Schiettecatte L S, Abril G, Delille B, Gazeau F. 2006. Carbon dioxide in European coastal waters. Estuar Coast Shelf Sci, 70: 375–387Google Scholar
  15. Bouillon S, Borges A V, Castañeda-Moya E, Diele K, Dittmar T, Duke N C, Kristensen E, Lee S Y, Marchand C, Middelburg J J, Rivera-Monroy V H, Smith Iii T J, Twilley R R. 2008. Mangrove production and carbon sinks: A revision of global budget estimates. Glob Biogeochem Cycle, 22: GB2013Google Scholar
  16. Canadell J G, Ciais P, Dhakal S, Dolman H, Friedlingstein P, Gurney K R, Held A, Jackson R B, Le Quéré C, Malone E L, Ojima D S, Patwardhan A, Peters G P, Raupach M R. 2010. Interactions of the carbon cycle, human activity, and the climate system: A research portfolio. Curr Opin Environ Sustainability, 2: 301–311Google Scholar
  17. Cai P, Chen W, Dai M, Wan Z, Wang D, Li Q, Tang T, Lv D. 2008. A highresolution study of particle export in the southern South China Sea based on 234Th:238U disequilibrium. J Geophys Res, 113: C04019Google Scholar
  18. Cai P, Huang Y, Chen M, Guo L, Liu G, Qiu Y. 2002. New production based on 228Ra-derived nutrient budgets and thorium-estimated POC export at the intercalibration station in the South China Sea. Deep-Sea Res Part I-Oceanogr Res Pap, 49: 53–66Google Scholar
  19. Cai P, Zhao D, Wang L, Huang B, Dai M. 2015. Role of particle stock and phytoplankton community structure in regulating particulate organic carbon export in a large marginal sea. J Geophys Res, 120: 2063–2095Google Scholar
  20. Cai W J. 2011. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Annu Rev Mar Sci, 3: 123–145Google Scholar
  21. Cai W J, Dai M. 2004. Comment on “enhanced open ocean storage of CO2 from shelf sea pumping”. Science, 306: 1477cGoogle Scholar
  22. Cai W J, Dai M, Wang Y. 2006. Air-sea exchange of carbon dioxide in ocean margins: A province-based synthesis. Geophys Res Lett, 33: L12603Google Scholar
  23. Cai W J, Hu X, Huang W J, Murrell M C, Lehrter J C, Lohrenz S E, Chou W C, Zhai W, Hollibaugh J T, Wang Y, Zhao P, Guo X, Gundersen K, Dai M, Gong G C. 2011. Acidification of subsurface coastal waters enhanced by eutrophication. Nat Geosci, 4: 766–770Google Scholar
  24. Cai W J, Wang Y, Krest J, Moore W S. 2003. The geochemistry of dissolved inorganic carbon in a surficial groundwater aquifer in North Inlet, South Carolina, and the carbon fluxes to the coastal ocean. Geochim Cosmochim Acta, 67: 631–639Google Scholar
  25. Cao L, Song J, Li X, Yuan H, Li N, Duan L. 2013. Research progresses in carbon budget and carbon cycle of the coastal salt marshes in China (in Chinese). Acta Ecol Sin, 33: 5141–5152Google Scholar
  26. Cao Z, Dai M. 2011. Shallow-depth CaCO3 dissolution: Evidence from excess calcium in the South China Sea and its export to the Pacific Ocean. Glob Biogeochem Cycle, 25: GB2019Google Scholar
  27. Cao Z, Dai M, Evans W, Gan J, Feely R. 2014. Diagnosing CO2 fluxes in the upwelling system off the Oregon-California coast. Biogeosciences, 11: 6341–6354Google Scholar
  28. Chao S Y, Shaw P T, Wu S Y. 1996. Deep water ventilation in the South China Sea. Deep-Sea Res Part I-Oceanogr Res Pap, 43: 445–466Google Scholar
  29. Chen C T A, Borges A V. 2009. Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep-Sea Res Part II-Top Stud Oceanogr, 56: 578–590Google Scholar
  30. Chen C T A, Huang T H, Chen Y C, Bai Y, He X, Kang Y. 2013. Air-sea exchanges of CO2 in the world’s coastal seas. Biogeosciences, 10: 6509–6544Google Scholar
  31. Chen C T A, Wang S L. 1999. Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf. J Geophys Res, 104: 20675–20686Google Scholar
  32. Chen C T A, Wang S L, Chou W C, Sheu D D. 2006. Carbonate chemistry and projected future changes in pH and CaCO3 saturation state of the South China Sea. Mar Chem, 101: 277–305Google Scholar
  33. Chen J, Zheng L, Wiesner M G, Chen R, Zheng Y, Wong H K. 1998. Estimations of primary production and export production in the South China Sea based on sediment trap experiments. Chin Sci Bull, 43: 583–586Google Scholar
  34. Chen W. 2008. On the export fluxes, seasonality and controls of particulate organic carbon in the Northern South China Sea (in Chinese). Doctoral Dissertation. Xiamen: Xiamen UniversityGoogle Scholar
  35. Chen W, Cai P, Dai M, Wei J. 2008. 234Th/238U disequilibrium and particulate organic carbon export in the northern South China Sea. J Oceanogr, 64: 417–428Google Scholar
  36. Cheng X L, Luo Y Q, Xu Q, Lin G H, Zhang Q F, Chen J K, Li B. 2010. Seasonal variation in CH4 emission and its 13C-isotopic signature from Spartina alterniflora and Scirpus mariqueter soils in an estuarine wetland. Plant Soil, 327: 85–94Google Scholar
  37. Choi S H, Kim D, Shim J H, Kim K H, Min H S, Kim K R. 2012. Seasonal variations of surface fCO2 and sea-air CO2 fluxes in the Ulleung Basin of the East/Japan Sea. Terr Atmos Ocean Sci, 23: 343–353Google Scholar
  38. Chou W C, Chen Y L L, Sheu D D, Shih Y Y, Han C A, Cho C L, Tseng C M, Yang Y J. 2006. Estimated net community production during the summertime at the SEATS time-series study site, northern South China Sea: Implications for nitrogen fixation. Geophys Res Lett, 33: L22610Google Scholar
  39. Chou W C, Gong G C, Hung C C, Wu Y H. 2013. Carbonate mineral saturation states in the East China Sea: Present conditions and future scenarios. Biogeosciences, 10: 6453–6467Google Scholar
  40. Chou W C, Gong G C, Sheu D D, Hung C C, Tseng T F. 2009. Surface distributions of carbon chemistry parameters in the East China Sea in summer 2007. J Geophys Res, 114: C07026Google Scholar
  41. Chou W C, Gong G C, Tseng C M, Sheu D D, Hung C C, Chang L P, Wang L W. 2011. The carbonate system in the East China Sea in winter. Mar Chem, 123: 44–55Google Scholar
  42. Chou W C, Sheu D D D, Chen C T A, Wang S L, Tseng C M. 2005. Seasonal variability of carbon chemistry at the SEATS site, northern South China Sea between 2002 and 2003. Terr Atmos Ocean Sci, 16: 445–465Google Scholar
  43. Chou W C, Sheu D D, Chen C T A, Wen L S, Yang Y, Wei C L. 2007. Transport of the South China Sea subsurface water outflow and its influence on carbon chemistry of Kuroshio waters off southeastern Taiwan. J Geophys Res, 112: C12008Google Scholar
  44. Chou W C, Tishchenko P Y, Chuang K Y, Gong G C, Shkirnikova E M, Tishchenko P P. 2017. The contrasting behaviors of CO2 systems in river-dominated and ocean-dominated continental shelves: A case study in the East China Sea and the Peter the Great Bay of the Japan/East Sea in summer 2014. Mar Chem, 195: 50–60Google Scholar
  45. Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni R B, Piao S, Thornton P. 2013. Carbon and other biogeochemical cycles. In: Stocker T F, Qin D, Planttner, G-K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M, eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. 465–570Google Scholar
  46. Copin-Montégut C, Bégovic M, Merlivat L. 2004. Variability of the partial pressure of CO2 on diel to annual time scales in the Northwestern Mediterranean Sea. Mar Chem, 85: 169–189Google Scholar
  47. Dai A. 2016. Historical and future changes in streamflow and continental runoff: A review. In: Tang Q, Oki T, eds. Terrestrial Water Cycle and Climate Change: Natural and Human-Induced Impacts, Geophysical Monograph 221. AGU: John Wiley & Sons. 17–37Google Scholar
  48. Dai M, Yin Z. 2016. Marine carbon cycle. In: Chinese Academy of Sciences, ed. China Discipline Development Strategy: Marine Science (in Chinese). Beijing: Science Press. 199–221Google Scholar
  49. Dai M, Cao Z, Guo X, Zhai W, Liu Z, Yin Z, Xu Y, Gan J, Hu J, Du C. 2013a. Why are some marginal seas sources of atmospheric CO2? Geophys Res Lett, 40: 2154–2158Google Scholar
  50. Dai M, Guo X, Zhai W, Yuan L, Wang B, Wang L, Cai P, Tang T, Cai W J. 2006. Oxygen depletion in the upper reach of the Pearl River estuary during a winter drought. Mar Chem, 102: 159–169Google Scholar
  51. Dai M, Meng F, Tang T, Kao S J, Lin J, Chen J, Huang-Chuan J, Tian J, Gan J, Yang S. 2009. Excess total organic carbon in the intermediate water of the South China Sea and its export to the North Pacific. Geochem Geophys Geosyst, 10: Q12002Google Scholar
  52. Dai M, Wang L, Guo X, Zhai W, Li Q, He B, Kao S J. 2008. Nitrification and inorganic nitrogen distribution in a large perturbed river/estuarine system: The Pearl River Estuary, China. Biogeosciences, 5: 1227–1244Google Scholar
  53. Dai M, Yin Z, Meng F, Liu Q, Cai W J. 2012. Spatial distribution of riverine DOC inputs to the ocean: an updated global synthesis. Curr Opin Env Sust, 4: 170–178Google Scholar
  54. Dai M, Zhai W, Lu Z, Cai P, Cai W J, Hong H. 2004. Regional studies of carbon cycles in China: Progress and perspectives (in Chinese). Adv Earth Sci, 19: 120–130Google Scholar
  55. Dai M, Zhai W, Xu Y, Li Q, Han A, Zheng N, Zheng N, Zhou K, Meng F, Lin H, Guo X, Wang X. 2013b. Marine Chemistry. In: Wang Y, Liu R, Su J, eds. China Marine Geography (in Chinese). Beijing: Science Press. 194–244Google Scholar
  56. DeGrandpre M D, Olbu G J, Beatty C M, Hammar T R. 2002. Air-sea CO2 fluxes on the US Middle Atlantic Bight. Deep-Sea Res Part II-Top Stud Oceanogr, 49: 4355–4367Google Scholar
  57. Deng B, Zhang J, Wu Y. 2006. Recent sediment accumulation and carbon burial in the East China Sea. Glob Biogeochem Cycle, 20: GB3014Google Scholar
  58. De Vries T, Holzer M, Primeau F. 2017. Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. Nature, 542: 215–218Google Scholar
  59. Doney S C. 2010. The growing human footprint on coastal and open-ocean biogeochemistry. Science, 328: 1512–1516Google Scholar
  60. Duan X, Wang X, Fei L, Ouyang Z. 2008. Primary evaluation of carbon sequestration potential of wetlands in China. Acta Ecol Sin, 28: 463–469Google Scholar
  61. Dugdale R C, Wilkerson F P. 1986. The use of 15N to measure nitrogen uptake in eutrophic oceans; experimental considerations. Limnol Oceanogr, 31: 673–689Google Scholar
  62. Elderfield H. 2002. Climate change: Carbonate mysteries. Science, 296: 1618–1621Google Scholar
  63. Evans W, Hales B, Strutton P G. 2011. Seasonal cycle of surface ocean pCO2 on the Oregon shelf. J Geophys Res, 116: C05012Google Scholar
  64. Evans W, Hales B, Strutton P G, Ianson D. 2012. Sea-air CO2 fluxes in the western Canadian coastal ocean. Prog Oceanogr, 101: 78–91Google Scholar
  65. Falkowski P, Scholes R J, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder S, Mackenzie F T, Moore I I I B, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W. 2000. The global carbon cycle: A test of our knowledge of Earth as a system. Science, 290: 291–296Google Scholar
  66. Fransson A, Chierici M, Nojiri Y. 2006. Increased net CO2 outgassing in the upwelling region of the southern Bering Sea in a period of variable marine climate between 1995 and 2001. J Geophys Res, 111: C08008Google Scholar
  67. Friederich G E, Ledesma J, Ulloa O, Chavez F P. 2008. Air-sea carbon dioxide fluxes in the coastal southeastern tropical Pacific. Prog Oceanogr, 79: 156–166Google Scholar
  68. Friederich G E, Walz P M, Burczynski M G, Chavez F P. 2002. Inorganic carbon in the central California upwelling system during the 1997–1999 El Niño-La Niña event. Prog Oceanogr, 54: 185–203Google Scholar
  69. Gagan M K, Ayliffe L K, Opdyke B N, Hopley D, Scott-Gagan H, Cowley J. 2002. Coral oxygen isotope evidence for recent groundwater fluxes to the Australian Great Barrier Reef. Geophys Res Lett, 29: 43-1–43-4Google Scholar
  70. Gan J, Li H, Curchitser E N, Haidvogel D B. 2006. Modeling South China Sea circulation: Response to seasonal forcing regimes. J Geophys Res, 111: C06034Google Scholar
  71. Gao Z, Chen L, Sun H, Chen B, Cai W J. 2012. Distributions and air-sea fluxes of carbon dioxide in the Western Arctic Ocean. Deep-Sea Res Part II-Top Stud Oceanogr, 81–84: 46–52Google Scholar
  72. Guo X, Cai W J, Zhai W, Dai M, Wang Y, Chen B. 2008. Seasonal variations in the inorganic carbon system in the Pearl River (Zhujiang) estuary. Cont Shelf Res, 28: 1424–1434Google Scholar
  73. Guo X, Dai M, Zhai W, Cai W J, Chen B. 2009. CO2 flux and seasonal variability in a large subtropical estuarine system, the Pearl River Estuary, China. J Geophys Res, 114: G03013Google Scholar
  74. Guo H Q, Noormets A, Zhao B, Chen J Q, Sun G, Gu Y J, Li B, Chen J K. 2009. Tidal effects on net ecosystem exchange of carbon in an estuarine wetland. Agric For Meteorol, 149: 1820–1828Google Scholar
  75. Guo X H, Zhai W D, Dai M H, Zhang C, Bai Y, Xu Y, Li Q, Wang G Z. 2015. Air-sea CO2 fluxes in the East China Sea based on multiple-year underway observations. Biogeosciences, 12: 5495–5514Google Scholar
  76. Guo X, Zhang Y, Zhang F, Cao Q. 2010. Characteristics and flux of settling particulate matter in neritic waters: The southern Yellow Sea and the East China Sea. Deep-Sea Res Part II-Top Stud Oceanogr, 57: 1058–1063Google Scholar
  77. Hales B, Takahashi T, Bandstra L. 2005. Atmospheric CO2 uptake by a coastal upwelling system. Glob Biogeochem Cycle, 19: GB1009Google Scholar
  78. Hopkinson C S, Cai W J, Hu X. 2012. Carbon sequestration in wetland dominated coastal systems—A global sink of rapidly diminishing magnitude. Curr Opin Env Sust, 4: 186–194Google Scholar
  79. Ho T Y, You C F, Chou W C, Pai S C, Wen L S, Sheu D D. 2009. Cadmium and phosphorus cycling in the water column of the South China Sea: The roles of biotic and abiotic particles. Mar Chem, 115: 125–133Google Scholar
  80. Hood E M, Merlivat L, Johannessen T. 1999. Variations of ƒCO2 and airsea flux of CO2 in the Greenland Sea gyre using high-frequency time series data from CARIOCA drift buoys. J Geophys Res, 104: 20571–20583Google Scholar
  81. Hu D, Yang Z. 2001. Key Processes of Ocean Fluxes in the East China Sea (in Chinese). Beijing: Ocean Press. 205Google Scholar
  82. Huang T H, Chen C T A, Tseng H C, Lou J Y, Wang S L, Yang L, Kandasamy S, Gao X, Wang J T, Aldrian E, Jacinto G S, Anshari G Z, Sompongchaiyakul P, Wang B J. 2017. Riverine carbon fluxes to the South China Sea. J Geophys Res, 122: 1239–1259Google Scholar
  83. Hung C C, Tseng C W, Gong G C, Chen K S, Chen M H, Hsu S C. 2013. Fluxes of particulate organic carbon in the East China Sea in summer. Biogeosciences, 10: 6469–6484Google Scholar
  84. Ito R G, Schneider B, Thomas H. 2005. Distribution of surface fCO2 and air-sea fluxes in the Southwestern subtropical Atlantic and adjacent continental shelf. J Mar Syst, 56: 227–242Google Scholar
  85. Jiao N Z, Herndl G J, Hansell D A, Benner R, Kattner G, Wilhelm S W, Kirchman D L, Weinauer M G, Luo T W, Chen F, Azam F. 2010. Microbial production of recalcitrant dissolved organic matter: Longterm carbon storage in the global ocean. Nat Rev Microbiol, 8: 593–599Google Scholar
  86. Kang D J, Kim J Y, Lee T, Kim K R. 2010. The East Sea (Sea of Japan). In: Liu K K, Atkinson L, Quiñones R, Talaue-Mamanus L, eds. Carbon and Nutrient Fluxes in Continental Margins: A global Synthesis. Heidelberg: Springer-Verlag. 383–393Google Scholar
  87. Laruelle G G, Dürr H H, Slomp C P, Borges A V. 2010. Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves. Geophys Res Lett, 37: L15607Google Scholar
  88. Laruelle G G, Lauerwald R, Pfeil B, Regnier P. 2014. Regionalized global budget of the CO2 exchange at the air-water interface in continental shelf seas. Glob Biogeochem Cycle, 28: 1199–1214Google Scholar
  89. Le Quéré C, Andrew R M, Friedlingstein P, Sitch S, Pongratz J, Manning A C, Korsbakken J I, Peters G P, Canadell J G, Jackson R B, Boden T A, Tans P P, Andrews O D, Arora V K, Bakker D C E, Barbero L, Becker M, Betts R A, Bopp L, Chevallier F, Chini L P, Ciais P, Cosca C E, Cross J, Currie K, Gasser T, Harris I, Hauck J, Haverd V, Houghton R A, Hunt C W, Hurtt G, Ilyina T, Jain A K, Kato E, Kautz M, Keeling R F, Klein Goldewijk K, Körtzinger A, Landschützer P, Lefèvre N, Lenton A, Lienert S, Lima I, Lombardozzi D, Metzl N, Millero F, Monteiro P M S, Munro D R, Nabel J E M S, Nakaoka S, Nojiri Y, Padín X A, Peregon A, Pfeil B, Pierrot D, Poulter B, Rehder G, Reimer J, Rödenbeck C, Schwinger J, Séférian R, Skjelvan I, Stocker B D, Tian H, Tilbrook B, van der Laan-Luijkx I T, van der Werf G R, van Heuven S, Viovy N, Vuichard N, Walker A P, Watson A J, Wiltshire A J, Zaehle S, Zhu D. 2017. Global carbon budget 2017. Earth Syst Sci Data, 10: 405–448Google Scholar
  90. Li H, Wiesner M G, Chen J, Ling Z, Zhang J, Ran L. 2017. Long-term variation of mesopelagic biogenic flux in the central South China Sea: Impact of monsoonal seasonality and mesoscale eddy. Deep-Sea Res Part I-Oceanogr Res Pap, 126: 62–72Google Scholar
  91. Li L, Qu T D. 2006. Thermohaline circulation in the deep South China Sea basin inferred from oxygen distributions. J Geophys Res, 111: C05017Google Scholar
  92. Liu H, Ren H, Hui D, Wang W, Liao B, Cao Q. 2014. Carbon stocks and potential carbon storage in the mangrove forests of China. J Environ Manage, 133: 86–93Google Scholar
  93. Liu K K, Atkinson L, Quiñones R, Talaue-Mcmanus L. 2010a. Carbon and Nutrient Fluxes in Continental Margins: A Global Synthesis. Heidelberg: Springer. 741Google Scholar
  94. Liu K K, Atkinson L, Quiñones R, Talaue-Mcmanus L. 2010b. Biogeochemistry of the Kuroshio and the East China Sea. In: Liu K K, Atkinson L, Quiñ ones R, Talaue-Mcmanus L, eds. Carbon and Nutrient Fluxes in Continental Margins: A Global Synthesis. IGBP Book Series. Heidelberg: Springer. 3–24Google Scholar
  95. Liu K K, Chao S Y, Marra J, Snidvongs A. 2006. Monsoonal forcing and biogeochemical environments of outer southeast Asia seas. In: Robinson A, Brink K H, eds. The Sea: Ideas and Observations on Progress in the Study of Seas, the Global Coastal Ocean: Interdisciplinary Regional Studies and Synthesis. Cambridge: Harvard University Press. 673–721Google Scholar
  96. Liu K K, Iseki K, Chao S Y. 2000. Continental margin carbon fluxes. In: Hanson R B, Ducklow H W, Field J G, eds. The Changing Ocean Carbon Cycle. Cambridge: Cambridge University Press. 187–239Google Scholar
  97. Liu Q, Charette M A, Henderson P B, McCorkle D C, Martin W, Dai M. 2014. Effect of submarine groundwater discharge on the coastal ocean inorganic carbon cycle. Limnol Oceanogr, 59: 1529–1554Google Scholar
  98. Liu Q, Dai M, Chen W, Huh C A, Wang G, Li Q, Charette M A. 2012. How significant is submarine groundwater discharge and its associated dissolved inorganic carbon in a river-dominated shelf system? Biogeosciences, 9: 1777–1795Google Scholar
  99. Liu Z, Zhang L, Cai W J, Wang L, Xue M, Zhang X. 2014. Removal of dissolved inorganic carbon in the Yellow River Estuary. Limnol Oceanogr, 59: 413–426Google Scholar
  100. Lu X, Song J, Yuan H, Li N. 2015. Carbon distribution and exchange of Kuroshio and adjacent China sea shelf: A review (in Chinese). Adv Earth Sci, 30: 214–225Google Scholar
  101. Luo X, Wei H, Liu Z, Zhao L. 2015. Seasonal variability of air-sea CO2 fluxes in the Yellow and East China Seas: A case study of continental shelf sea carbon cycle model. Cont Shelf Res, 107: 69–78Google Scholar
  102. Maher D T, Santos I R, Golsby-Smith L, Gleeson J, Eyre B D. 2013. Groundwater-derived dissolved inorganic and organic carbon exports from a mangrove tidal creek: The missing mangrove carbon sink? Limnol Oceanogr, 58: 475–488Google Scholar
  103. McKee B A. 2003. RiOMar: The Transport, Transformation and Fate of Carbon in River-Dominated Ocean Margins. RiOMar Workshop. Tulane UniversityGoogle Scholar
  104. Moore W S. 1999. The subterranean estuary: A reaction zone of ground water and sea water. Mar Chem, 65: 111–125Google Scholar
  105. Nakaoka S I, Aoki S, Nakazawa T, Hashida G, Morimoto S, Yamanouchi T, Yoshikawa-Inoue H. 2006. Temporal and spatial variations of oceanic pCO2 and air-sea CO2 flux in the Greenland Sea and the Barents Sea. Tellus Ser B-Chem Phys Meteorol, 58: 148–161Google Scholar
  106. Ni H G, Lu F H, Luo X L, Tian H Y, Zeng E Y. 2008. Riverine inputs of total organic carbon and suspended particulate matter from the Pearl River Delta to the coastal ocean off South China. Mar Pollut Bull, 56: 1150–1157Google Scholar
  107. Nozaki Y, Yamamoto Y. 2001. Radium 228 based nitrate fluxes in the eastern Indian Ocean and the South China Sea and a silicon-induced “alkalinity pump” hypothesis. Glob Biogeochem Cycle, 15: 555–567Google Scholar
  108. Oh D C, Park M K, Kim K R. 2000. CO2 exchange at air-sea interface in the Huanghai Sea. Acta Oceanol Sin, 19: 79–89Google Scholar
  109. Omar A M, Johannessen T, Olsen A, Kaltin S, Rey F. 2007. Seasonal and interannual variability of the air-sea CO2 flux in the Atlantic sector of the Barents Sea. Mar Chem, 104: 203–213Google Scholar
  110. Pan Y, Birdsey R A, Fang J, Houghton R, Kauppi P E, Kurz W A, Phillips O L, Shvidenko A, Lewis S L, Canadell J G, Ciais P, Jackson R B, Pacala S W, McGuire A D, Piao S, Rautiainen A, Sitch S, Hayes D. 2011. A large and persistent carbon sink in the world’s forests. Science, 333: 988–993Google Scholar
  111. Peng T H, Hung J J, Wanninkhof R, Millero F J. 1999. Carbon budget in the East China Sea in spring. Tellus Ser B-Chem Phys Meteorol, 51: 531–540Google Scholar
  112. Qu B X, Song J M, Yuan H M, Li X G, Li N. 2014. Air-sea CO2 exchange process in the southern Yellow Sea in April of 2011, and June, July, October of 2012. Cont Shelf Res, 80: 8–19Google Scholar
  113. Qu T, Girton J B, Whitehead J A. 2006. Deepwater overflow through Luzon strait. J Geophys Res, 111: C01002Google Scholar
  114. Ran L, Lu X X, Sun H, Han J, Li R, Zhang J. 2013. Spatial and seasonal variability of organic carbon transport in the Yellow River, China. J Hydrol, 498: 76–88Google Scholar
  115. Regnier P, Friedlingstein P, Ciais P, Mackenzie F T, Gruber N, Janssens I A, Laruelle G G, Lauerwald R, Luyssaert S, Andersson A J, Arndt S, Arnosti C, Borges A V, Dale A W, Gallego-Sala A, Goddéris Y, Goossens N, Hartmann J, Heinze C, Ilyina T, Joos F, LaRowe D E, Leifeld J, Meysman F J R, Munhoven G, Raymond P A, Spahni R, Suntharalingam P, Thullner M. 2013. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat Geosci, 6: 597–607Google Scholar
  116. Rehder G, Suess E. 2001. Methane and pCO2 in the Kuroshio and the South China Sea during maximum summer surface temperatures. Mar Chem, 75: 89–108Google Scholar
  117. Sabine C L, Feely R A, Gruber N, Key R M, Lee K, Bullister J L, Wanninkhof R, Wong C S, Wallace D W R, Tilbrook B, Millero F J, Peng T H, Kozyr A, Ono T, Rios A F. 2004. The oceanic sink for anthropogenic CO2. Science, 305: 367–371Google Scholar
  118. Sadat-Noori M, Maher D T, Santos I R. 2016. Groundwater discharge as a source of dissolved carbon and greenhouse gases in a subtropical estuary. Estuaries Coasts, 39: 639–656Google Scholar
  119. Sanders C J, Maher D T, Tait D R, Williams D, Holloway C, Sippo J Z, Santos I R. 2016. Are global mangrove carbon stocks driven by rainfall? J Geophys Res, 121: 2600–2609Google Scholar
  120. Santos I R, Burnett W C, Dittmar T, Suryaputra I G N A, Chanton J. 2009. Tidal pumping drives nutrient and dissolved organic matter dynamics in a gulf of mexico subterranean estuary. Geochim Cosmochim Acta, 73: 1325–1339Google Scholar
  121. Sarmiento J L, Gruber N. 2002. Sinks for anthropogenic carbon. Phys Today, 55: 30–36Google Scholar
  122. Semiletov I P, Pipko I I, Repina I, Shakhova N E. 2007. Carbonate chemistry dynamics and carbon dioxide fluxes across the atmosphereice- water interfaces in the Arctic Ocean: Pacific sector of the Arctic. J Mar Syst, 66: 204–226Google Scholar
  123. Sheu D D, Chou W C, Chen C T A, Wei C L, Hsieh H L, Hou W P, Dai M. 2009. Riding over the Kuroshio from the South to the East China Sea: Mixing and transport of DIC. Geophys Res Lett, 36: L07603Google Scholar
  124. Sheu D D, Chou W C, Wei C L, Hou W P, Wong G T F, Hsu C W. 2010. Influence of El Niño on the sea-to-air CO2 flux at the SEATS timeseries site, northern South China Sea. J Geophys Res, 115: C10021Google Scholar
  125. Shim J H, Kim D, Kang Y C, Lee J H, Jang S T, Kim C H. 2007. Seasonal variations in pCO2 and its controlling factors in surface seawater of the northern East China Sea. Cont Shelf Res, 27: 2623–2636Google Scholar
  126. Sippo J Z, Maher D T, Tait D R, Ruiz-Halpern S, Sanders C J, Santos I R. 2017. Mangrove outwelling is a significant source of oceanic exchangeable organic carbon. Limnol Oceanogr, 2: 1–8Google Scholar
  127. Skjelvan I, Johannessen T, Miller L A. 1999. Interannual variability of fCO2 in the Greenland and Norwegian Seas. Tellus Ser B-Chem Phys Meteorol, 51: 477–489Google Scholar
  128. Slagstad D, Downing K, Carlotti F, Hirche H J. 1999. Modelling the carbon export and air-sea flux of CO2 in the Greenland Sea. Deep-Sea Res Part II-Top Stud Oceanogr, 46: 1511–1530Google Scholar
  129. Søvik A K, Kløve B. 2007. Emission of N2O and CH4 from a constructed wetland in southeastern Norway. Sci Total Environ, 380: 28–37Google Scholar
  130. Sutula M A, Perez B C, Reyes E, Childers D L, Davis S, Day Jr. J W, Rudnick D, Sklar F. 2003. Factors affecting spatial and temporal variability in material exchange between the Southern Everglades wetlands and Florida Bay (USA). Estuar Coast Shelf Sci, 57: 757–781Google Scholar
  131. State Oceanic Administration. 2013. China’s Marine Environment Bulletin in 2012 (in Chinese). 75–77Google Scholar
  132. Takahashi T, Sutherland S C, Wanninkhof R, Sweeney C, Feely R A, Chipman D W, Hales B, Friederich G, Chavez F, Sabine C, Watson A, Bakker D C E, Schuster U, Metzl N, Yoshikawa-Inoue H, Ishii M, Midorikawa T, Nojiri Y, Körtzinger A, Steinhoff T, Hoppema M, Olafsson J, Arnarson T S, Tilbrook B, Johannessen T, Olsen A, Bellerby R, Wong C S, Delille B, Bates N R, de Baar H J W. 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Res Part II-Top Stud Oceanogr, 56: 554–577Google Scholar
  133. Thomas H, Schneider B. 1999. The seasonal cycle of carbon dioxide in Baltic Sea surface waters. J Mar Syst, 22: 53–67Google Scholar
  134. Thomas H, Bozec Y, de Baar H J W, Elkalay K, Frankignoulle M, Schiettecatte L S, Kattner G, Borges A V. 2005. The carbon budget of the North Sea. Biogeosciences, 2: 87–96Google Scholar
  135. Thomas H, Bozec Y, Elkalay K, de Baar H J W. 2004. Enhanced open ocean storage of CO2 from shelf sea pumping. Science, 304: 1005–1008Google Scholar
  136. Tian J W, Yang Q X, Liang X F, Xie L L, Hu D X, Wang F, Qu T D. 2006. Observation of Luzon Strait transport. Geophys Res Lett, 33: L19607Google Scholar
  137. Torres R, Turner D R, Rutllant J, Lefèvre N. 2003. Continued CO2 outgassing in an upwelling area off northern Chile during the development phase of El Niño 1997–1998 (July 1997). J Geophys Res, 108: 3336Google Scholar
  138. Torres R, Pantoja S, Harada N, González H E, Daneri G, Frangopulos M, Rutllant J A, Duarte C M, Rúiz-Halpern S, Mayol E, Fukasawa M. 2011. Air-sea CO2 fluxes along the coast of Chile: From CO2 outgassing in central northern upwelling waters to CO2 uptake in southern Patagonian fjords. J Geophys Res, 116: C09006Google Scholar
  139. Tseng C M, Liu K K, Gong G C, Shen P Y, Cai W J. 2011. CO2 uptake in the East China Sea relying on Changjiang runoff is prone to change. Geophys Res Lett, 38: L24609Google Scholar
  140. Tseng C M, Shen P Y, Liu K K. 2014. Synthesis of observed air-sea CO2 exchange fluxes in the river-dominated East China Sea and improved estimates of annual and seasonal net mean fluxes. Biogeosciences, 11: 3855–3870Google Scholar
  141. Tseng C M, Wong G T F, Chou W C, Lee B S, Sheu D D, Liu K K. 2007. Temporal variations in the carbonate system in the upper layer at the SEATS station. Deep-Sea Res Part II-Top Stud Oceanogr, 54: 1448–1468Google Scholar
  142. Tsunogai S, Watanabe S, Sato T. 1999. Is there a “continental shelf pump” for the absorption of atmospheric CO2? Tellus Ser B-Chem Phys Meteorol, 51: 701–712Google Scholar
  143. Vandemark D, Salisbury J E, Hunt C W, Shellito S M, Irish J D, McGillis W R, Sabine C L, Maenner S M. 2011. Temporal and spatial dynamics of CO2 air-sea flux in the Gulf of Maine. J Geophys Res, 116: C01012Google Scholar
  144. Wang G, Dai M, Shen S S P, Bai Y, Xu Y. 2014. Quantifying uncertainty sources in the gridded data of sea surface CO2 partial pressure. J Geophys Res, 119: 5181–5189Google Scholar
  145. Wang H, Dai M, Liu J, Kao S J, Zhang C, Cai W J, Wang G, Qian W, Zhao M, Sun Z. 2016. Eutrophication-driven hypoxia in the East China Sea off the Changjiang Estuary. Environ Sci Technol, 50: 2255–2263Google Scholar
  146. Wang G, Wang Z, Zhai W, Moore W S, Li Q, Yan X, Qi D, Jiang Y. 2015. Net subterranean estuarine export fluxes of dissolved inorganic C, N, P, Si, and total alkalinity into the Jiulong River estuary, China. Geochim Cosmochim Acta, 149: 103–114Google Scholar
  147. Wang S L, Arthur Chen C T, Hong G H, Chung C S. 2000. Carbon dioxide and related parameters in the East China Sea. Cont Shelf Res, 20: 525–544Google Scholar
  148. Wang X, Ma H, Li R, Song Z, Wu J. 2012. Seasonal fluxes and source variation of organic carbon transported by two major Chinese Rivers: The Yellow River and Changjiang (Yangtze) River. Glob Biogeochem Cycle, 26: GB2025Google Scholar
  149. Wei C L, Lin S Y, Sheu D D D, Chou W C, Yi M C, Santschi P H, Wen L S. 2011. Particle-reactive radionuclides (234Th, 210Pb, 210Po) as tracers for the estimation of export production in the South China Sea. Biogeosciences, 8: 3793–3808Google Scholar
  150. Wu K, Dai M, Chen J, Meng F, Li X, Liu Z, Du C, Gan J. 2015. Dissolved organic carbon in the South China Sea and its exchange with the Western Pacific Ocean. Deep-Sea Res Part II-Top Stud Oceanogr, 122: 41–51Google Scholar
  151. Wu Y, Zhang J, Liu S M, Zhang Z F, Yao Q Z, Hong G H, Cooper L. 2007. Sources and distribution of carbon within the Yangtze River system. Estuar Coast Shelf Sci, 71: 13–25Google Scholar
  152. Xia B, Zhang L. 2011. Carbon distribution and fluxes of 16 rivers discharging into the Bohai Sea in summer. Acta Oceanol Sin, 30: 43–54Google Scholar
  153. Xu X, Zang K, Zhao H, Zheng N, Huo C, Wang J. 2016. Monthly CO2 at A4HDYD station in a productive shallow marginal sea (Yellow Sea) with a seasonal thermocline: Controlling processes. J Mar Syst, 159: 89–99Google Scholar
  154. Xue L, Xue M, Zhang L, Sun T, Guo Z, Wang J. 2012. Surface partial pressure of CO2 and air-sea exchange in the northern Yellow Sea. J Mar Syst, 105–108: 194–206Google Scholar
  155. Xue L, Zhang L, Cai W J, Jiang L Q. 2011. Air-sea CO2 fluxes in the southern Yellow Sea: An examination of the continental shelf pump hypothesis. Cont Shelf Res, 31: 1904–1914Google Scholar
  156. Yang W F, Huang Y P, Chen M, Qiu Y S, Peng A G, Zhang L. 2009. Export and remineralization of POM in the Southern Ocean and the South China Sea estimated from 210Po/210Pb disequilibria. Chin Sci Bull, 54: 2118–2123Google Scholar
  157. Yin W, Qi Y, Cao Z, Zhang Y, Tang H. 2012. The environmental characteristics of the major Greenhouse gases and seawater pCO2 in the Bohai Sea (in Chinese). Trans Oceanol Limnol, 4: 189–193Google Scholar
  158. Zhai W D, Dai M. 2009. On the seasonal variation of air-sea CO2 fluxes in the outer Changjiang (Yangtze River) Estuary, East China Sea. Mar Chem, 117: 2–10Google Scholar
  159. Zhai W D, Dai M, Cai W J. 2009. Coupling of surface pCO2 and dissolved oxygen in the northern South China Sea: impacts of contrasting coastal processes. Biogeosciences, 6: 2589–2598Google Scholar
  160. Zhai W D, Dai M, Cai W J, Wang Y, Hong H. 2005. The partial pressure of carbon dioxide and air-sea fluxes in the northern South China Sea in spring, summer and autumn. Mar Chem, 96: 87–97Google Scholar
  161. Zhai W D, Dai M H, Chen B S, Guo X H, Li Q, Shang S L, Zhang C Y, Cai W J, Wang D X. 2013. Seasonal variations of sea-air CO2 fluxes in the largest tropical marginal sea (South China Sea) based on multiple-year underway measurements. Biogeosciences, 10: 7775–7791Google Scholar
  162. Zhai W D, Dai M, Guo X H. 2007. Carbonate system and CO2 degassing fluxes in the inner estuary of Changjiang (Yangtze) River, China. Mar Chem, 107: 342–356Google Scholar
  163. Zhai W D, Yan X L, Qi D. 2017. Biogeochemical generation of dissolved inorganic carbon and nitrogen in the North Branch of inner Changjiang Estuary in a dry season. Estuar Coast Shelf Sci, 197: 136–149Google Scholar
  164. Zhang F, Liu A, Li Y, Zhao L, Wang Q, Du M. 2008. CO2 flux in alpine wetland ecosystem on the Qinghai-Tibetan Plateau, China. Acta Ecol Sin, 28: 453–462Google Scholar
  165. Zhang X, Zhang L. 2007. Phenomena of pH instant increasing and its effect on dissolved inorganic carbon flux to sea in Yellow River estuary (in Chinese). Environ Sci, 28: 1216–1222Google Scholar
  166. Zhang Y, Zhang F, Guo X, Zhang M. 2004. Vertical flux of the settling particulate matter in the water column of the Yellow Sea in Summer (in Chinese). Oceanol Limnol Sin, 35: 230–238Google Scholar
  167. Zhang Y, Zhang F, Guo X, Zhang M. 2005. Autumn vertical flux of settling particulate matter at three typical stations in the Yellow Sea (in Chinese). Geochimica, 34: 123–128Google Scholar
  168. Zhou K. 2009. Preliminary research on the distribution, export and dynamics of particulate organic carbon in spring in Yellow Sea. Master Thesis (in Chinese). Xiamen: Xiamen UniversityGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Qian Liu
    • 1
  • Xianghui Guo
    • 1
  • Zhiqiang Yin
    • 1
  • Kuanbo Zhou
    • 1
  • Elliott Gareth Roberts
    • 1
  • Minhan Dai
    • 1
  1. 1.State Key Laboratory for Marine Environmental ScienceXiamen UniversityXiamenChina

Personalised recommendations