Advertisement

Science China Earth Sciences

, Volume 61, Issue 12, pp 1714–1727 | Cite as

Climate tipping-point potential and paradoxical production of methane in a changing ocean

  • Hongyue DangEmail author
  • Jia Li
Review

Abstract

The global warming potential of methane (CH4) is about 30 times stronger than that of carbon dioxide (CO2) over a century timescale. Methane emission is hypothesized to have contributed to global climate change events and mass extinctions during Earth’s history. Therefore, the study of CH4 production processes is critically important to the understanding of global climate change. It has been a dogma that biogenic CH4 detectable in the oceans originates exclusively from the anaerobic metabolic activity of methanogenic archaea in hypoxic and anoxic environments, despite reports that many oxic surface and near-surface waters of the world’s oceans are CH4-supersaturated, thereby rendering net sea-to-air emissions of CH4. The phenomenon of CH4 production in oxic marine waters is referred to as the “ocean methane paradox”. Although still not totally resolved, recent studies have generated several hypotheses regarding the sources of CH4 production in oxic seawater. This review will summarize our current understanding of the importance of CH4 in the global climate and analyze the biological processes and their underpinning mechanisms that lead to the production of CH4 in oxic seawater environments. We will also tentatively explore the relationships of these microbial metabolic processes with global changes in climate and environment.

Keywords

Ocean methane paradox Gas hydrate Marine particles Methylphosphonate DSMP Global warming Ocean deoxygenation Ocean acidification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFA0601303), the Chinese State Oceanic Administration (SOA) (Grant No. GASI-03-01-02-05), the National Natural Science Foundation of China (Grant Nos. 41676122, 91328209 & 91428308), and the China National Offshore Oil Corporation (Grant Nos. CNOOC-KJ125FZDXM00TJ001-2014 & CNOOC-KJ125FZDXM00ZJ001-2014).

References

  1. Angle J C, Morin T H, Solden L M, Narrowe A B, Smith G J, Borton M A, Rey-Sanchez C, Daly R A, Mirfenderesgi G, Hoyt D W, Riley W J, Miller C S, Bohrer G, Wrighton K C. 2017. Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions. Nat Commun, 8: 1567Google Scholar
  2. Archer D. 2007. Methane hydrate stability and anthropogenic climate change. Biogeosciences, 4: 521–544Google Scholar
  3. Archer D, Buffett B, Brovkin V. 2009. Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proc Natl Acad Sci USA, 106: 20596–20601Google Scholar
  4. Aronson E L, Allison S D, Helliker B R. 2013. Environmental impacts on the diversity of methane-cycling microbes and their resultant function. Front Microbiol, 4: 225Google Scholar
  5. Auman A J, Speake C C, Lidstrom M E. 2001. nifH sequences and nitrogen fixation in type I and type II methanotrophs. Appl Environ Microbiol, 67: 4009–4016Google Scholar
  6. Bakker D C E, Bange H W, Gruber N, Johannessen T, Upstill-Goddard R C, Borges A V, Delille B, Löscher C L, Naqvi S W A, Omar A M, Santana-Casiano J M. 2014. Air-sea interactions of natural long-lived greenhouse gases (CO2, N2O, CH4) in a changing climate. In: Liss P S, Johnson M T, eds. Ocean-Atmosphere Interactions of Gases and Particles. Heidelberg: SpringerGoogle Scholar
  7. Bakun A. 2017. Climate change and ocean deoxygenation within intensified surface-driven upwelling circulations. Phil Trans R Soc A, 375: 20160327Google Scholar
  8. Balch W E, Fox G E, Magrum L J, Woese C R, Wolfe R S. 1979. Methanogens: Reevaluation of a unique biological group. Microbiol Rev, 43: 260–296Google Scholar
  9. Bange H W. 2006. Nitrous oxide and methane in European coastal waters. Estuar Coast Shelf Sci, 70: 361–374Google Scholar
  10. Bange H W, Bartell U H, Rapsomanikis S, Andreae M O. 1994. Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane. Glob Biogeochem Cycle, 8: 465–480Google Scholar
  11. Bange H W, Ramesh R, Rapsomanikis S, Andreae M O. 1998. Methane in surface waters of the Arabian Sea. Geophys Res Lett, 25: 3547–3550Google Scholar
  12. Bates T S, Kelly K C, Johnson J E, Gammon R H. 1996. A reevaluation of the open ocean source of methane to the atmosphere. J Geophys Res, 101: 6953–6961Google Scholar
  13. Beerling D J, Royer D L. 2011. Convergent Cenozoic CO2 history. Nat Geosci, 4: 418–420Google Scholar
  14. Beman J M, Chow C E, King A L, Feng Y, Fuhrman J A, Andersson A, Bates N R, Popp B N, Hutchins D A. 2011. Global declines in oceanic nitrification rates as a consequence of ocean acidification. Proc Natl Acad Sci USA, 108: 208–213Google Scholar
  15. Beversdorf L J, White A E, Björkman K M, Letelier R M, Karl D M. 2010. Phosphonate metabolism by Trichodesmium IMS101 and the production of greenhouse gases. Limnol Oceanogr, 55: 1768–1778Google Scholar
  16. Biastoch A, Treude T, Rüpke L H, Riebesell U, Roth C, Burwicz E B, Park W, Latif M, Böning C W, Madec G, Wallmann K. 2011. Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification. Geophys Res Lett, 38: L08602Google Scholar
  17. Bijma J, Pörtner H O, Yesson C, Rogers A D. 2013. Corrigendum to “Climate change and the oceans—What does the future hold?” Mar Pollut Bull, 76: 436Google Scholar
  18. Boetius A, Wenzhöfer F. 2013. Seafloor oxygen consumption fuelled by methane from cold seeps. Nat Geosci, 6: 725–734Google Scholar
  19. Bogard M J, del Giorgio P A, Boutet L, Chaves M C G, Prairie Y T, Merante A, Derry A M. 2014. Oxic water column methanogenesis as a major component of aquatic CH4 fluxes. Nat Commun, 5: 5350Google Scholar
  20. Borges A V, Champenois W, Gypens N, Delille B, Harlay J. 2016. Massive marine methane emissions from near-shore shallow coastal areas. Sci Rep, 6: 27908Google Scholar
  21. Boswell R, Collett T S. 2011. Current perspectives on gas hydrate resources. Energy Environ Sci, 4: 1206–1215Google Scholar
  22. Boudreau B P, Luo Y, Meysman F J R, Middelburg J J, Dickens G R. 2015. Gas hydrate dissociation prolongs acidification of the Anthropocene oceans. Geophys Res Lett, 42: 9337–9344Google Scholar
  23. Braeckman U, Van Colen C, Guilini K, Van Gansbeke D, Soetaert K, Vincx M, Vanaverbeke J. 2014. Empirical evidence reveals seasonally dependent reduction in nitrification in coastal sediments subjected to near future ocean acidification. Plos One, 9: e108153Google Scholar
  24. Bridgham S D, Cadillo-Quiroz H, Keller J K, Zhuang Q. 2013. Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Change Biol, 19: 1325–1346Google Scholar
  25. Brigham-Grette J, Melles M, Minyuk P, Andreev A, Tarasov P, DeConto R, Koenig S, Nowaczyk N, Wennrich V, Rosén P, Haltia E, Cook T, Gebhardt C, Meyer-Jacob C, Snyder J, Herzschuh U. 2013. Pliocene warmth, polar amplification, and stepped Pleistocene cooling recorded in NE Arctic Russia. Science, 340: 1421–1427Google Scholar
  26. Brooks J M, Reid D F, Bernard B B. 1981. Methane in the upper water column of the northwestern Gulf of Mexico. J Geophys Res, 86: 11029–11040Google Scholar
  27. Bullock H A, Luo H, Whitman W B. 2017. Evolution of dimethylsulfoniopropionate metabolism in marine phytoplankton and bacteria. Front Microbiol, 8: 637Google Scholar
  28. Capelle D W, Tortell P D. 2016. Factors controlling methane and nitrousoxide variability in the southern British Columbia coastal upwelling system. Mar Chem, 179: 56–67Google Scholar
  29. Carini P. 2016. Microbial oxidation of DMS to DMSO: A biochemical surprise with geochemical implications. Environ Microbiol, 18: 2302–2304Google Scholar
  30. Carini P, White A E, Campbell E O, Giovannoni S J. 2014. Methane production by phosphate-starved SAR11 chemoheterotrophic marine bacteria. Nat Commun, 5: 4346Google Scholar
  31. Carpenter L J, Archer S D, Beale R. 2012. Ocean-atmosphere trace gas exchange. Chem Soc Rev, 41: 6473–6506Google Scholar
  32. Cha I T, Min U G, Kim S J, Yim K J, Roh S W, Rhee S K. 2013. Methanomethylovorans uponensis sp. nov., a methylotrophic methanogen isolated from wetland sediment. Antonie van Leeuwenhoek, 104: 1005–1012Google Scholar
  33. Chronopoulou P M, Shelley F, Pritchard W J, Maanoja S T, Trimmer M. 2017. Origin and fate of methane in the Eastern Tropical North Pacific oxygen minimum zone. ISME J, 11: 1386–1399Google Scholar
  34. Conrad R. 2009. The global methane cycle: Recent advances in understanding the microbial processes involved. Environ Microbiol Rep, 1: 285–292Google Scholar
  35. Cynar F J, Yayanos A A. 1991. Enrichment and characterization of a methanogenic bacterium from the oxic upper layer of the ocean. Curr Microbiol, 23: 89–96Google Scholar
  36. Damm E, Helmke E, Thoms S, Schauer U, Nöthig E, Bakker K, Kiene R P. 2010. Methane production in aerobic oligotrophic surface water in the central Arctic Ocean. Biogeosciences, 7: 1099–1108Google Scholar
  37. Damm E, Kiene R P, Schwarz J, Falck E, Dieckmann G. 2008. Methane cycling in Arctic shelf water and its relationship with phytoplankton biomass and DMSP. Mar Chem, 109: 45–59Google Scholar
  38. Damm E, Thoms S, Beszczynska-Möller A, Nöthig E M, Kattner G. 2015. Methane excess production in oxygen-rich polar water and a model of cellular conditions for this paradox. Polar Sci, 9: 327–334Google Scholar
  39. Dang H Y, Chen C T A. 2017. Ecological energetic perspectives on responses of nitrogen-transforming chemolithoautotrophic microbiota to changes in the marine environment. Front Microbiol, 8: 1246Google Scholar
  40. Dang H Y, Lovell C R. 2016. Microbial surface colonization and biofilm development in marine environments. Microbiol Mol Biol Rev, 80: 91–138Google Scholar
  41. Dang H Y, Luan X W, Chen R P, Zhang X X, Guo L Z, Klotz M G. 2010. Diversity, abundance and distribution of amoA-encoding archaea in deep-sea methane seep sediments of the Okhotsk Sea. Fems Microbiol Ecol, 72: 370–385Google Scholar
  42. Dang H Y, Luan X W, Zhao J Y, Li J. 2009. Diverse and novel nifH and nifH-like gene sequences in the deep-sea methane seep sediments of the Okhotsk Sea. Appl Environ Microbiol, 75: 2238–2245Google Scholar
  43. Dang H Y, Zhou H X, Yang J Y, Ge H M, Jiao N Z, Luan X W, Zhang C L, Klotz M G. 2013. Thaumarchaeotal signature gene distribution in sediments of the northern South China Sea: An indicator of the metabolic intersection of the marine carbon, nitrogen, and phosphorus cycles? Appl Environ Microbiol, 79: 2137–2147Google Scholar
  44. Dang H, Jiao N. 2014. Perspectives on the microbial carbon pump with special reference to microbial respiration and ecosystem efficiency in large estuarine systems. Biogeosciences, 11: 3887–3898Google Scholar
  45. de Angelis M A, Lee C. 1994. Methane production during zooplankton grazing on marine phytoplankton. Limnol Oceanogr, 39: 1298–1308Google Scholar
  46. Dedysh S N, Ricke P, Liesack W. 2004. NifH and NifD phylogenies: An evolutionary basis for understanding nitrogen fixation capabilities of methanotrophic bacteria. Microbiology, 150: 1301–1313Google Scholar
  47. Dekas A E, Poretsky R S, Orphan V J. 2009. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science, 326: 422–426Google Scholar
  48. del Valle D, Karl D. 2014. Aerobic production of methane from dissolved water-column methylphosphonate and sinking particles in the North Pacific Subtropical Gyre. Aquat Microb Ecol, 73: 93–105Google Scholar
  49. DeVries T, Holzer M, Primeau F. 2017. Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. Nature, 542: 215–218Google Scholar
  50. Dickens G R. 2011. Down the Rabbit Hole: Toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events. Clim Past, 7: 831–846Google Scholar
  51. Dickens G R, Castillo M M, Walker J C G. 1997. A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology, 25: 259–262Google Scholar
  52. Dickens G R, O’Neil J R, Rea D K, Owen R M. 1995. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography, 10: 965–971Google Scholar
  53. Dickinson R E, Cicerone R J. 1986. Future global warming from atmospheric trace gases. Nature, 319: 109–115Google Scholar
  54. DiSpirito A A, Semrau J D, Murrell J C, Gallagher W H, Dennison C, Vuilleumier S. 2016. Methanobactin and the link between copper and bacterial methane oxidation. Microbiol Mol Biol Rev, 80: 387–409Google Scholar
  55. Ditchfield A, Wilson S, Hart M, Purdy K, Green D, Hatton A. 2012. Identification of putative methylotrophic and hydrogenotrophic methanogens within sedimenting material and copepod faecal pellets. Aquat Microb Ecol, 67: 151–160Google Scholar
  56. Dlugokencky E J, Nisbet E G, Fisher R, Lowry D. 2011. Global atmospheric methane: Budget, changes and dangers. Philos Trans R Soc AMath Phys Eng Sci, 369: 2058–2072Google Scholar
  57. Dyhrman S T, Benitez-Nelson C R, Orchard E D, Haley S T, Pellechia P J. 2009. A microbial source of phosphonates in oligotrophic marine systems. Nat Geosci, 2: 696–699Google Scholar
  58. Dziewit L, Pyzik A, Romaniuk K, Sobczak A, Szczesny P, Lipinski L, Bartosik D, Drewniak L. 2015. Novel molecular markers for the detection of methanogens and phylogenetic analyses of methanogenic communities. Front Microbiol, 6: 694Google Scholar
  59. Embley R W, Chadwick W W, Baker E T, Butterfield D A, Resing J A, de Ronde C E J, Tunnicliffe V, Lupton J E, Juniper S K, Rubin K H, Stern R J, Lebon G T, Nakamura K I, Merle S G, Hein J R, Wiens D A, Tamura Y. 2006. Long-term eruptive activity at a submarine arc volcano. Nature, 441: 494–497Google Scholar
  60. Etminan M, Myhre G, Highwood E J, Shine K P. 2016. Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing. Geophys Res Lett, 43: 12,614–12,623Google Scholar
  61. Evans P N, Parks D H, Chadwick G L, Robbins S J, Orphan V J, Golding S D, Tyson G W. 2015. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science, 350: 434–438Google Scholar
  62. Farías L, Sanzana K, Sanhueza-Guevara S, Yevenes M A. 2017. Dissolved methane distribution in the Reloncaví Fjord and adjacent marine system during austral winter (41°–43°S). Estuar Coast, 40: 1592–1606Google Scholar
  63. Fernández-Carrera A, Rogers K L, Weber S C, Chanton J P, Montoya J P. 2016. Deep Water Horizon oil and methane carbon entered the food web in the Gulf of Mexico. Limnol Oceanogr, 61: S387–S400Google Scholar
  64. Ferry J G, Lessner D J. 2008. Methanogenesis in marine sediments. Ann New York Acad Sci, 1125: 147–157Google Scholar
  65. Finster K, Tanimoto Y, Bak F. 1992. Fermentation of methanethiol and dimethylsulfide by a newly isolated methanogenic bacterium. Arch Microbiol, 157: 425–430Google Scholar
  66. Fischer D, Mogollón J M, Strasser M, Pape T, Bohrmann G, Fekete N, Spiess V, Kasten S. 2013. Subduction zone earthquake as potential trigger of submarine hydrocarbon seepage. Nat Geosci, 6: 647–651Google Scholar
  67. Florez-Leiva L, Damm E, Farías L. 2013. Methane production induced by dimethylsulfide in surface water of an upwelling ecosystem. Prog Oceanogr, 112–113: 38–48Google Scholar
  68. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey D W, Haywood J, Lean J, Lowe D C, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Dorland R V. 2007. Changes in atmospheric constituents and in radiative forcing. Chapter 2. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor M M, Miller H L, eds. Climate Change 2007—The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University PressGoogle Scholar
  69. Friedrich M W. 2005. Methyl-coenzyme M reductase genes: Unique functional markers for methanogenic and anaerobic methane-oxidizing Archaea. Methods Enzymol, 397: 428–442Google Scholar
  70. Frondel M, Oertel K, Rubbelke D. 2002. The domino effect in climate change. Int J Environ Poll, 17: 201–210Google Scholar
  71. Fu H, Metcalf W W. 2015. Genetic basis for metabolism of methylated sulfur compounds in Methanosarcina species. J Bacteriol, 197: 1515–1524Google Scholar
  72. Garcia J L, Patel B K C, Ollivier B. 2000. Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe, 6: 205–226Google Scholar
  73. Geersen J, Scholz F, Linke P, Schmidt M, Lange D, Behrmann J H, Völker D, Hensen C. 2016. Fault zone controlled seafloor methane seepage in the rupture area of the 2010 Maule earthquake, Central Chile. Geochem Geophys Geosyst, 17: 4802–4813Google Scholar
  74. Geissler W H, Gebhardt A C, Gross F, Wollenburg J, Jensen L, Schmidt-Aursch M C, Krastel S, Elger J, Osti G. 2016. Arctic megaslide at presumed rest. Sci Rep, 6: 38529Google Scholar
  75. Gilly W F, Beman J M, Litvin S Y, Robison B H. 2013. Oceanographic and biological effects of shoaling of the oxygen minimum zone. Annu Rev Mar Sci, 5: 393–420Google Scholar
  76. Glasby G P. 2003. Potential impact on climate of the exploitation of methane hydrate deposits offshore. Mar Pet Geol, 20: 163–175Google Scholar
  77. Ghosh A, Patra P K, Ishijima K, Umezawa T, Ito A, Etheridge D M, Sugawara S, Kawamura K, Miller J B, Dlugokencky E J, Krummel P B, Fraser P J, Steele L P, Langenfelds R L, Trudinger C M, White J W C, Vaughn B, Saeki T, Aoki S, Nakazawa T. 2015. Variations in global methane sources and sinks during 1910–2010. Atmos Chem Phys, 15: 2595–2612Google Scholar
  78. Glass J B, Orphan V J. 2012. Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide. Front Microbio, 3: 61Google Scholar
  79. Greening C, Ahmed F H, Mohamed A E, Lee B M, Pandey G, Warden A C, Scott C, Oakeshott J G, Taylor M C, Jackson C J. 2016. Physiology, Biochemistry, and Applications of F420- and Fo-Dependent Redox Reactions. Microbiol Mol Biol Rev, 80: 451–493Google Scholar
  80. Gruber N. 2011. Warming up, turning sour, losing breath: Ocean biogeochemistry under global change. Philos Trans R Soc A-Math Phys Eng Sci, 369: 1980–1996Google Scholar
  81. Gutjahr M, Ridgwell A, Sexton P F, Anagnostou E, Pearson P N, Pälike H, Norris R D, Thomas E, Foster G L. 2017. Very large release of mostly volcanic carbon during the Palaeocene-Eocene Thermal Maximum. Nature, 548: 573–577Google Scholar
  82. Hamdan L J, Wickland K P. 2016. Methane emissions from oceans, coasts, and freshwater habitats: New perspectives and feedbacks on climate. Limnol Oceanogr, 61: S3–S12Google Scholar
  83. Handwerger A L, Rempel A W, Skarbek R M. 2017. Submarine landslides triggered by destabilization of high-saturation hydrate anomalies. Geochem Geophys Geosyst, 18: 2429–2445Google Scholar
  84. Hansen J, Kharecha P, Sato M, Masson-Delmotte V, Ackerman F, Beerling D J, Hearty P J, Hoegh-Guldberg O, Hsu S L, Parmesan C, Rockstrom J, Rohling E J, Sachs J, Smith P, Steffen K, Van Susteren L, von Schuckmann K, Zachos J C. 2013. Assessing “dangerous climate change”: Required reduction of carbon emissions to protect young people, future generations and nature. Plos One, 8: e81648Google Scholar
  85. Hansen J, Sato M, Kharecha P, Russell G, Lea D W, Siddall M. 2007. Climate change and trace gases. Philos Trans R Soc A-Math Phys Eng Sci, 365: 1925–1954Google Scholar
  86. Hesselbo S P, Gröcke D R, Jenkyns H C, Bjerrum C J, Farrimond P, Morgans Bell H S, Green O R. 2000. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature, 406: 392–395Google Scholar
  87. Hester K C, Brewer P G. 2009. Clathrate hydrates in nature. Annu Rev Mar Sci, 1: 303–327Google Scholar
  88. Higgins J A, Schrag D P. 2006. Beyond methane: Towards a theory for the Paleocene-Eocene Thermal Maximum. Earth Planet Sci Lett, 245: 523–537Google Scholar
  89. Holmes M E, Sansone F J, Rust T M, Popp B N. 2000. Methane production, consumption, and air-sea exchange in the open ocean: An evaluation based on carbon isotopic ratios. Glob Biogeochem Cycle, 14: 1–10Google Scholar
  90. Horsman G P, Zechel D L. 2017. Phosphonate biochemistry. Chem Rev, 117: 5704–5783Google Scholar
  91. Hove-Jensen B, Zechel D L, Jochimsen B. 2014. Utilization of glyphosate as phosphate source: Biochemistry and genetics of bacterial carbonphosphorus lyase. Microbiol Mol Biol Rev, 78: 176–197Google Scholar
  92. Hunter S J, Goldobin D S, Haywood A M, Ridgwell A, Rees J G. 2013. Sensitivity of the global submarine hydrate inventory to scenarios of future climate change. Earth Planet Sci Lett, 367: 105–115Google Scholar
  93. Iino T, Tamaki H, Tamazawa S, Ueno Y, Ohkuma M, Suzuki K, Igarashi Y, Haruta S. 2013. Candidatus Methanogranum caenicola: A novel methanogen from the anaerobic digested sludge, and proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a methanogenic lineage of the class Thermoplasmata. Microb Environ, 28: 244–250Google Scholar
  94. Isaksen I S A, Gauss M, Myhre G, Walter Anthony K M, Ruppel C. 2011. Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions. Glob Biogeochem Cycle, 25: GB2002Google Scholar
  95. Jablonski S, Rodowicz P, Lukaszewicz M. 2015. Methanogenic archaea database containing physiological and biochemical characteristics. Int J Systatic Evolary Microbiol, 65: 1360–1368Google Scholar
  96. James R H, Bousquet P, Bussmann I, Haeckel M, Kipfer R, Leifer I, Niemann H, Ostrovsky I, Piskozub J, Rehder G, Treude T, Vielstädte L, Greinert J. 2016. Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean: A review. Limnol Oceanogr, 61: S283–S299Google Scholar
  97. Jarrell K F. 1985. Extreme oxygen sensitivity in methanogenic archaebacteria. BioScience, 35: 298–302Google Scholar
  98. Jiao N, Robinson C, Azam F, Thomas H, Baltar F, Dang H, Hardman-Mountford N J, Johnson M, Kirchman D L, Koch B P, Legendre L, Li C, Liu J, Luo T, Luo Y W, Mitra A, Romanou A, Tang K, Wang X, Zhang C, Zhang R. 2014. Mechanisms of microbial carbon sequestration in the ocean-future research directions. Biogeosciences, 11: 5285–5306Google Scholar
  99. Kallistova A Y, Merkel A Y, Tarnovetskii I Y, Pimenov N V. 2017. Methane formation and oxidation by prokaryotes. Microbiology, 86: 671–691Google Scholar
  100. Karl D M, Beversdorf L, Björkman K M, Church M J, Martinez A, Delong E F. 2008. Aerobic production of methane in the sea. Nat Geosci, 1: 473–478Google Scholar
  101. Karl D M, Tilbrook B D. 1994. Production and transport of methane in oceanic particulate organic matter. Nature, 368: 732–734Google Scholar
  102. Karol’ I L, Kiselev A A, Genikhovich E L, Chicherin S S. 2013. Reduction of short-lived atmospheric pollutant emissions as an alternative strategy for climate-change moderation. Izv Atmos Ocean Phys, 49: 461–478Google Scholar
  103. Karthikeyan O P, Chidambarampadmavathy K, Cirés S, Heimann K. 2015. Review of sustainable methane mitigation and biopolymer production. Critical Rev Environ Sci Tech, 45: 1579–1610Google Scholar
  104. Katz M E, Pak D K, Dickens G R, Miller K G. 1999. The source and fate of massive carbon input during the latest Paleocene Thermal Maximum. Science, 286: 1531–1533Google Scholar
  105. Kennedy M, Mrofka D, von der Borch C. 2008. Snowball Earth termination by destabilization of equatorial permafrost methane clathrate. Nature, 453: 642–645Google Scholar
  106. Kennett J P, Cannariato K G, Hendy I L, Behl R J. 2003. Methane hydrates in Quaternary climate change: The clathrate gun hypothesis. AGU, Washington D C. 217Google Scholar
  107. Khadem A F, Pol A, Jetten M S M, Op den Camp H J M. 2010. Nitrogen fixation by the verrucomicrobial methanotroph ‘Methylacidiphilum fumariolicum’ SolV. Microbiology, 156: 1052–1059Google Scholar
  108. Kiene R P, Oremland R S, Catena A, Miller L G, Capone D G. 1986. Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen. Appl Environ Microbiol, 52: 1037–1045Google Scholar
  109. Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell J G, Dlugokencky E J, Bergamaschi P, Bergmann D, Blake D R, Bruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson E L, Houweling S, Josse B, Fraser P J, Krummel P B, Lamarque J F, Langenfelds R L, Le Quéré C, Naik V, O’Doherty S, Palmer P I, Pison I, Plummer D, Poulter B, Prinn R G, Rigby M, Ringeval B, Santini M, Schmidt M, Shindell D T, Simpson I J, Spahni R, Steele L P, Strode S A, Sudo K, Szopa S, van der Werf G R, Voulgarakis A, van Weele M, Weiss R F, Williams J E, Zeng G. 2013. Three decades of global methane sources and sinks. Nat Geosci, 6: 813–823Google Scholar
  110. Knittel K, Boetius A. 2009. Anaerobic oxidation of methane: Progress with an unknown process. Annu Rev Microbiol, 63: 311–334Google Scholar
  111. Kretschmer K, Biastoch A, Rüpke L, Burwicz E. 2015. Modeling the fate of methane hydrates under global warming. Glob Biogeochem Cycle, 29: 610–625Google Scholar
  112. Krishnakumar A M, Sliwa D, Endrizzi J A, Boyd E S, Ensign S A, Peters J W. 2008. Getting a handle on the role of coenzyme M in alkene metabolism. Microbiol Mol Biol Rev, 72: 445–456Google Scholar
  113. Krüger M, Treude T, Wolters H, Nauhaus K, Boetius A. 2005. Microbial methane turnover in different marine habitats. Palaeogeogr Palaeoclimatol Palaeoecol, 227: 6–17Google Scholar
  114. Krumhardt K M, Lovenduski N S, Iglesias-Rodriguez M D, Kleypas J A. 2017. Coccolithophore growth and calcification in a changing ocean. Prog Oceanogr, 159: 276–295Google Scholar
  115. Kudela R M, Seeyave S, Cochlan W P. 2010. The role of nutrients in regulation and promotion of harmful algal blooms in upwelling systems. Prog Oceanogr, 85: 122–135Google Scholar
  116. Kvenvolden K A. 1988. Methane hydrates and global climate. Glob Biogeochem Cycle, 2: 221–229Google Scholar
  117. Lambert G, Schmidt S. 1993. Reevaluation of the oceanic flux of methane: Uncertainties and long term variations. Chemosphere, 26: 579–589Google Scholar
  118. Lamontagne R A, Swinnerton J W, Linnenbom V J. 1971. Nonequilibrium of carbon monoxide and methane at the air-sea interface. J Geophys Res, 76: 5117–5121Google Scholar
  119. Leifer I, Luyendyk B P, Boles J, Clark J F. 2006. Natural marine seepage blowout: Contribution to atmospheric methane. Glob Biogeochem Cycle, 20: GB3008Google Scholar
  120. Lenhart K, Klintzsch T, Langer G, Nehrke G, Bunge M, Schnell S, Keppler F. 2016. Evidence for methane production by the marine algae Emiliania huxleyi. Biogeosciences, 13: 3163–3174Google Scholar
  121. Levin L A, Le Bris N. 2015. The deep ocean under climate change. Science, 350: 766–768Google Scholar
  122. Liu Y, Whitman W B. 2008. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann New York Acad Sci, 1125: 171–189Google Scholar
  123. Lloyd K. 2015. Beyond known methanogens. Science, 350: 384Google Scholar
  124. Lomans B P, Maas R, Luderer R, Op den Camp H J, Pol A, van der Drift C, Vogels G D. 1999. Isolation and characterization of Methanomethylovorans hollandica gen. nov., sp. nov., isolated from freshwater sediment, a methylotrophic methanogen able to grow on dimethyl sulfide and methanethiol. Appl Environ Microbiol, 65: 3641–3650Google Scholar
  125. Loulergue L, Schilt A, Spahni R, Masson-Delmotte V, Blunier T, Lemieux B, Barnola J M, Raynaud D, Stocker T F, Chappellaz J. 2008. Orbital and millennial-scale features of atmospheric CH4 over the past 800000 years. Nature, 453: 383–386Google Scholar
  126. Lyimo T J, Pol A, Op den Camp H J, Harhangi H R, Vogels G D. 2000. Methanosarcina semesiae sp. nov., a dimethylsulfide-utilizing methanogen from mangrove sediment. Int J Systatic Evolary Microbiol, 50: 171–178Google Scholar
  127. Lyu Z, Lu Y. 2018. Metabolic shift at the class level sheds light on adaptation of methanogens to oxidative environments. ISME J, 12: 411–423Google Scholar
  128. MacCracken M C. 2008. Prospects for future climate change and the reasons for early action. J Air Waste Manage, 58: 735–786Google Scholar
  129. MacDougall A H, Knutti R. 2016. Enhancement of non-CO2 radiative forcing via intensified carbon cycle feedbacks. Geophys Res Lett, 43: 5833–5840Google Scholar
  130. McKinley G A, Pilcher D J, Fay A R, Lindsay K, Long M C, Lovenduski N S. 2016. Timescales for detection of trends in the ocean carbon sink. Nature, 530: 469–472Google Scholar
  131. Marín-Moreno H, Giustiniani M, Tinivella U, Piñero E. 2016. The challenges of quantifying the carbon stored in Arctic marine gas hydrate. Mar Pet Geol, 71: 76–82Google Scholar
  132. Marín-Moreno H, Minshull T A, Westbrook G K, Sinha B, Sarkar S. 2013. The response of methane hydrate beneath the seabed offshore Svalbard to ocean warming during the next three centuries. Geophys Res Lett, 40: 5159–5163Google Scholar
  133. Martínez A, Ventouras L A, Wilson S T, Karl D M, DeLong E F. 2013. Metatranscriptomic and functional metagenomic analysis of methylphosphonate utilization by marine bacteria. Front Microbiol, 4: 340Google Scholar
  134. Marty D G, Nival P, Yoon W D. 1997. Methanoarchaea associated with sinking particles and zooplankton collected in the Northeastern tropical Atlantic. Oceanol Acta, 20: 863–869Google Scholar
  135. Maslin M, Owen M, Betts R, Day S, Dunkley Jones T, Ridgwell A. 2010. Gas hydrates: Past and future geohazard? Philos Trans R Soc A-Math Phys Eng Sci, 368: 2369–2393Google Scholar
  136. Maslin M, Owen M, Day S, Long D. 2004. Linking continental-slope failures and climate change: Testing the clathrate gun hypothesis. Geology, 32: 53–56Google Scholar
  137. Masson D G, Harbitz C B, Wynn R B, Pedersen G, Løvholt F. 2006. Submarine landslides: Processes, triggers and hazard prediction. Philos Trans R Soc A-Math Phys Eng Sci, 364: 2009–2039Google Scholar
  138. Masuda S, Awaji T, Sugiura N, Matthews J P, Toyoda T, Kawai Y, Doi T, Kouketsu S, Igarashi H, Katsumata K, Uchida H, Kawano T, Fukasawa M. 2010. Simulated rapid warming of abyssal North Pacific waters. Science, 329: 319–322Google Scholar
  139. Matthews E. 1994. Assessment of methane sources and their uncertainties. Pure Appl Chem, 66: 154–162Google Scholar
  140. McNeall D, Halloran P R, Good P, Betts R A. 2011. Analyzing abrupt and nonlinear climate changes and their impacts. WIREs Clim Change, 2: 663–686Google Scholar
  141. Mestdagh T, Poort J, De Batist M. 2017. The sensitivity of gas hydrate reservoirs to climate change: Perspectives from a new combined model for permafrost-related and marine settings. Earth-Sci Rev, 169: 104–131Google Scholar
  142. Metcalf W W, Griffin B M, Cicchillo R M, Gao J, Janga S C, Cooke H A, Circello B T, Evans B S, Martens-Habbena W, Stahl D A, van der Donk W A. 2012. Synthesis of methylphosphonic acid by marine microbes: A source for methane in the aerobic ocean. Science, 337: 1104–1107Google Scholar
  143. Mondav R, Woodcroft B J, Kim E H, McCalley C K, Hodgkins S B, Crill P M, Chanton J, Hurst G B, VerBerkmoes N C, Saleska S R, Hugenholtz P, Rich V I, Tyson G W. 2014. Discovery of a novel methanogen prevalent in thawing permafrost. Nat Commun, 5: 3212Google Scholar
  144. Montzka S A, Dlugokencky E J, Butler J H. 2011. Non-CO2 greenhouse gases and climate change. Nature, 476: 43–50Google Scholar
  145. Mora C, Wei C L, Rollo A, Amaro T, Baco A R, Billett D, Bopp L, Chen Q, Collier M, Danovaro R, Gooday A J, Grupe B M, Halloran P R, Ingels J, Jones D O B, Levin L A, Nakano H, Norling K, Ramirez-Llodra E, Rex M, Ruhl H A, Smith C R, Sweetman A K, Thurber A R, Tjiputra J F, Usseglio P, Watling L, Wu T, Yasuhara M. 2013. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. Plos Biol, 11: e1001682Google Scholar
  146. Naqvi S W A, Bange H W, Farías L, Monteiro P M S, Scranton M I, Zhang J. 2010. Marine hypoxia/anoxia as a source of CH4 and N2O. Biogeosciences, 7: 2159–2190Google Scholar
  147. Navid D. 1989. The international law of migratory species: The Ramsar convention. Nat Res J, 29: 1001–1016Google Scholar
  148. Nobu M K, Narihiro T, Kuroda K, Mei R, Liu W T. 2016. Chasing the elusive Euryarchaeota class WSA2: Genomes reveal a uniquely fastidious methyl-reducing methanogen. ISME J, 10: 2478–2487Google Scholar
  149. Norris R D, Röhl U. 1999. Carbon cycling and chronology of climate warming during the Palaeocene/Eocene transition. Nature, 401: 775–778Google Scholar
  150. Obzhirov A I. 2013. Gas component increase during seismo-tectonics and the role of gas in earthquake origination (Okhotsk Sea). Russ J Pac Geol, 32: 86–89Google Scholar
  151. Offre P, Spang A, Schleper C. 2013. Archaea in biogeochemical cycles. Annu Rev Microbiol, 67: 437–457Google Scholar
  152. Orcutt B N, LaRowe D E, Biddle J F, Colwell F S, Glazer B T, Reese B K, Kirkpatrick J B, Lapham L L, Mills H J, Sylvan J B, Wankel S D, Wheat C G. 2013. Microbial activity in the marine deep biosphere: Progress and prospects. Front Microbiol, 4: 189Google Scholar
  153. Oremland R S. 1979. Methanogenic activity in plankton samples and fish intestines A mechanism for in situ methanogenesis in oceanic surface waters. Limnol Oceanogr, 24: 1136–1141Google Scholar
  154. Oremland R S, Kiene R P, Mathrani I, Whiticar M J, Boone D R. 1989. Description of an estuarine methylotrophic methanogen which grows on dimethyl sulfide. Appl Environ Microbiol, 55: 994–1002Google Scholar
  155. Ortiz-Llorente M J, Alvarez-Cobelas M. 2012. Comparison of biogenic methane emissions from unmanaged estuaries, lakes, oceans, rivers and wetlands. Atmos Environ, 59: 328–337Google Scholar
  156. Paulo L M, Ramiro-Garcia J, van Mourik S, Stams A J M, Sousa D Z. 2017. Effect of nickel and cobalt on methanogenic enrichment cultures and role of biogenic sulfide in metal toxicity attenuation. Front Microbiol, 8: 1341Google Scholar
  157. Pernthaler A, Dekas A E, Titus Brown C, Goffredi S K, Embaye T, Orphan V J. 2008. Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc Natl Acad Sci USA, 105: 7052–7057Google Scholar
  158. Phrampus B J, Hornbach M J. 2012. Recent changes to the Gulf Stream causing widespread gas hydrate destabilization. Nature, 490: 527–530Google Scholar
  159. Poehlein A, Daniel R, Seedorf H. 2017. The draft genome of the non-hostassociated Methanobrevibacter arboriphilus strain DH1 encodes a large repertoire of adhesin-like proteins. Archaea, 2017: 1–9Google Scholar
  160. Pohlman J W, Greinert J, Ruppel C, Silyakova A, Vielstädte L, Casso M, Mienert J, Bünz S. 2017. Enhanced CO2 uptake at a shallow Arctic Ocean seep field overwhelms the positive warming potential of emitted methane. Proc Natl Acad Sci USA, 114: 5355–5360Google Scholar
  161. Prather M J, Holmes C D. 2017. Overexplaining or underexplaining methane’s role in climate change. Proc Natl Acad Sci USA, 114: 5324–5326Google Scholar
  162. Purwantini E, Torto-Alalibo T, Lomax J, Setubal J Ã C, Tyler B M, Mukhopadhyay B. 2014. Genetic resources for methane production from biomass described with the Gene Ontology. Front Microbiol, 5: 634Google Scholar
  163. Rakowski C V, Magen C, Bosman S, Rogers K L, Gillies L E, Chanton J P, Mason O U. 2015. Methane and microbial dynamics in the Gulf of Mexico water column. Front Mar Sci, 2: 69Google Scholar
  164. Rasmussen R A, Khalil M A K. 1981. Atmospheric methane (CH4): Trends and seasonal cycles. J Geophys Res, 86: 9826–9832Google Scholar
  165. Ravishankara A R, Daniel J S, Portmann R W. 2009. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science, 326: 123–125Google Scholar
  166. Reagan M T, Moridis G J. 2007. Oceanic gas hydrate instability and dissociation under climate change scenarios. Geophys Res Lett, 34: L22709Google Scholar
  167. Reagan M T, Moridis G J. 2008. Dynamic response of oceanic hydrate deposits to ocean temperature change. J Geophys Res, 113: C12023Google Scholar
  168. Reeburgh W S. 2007. Oceanic methane biogeochemistry. Chem Rev, 107: 486–513Google Scholar
  169. Repeta D J, Ferrón S, Sosa O A, Johnson C G, Repeta L D, Acker M, DeLong E F, Karl D M. 2016. Marine methane paradox explained by bacterial degradation of dissolved organic matter. Nat Geosci, 9: 884–887Google Scholar
  170. Rhee T S, Kettle A J, Andreae M O. 2009. Methane and nitrous oxide emissions from the ocean: A reassessment using basin-wide observations in the Atlantic. J Geophys Res, 114: D12304Google Scholar
  171. Ruppel C D, Kessler J D. 2017. The interaction of climate change and methane hydrates. Rev Geophys, 55: 126–168Google Scholar
  172. Sabine C L, Feely R A, Gruber N, Key R M, Lee K, Bullister J L, Wan-ninkhof R, Wong C S, Wallace D W R, Tilbrook B, Millero F J, Peng T H, Kozyr A, Ono T, Rios A F. 2004. The oceanic sink for anthropogenic CO2. Science, 305: 367–371Google Scholar
  173. Sakai S, Imachi H, Hanada S, Ohashi A, Harada H, Kamagata Y. 2008. Methanocella paludicola gen. nov., sp. nov., a methane-producing archaeon, the first isolate of the lineage ‘Rice Cluster I’, and proposal of the new archaeal order Methanocellales ord. nov. Int J Systatic Evolary Microbiol, 58: 929–936Google Scholar
  174. Sansone F J, Popp B N, Gasc A, Graham A W, Rust T M. 2001. Highly elevated methane in the eastern tropical North Pacific and associated isotopically enriched fluxes to the atmosphere. Geophys Res Lett, 28: 4567–4570Google Scholar
  175. Sasakawa M, Tsunogai U, Kameyama S, Nakagawa F, Nojiri Y, Tsuda A. 2008. Carbon isotopic characterization for the origin of excess methane in subsurface seawater. J Geophys Res, 113: C03012Google Scholar
  176. Schäfer G, Engelhard M, Müller V. 1999. Bioenergetics of the Archaea. Microbiol Mol Biol Rev, 63: 570–620Google Scholar
  177. Schink B. 1997. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev, 61: 262–280Google Scholar
  178. Schleuning M, Fründ J, Schweiger O, Welk E, Albrecht J, Albrecht M, Beil M, Benadi G, Blüthgen N, Bruelheide H, Böhning-Gaese K, Dehling D M, Dormann C F, Exeler N, Farwig N, Harpke A, Hickler T, Kratochwil A, Kuhlmann M, Kühn I, Michez D, Mudri-Stojnic S, Plein M, Rasmont P, Schwabe A, Settele J, Vujic A, Weiner C N, Wiemers M, Hof C. 2016. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nat Commun, 7: 13965Google Scholar
  179. Schmale O, Wäge J, Mohrholz V, Wasmund N, Gräwe U, Rehder G, Labrenz M, Loick-Wilde N. 2018. The contribution of zooplankton to methane supersaturation in the oxygenated upper waters of the central Baltic Sea. Limnol Oceanogr, 63: 412–430Google Scholar
  180. Scranton M I, Brewer P G. 1977. Occurrence of methane in the nearsurface waters of the western subtropical North-Atlantic. Deep Sea Res, 24: 127–138Google Scholar
  181. Sela-Adler M, Ronen Z, Herut B, Antler G, Vigderovich H, Eckert W, Sivan O. 2017. Co-existence of methanogenesis and sulfate reduction with common substrates in sulfate-rich estuarine sediments. Front Microbiol, 8: 766Google Scholar
  182. Semrau J D, DiSpirito A A, Gu W, Yoon S. 2018. Metals and methanotrophy. Appl Environ Microbiol, 84: e02289–17Google Scholar
  183. Shakhova N, Semiletov I, Salyuk A, Yusupov V, Kosmach D, Gustafsson O. 2010. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science, 327: 1246–1250Google Scholar
  184. Shepherd J G, Brewer P G, Oschlies A, Watson A J. 2017. Ocean ventilation and deoxygenation in a warming world: Introduction and overview. Philos Trans R Soc A-Math Phys Eng Sci, 375: 20170240Google Scholar
  185. Showstack R. 2013. Carbon Dioxide Tops 400 ppm at Mauna Loa. Hawaii: Eos Trans AGU, 94: 192Google Scholar
  186. Sieburth J N, Johnson P, Macario A, Conway de Macario E. 1993. C1 bacteria in the water column of Chesapeake Bay USA. II. The dominant O2- and H2S-tolerant methylotrophic methanogens, coenriched with their oxidative and sulphate reducing bacterial consorts, are all new immunotypes and probably include new taxa. Mar Ecol Prog Ser, 95: 81–89Google Scholar
  187. Solomon S, Daniel J S, Sanford T J, Murphy D M, Plattner G K, Knutti R, Friedlingstein P. 2010. Persistence of climate changes due to a range of greenhouse gases. Proc Natl Acad Sci USA, 107: 18354–18359Google Scholar
  188. Solomon S, Plattner G K, Knutti R, Friedlingstein P. 2009. Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci USA, 106: 1704–1709Google Scholar
  189. Sonnemann G R, Grygalashvyly M. 2014. Global annual methane emission rate derived from its current atmospheric mixing ratio and estimated lifetime. Ann Geophys, 32: 277–283Google Scholar
  190. Sorokin D Y, Makarova K S, Abbas B, Ferrer M, Golyshin P N, Galinski E A, Ciordia S, Mena M C, Merkel A Y, Wolf Y I, van Loosdrecht M C M, Koonin E V. 2017. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat Microbiol, 2: 17081Google Scholar
  191. Sosa O A, Repeta D J, Ferrón S, Bryant J A, Mende D R, Karl D M, DeLong E F. 2017. Isolation and characterization of bacteria that degrade phosphonates in marine dissolved organic matter. Front Microbiol, 8: 1786Google Scholar
  192. Sowers T. 2006. Late Quaternary atmospheric CH4 isotope record suggests marine clathrates are stable. Science, 311: 838–840Google Scholar
  193. Stranne C, O’Regan M, Jakobsson M. 2017. Modeling fracture propagation and seafloor gas release during seafloor warming-induced hydrate dissociation. Geophys Res Lett, 44: 8510–8519Google Scholar
  194. Svensen H, Planke S, Malthe-Sørenssen A, Jamtveit B, Myklebust R, Rasmussen Eidem T, Rey S S. 2004. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature, 429: 542–545Google Scholar
  195. Sydeman W J, García-Reyes M, Schoeman D S, Rykaczewski R R, Thompson S A, Black B A, Bograd S J. 2014. Climate change and wind intensification in coastal upwelling ecosystems. Science, 345: 77–80Google Scholar
  196. Tallant T C, Krzycki J A. 1997. Methylthiol:coenzyme M methyltransferase from Methanosarcina barkeri, an enzyme of methanogenesis from dimethylsulfide and methylmercaptopropionate. J Bacteriol, 179: 6902–6911Google Scholar
  197. Tallant T C, Paul L, Krzycki J A. 2001. The MtsA subunit of the methylthiol: coenzyme M methyltransferase of Methanosarcina barkeri catalyses both half-reactions of corrinoid-dependent dimethylsulfide: Coenzyme M methyl transfer. J Biol Chem, 276: 4485–4493Google Scholar
  198. Teikari J E, Fewer D P, Shrestha R, Hou S, Leikoski N, Mäkelä M, Simojoki A, Hess W R, Sivonen K. 2018. Strains of the toxic and bloomforming Nodularia spumigena (cyanobacteria) can degrade methylphosphonate and release methane. ISME J, 12: 1619–1630Google Scholar
  199. Thatcher K E, Westbrook G K, Sarkar S, Minshull T A. 2013. Methane release from warming-induced hydrate dissociation in the West Svalbard continental margin: Timing, rates, and geological controls. J Geophys Res-Solid Earth, 118: 22–38Google Scholar
  200. Tholen A, Pester M, Brune A. 2007. Simultaneous methanogenesis and oxygen reduction by Methanobrevibacter cuticularis at low oxygen fluxes. Fems Microbiol Ecol, 62: 303–312Google Scholar
  201. Tilbrook B D, Karl D M. 1995. Methane sources, distributions and sinks from California coastal waters to the oligotrophic North Pacific gyre. Mar Chem, 49: 51–64Google Scholar
  202. Tseng H C, Chen C T A, Borges A V, Del Valls T A, Chang Y C. 2017. Methane in the South China Sea and the Western Philippine Sea. Cont Shelf Res, 135: 23–34Google Scholar
  203. Tsunogai U, Maegawa K, Sato S, Komatsu D D, Nakagawa F, Toki T, Ashi J. 2012. Coseimic massive methane release from a submarine mud volcano. Earth Planet Sci Lett, 341–344: 79–85Google Scholar
  204. Tsuruta A, Aalto T, Backman L, Hakkarainen J, van der Laan-Luijkx I T, Krol M C, Spahni R, Houweling S, Laine M, Dlugokencky E, Gomez-Pelaez A J, van der Schoot M, Langenfelds R, Ellul R, Arduini J, Apadula F, Gerbig C, Feist D G, Kivi R, Yoshida Y, Peters W. 2017. Global methane emission estimates for 2000–2012 from CarbonTracker Europe-CH4 v1.0. Geosci Model Dev, 10: 1261–1289Google Scholar
  205. Upstill-Goddard R C, Barnes J. 2016. Methane emissions from UK estuaries: Re-evaluating the estuarine source of tropospheric methane from Europe. Mar Chem, 180: 14–23Google Scholar
  206. Valentine D L. 2011. Emerging topics in marine methane biogeochemistry. Annu Rev Mar Sci, 3: 147–171Google Scholar
  207. van der Maarel M J E C, Hansen T A. 1997. Dimethylsulfoniopropionate in anoxic intertidal sediments: A precursor of methanogenesis via dimethyl sulfide, methanethiol, and methiolpropionate. Mar Geol, 137: 5–12Google Scholar
  208. Van Mooy B A S, Krupke A, Dyhrman S T, Fredricks H F, Frischkorn K R, Ossolinski J E, Repeta D J, Rouco M, Seewald J D, Sylva S P. 2015. Major role of planktonic phosphate reduction in the marine phosphorus redox cycle. Science, 348: 783–785Google Scholar
  209. Vanwonterghem I, Evans P N, Parks D H, Jensen P D, Woodcroft B J, Hugenholtz P, Tyson G W. 2016. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol, 1: 16170Google Scholar
  210. Vizza C, West W E, Jones S E, Hart J A, Lamberti G A. 2017. Regulators of coastal wetland methane production and responses to simulated global change. Biogeosciences, 14: 431–446Google Scholar
  211. Vojvoda J, Lamy D, Sintes E, Garcia J, Turk V, Herndl G. 2014. Seasonal variation in marine-snow-associated and ambient-water prokaryotic communities in the northern Adriatic Sea. Aquat Microb Ecol, 73: 211–224Google Scholar
  212. Wang D, Gouhier T C, Menge B A, Ganguly A R. 2015. Intensification and spatial homogenization of coastal upwelling under climate change. Nature, 518: 390–394Google Scholar
  213. Wang J, Yuan J, Liu D, Xiang J, Ding W, Jiang X. 2016. Research progresses on methanogenesis pathway and methanogens in coastal wetlands. Chin J Appl Ecol, 27: 993–1001Google Scholar
  214. Weller D I, Law C S, Marriner A, Nodder S D, Chang F H, Stephens J A, Wilhelm S W, Boyd P W, Sutton P J H. 2013. Temporal variation of dissolved methane in a subtropical mesoscale eddy during a phytoplankton bloom in the southwest Pacific Ocean. Prog Oceanogr, 116: 193–206Google Scholar
  215. Welsh D T. 2000. Ecological significance of compatible solute accumulation by micro-organisms: From single cells to global climate. Fems Microbiol Rev, 24: 263–290Google Scholar
  216. Welte C, Deppenmeier U. 2014. Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens. Biochim Biophysica Acta, 1837: 1130–1147Google Scholar
  217. Wen X, Yang S, Horn F, Winkel M, Wagner D, Liebner S. 2017. Global biogeographic analysis of methanogenic archaea identifies communityshaping environmental factors of natural environments. Front Microbiol, 8: 1339Google Scholar
  218. Wilson S T, Ferrón S, Karl D M. 2017. Interannual variability of methane and nitrous oxide in the North Pacific Subtropical Gyre. Geophys Res Lett, 44: 9885–9892Google Scholar
  219. Wright J J, Konwar K M, Hallam S J. 2012. Microbial ecology of expanding oxygen minimum zones. Nat Rev Micro, 10: 381–394Google Scholar
  220. Wuebbles D J, Hayhoe K. 2002. Atmospheric methane and global change. Earth-Sci Rev, 57: 177–210Google Scholar
  221. Xiao K Q, Beulig F, Kjeldsen K U, Jørgensen B B, Risgaard-Petersen N. 2017. Concurrent methane production and oxidation in surface sediment from Aarhus Bay, Denmark. Front Microbiol, 8: 1198Google Scholar
  222. Xiao L, Xie B, Liu J, Zhang H, Han G, Wang O, Liu F. 2017. Stimulation of long-term ammonium nitrogen deposition on methanogenesis by Methanocellaceae in a coastal wetland. Sci Total Environ, 595: 337–343Google Scholar
  223. Yvon-Durocher G, Allen A P, Bastviken D, Conrad R, Gudasz C, St-Pierre A, Thanh-Duc N, del Giorgio P A. 2014. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature, 507: 488–491Google Scholar
  224. Zeebe R E, Ridgwell A, Zachos J C. 2016. Anthropogenic carbon release rate unprecedented during the past 66 million years. Nat Geosci, 9: 325–329Google Scholar
  225. Zehnder A J B, Wuhrmann K. 1977. Physiology of a Methanobacterium strain AZ. Arch Microbiol, 111: 199–205Google Scholar
  226. Zhang B, Tian H, Lu C, Chen G, Pan S, Anderson C, Poulter B. 2017. Methane emissions from global wetlands: An assessment of the uncertainty associated with various wetland extent data sets. Atmos Environ, 165: 310–321Google Scholar
  227. Zhang G L, Zhang J, Kang Y B, Liu S M. 2004. Distributions and fluxes of methane in the East China Sea and the Yellow Sea in spring. J Geophys Res, 109: C07011Google Scholar
  228. Zhang G L, Zhang J, Liu S, Ren J, Xu J, Zhang F. 2008. Methane in the Changjiang (Yangtze River) Estuary and its adjacent marine area: Riverine input, sediment release and atmospheric fluxes. Biogeochemistry, 91: 71–84Google Scholar
  229. Zhang Y, Zhai W D. 2015. Shallow-ocean methane leakage and degassing to the atmosphere: Triggered by offshore oil-gas and methane hydrate explorations. Front Mar Sci, 2: 34Google Scholar
  230. Zhou H Y, Yin X J, Yang Q H, Wang H, Wu Z J, Bao S X. 2009. Distribution, source and flux of methane in the western Pearl River Estuary and northern South China Sea. Mar Chem, 117: 21–31Google Scholar
  231. Zickfeld K, Solomon S, Gilford D M. 2017. Centuries of thermal sea-level rise due to anthropogenic emissions of short-lived greenhouse gases. Proc Natl Acad Sci USA, 114: 657–662Google Scholar
  232. Zindler C, Bracher A, Marandino C A, Taylor B, Torrecilla E, Kock A, Bange H W. 2013. Sulphur compounds, methane, and phytoplankton: Interactions along a north-south transit in the western Pacific Ocean. Biogeosciences, 10: 3297–3311Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth SciencesXiamen UniversityXiamenChina
  2. 2.Tianjin Branch of China National Offshore Oil Corporation LtdTianjinChina

Personalised recommendations