Advertisement

Science China Earth Sciences

, Volume 62, Issue 1, pp 135–153 | Cite as

Carboniferous integrative stratigraphy and timescale of China

  • Xiangdong WangEmail author
  • Keyi HuEmail author
  • Wenkun Qie
  • Qingyi Sheng
  • Bo Chen
  • Wei Lin
  • Le Yao
  • Qiulai Wang
  • Yuping Qi
  • Jitao Chen
  • Zhuoting Liao
  • Junjun Song
Review

Abstract

The Carboniferous period lasted about 60 Myr, from ~358.9 Ma to ~298.9 Ma. According to the International Commission on Stratigraphy, the Carboniferous System is subdivided into two subsystems, i.e., Mississippian and Pennsylvanian, including 6 series and 7 stages. The Global Stratotype Sections and Points (GSSPs) of three stages have been ratified, the Tournaisian, Visean, and Bashkirian stages. The GSSPs of the remaining four stages (i.e., the Serpukhovian, Moscovian, Kasimovian, and Gzhelian) have not been ratified so far. This paper outlines Carboniferous stratigraphic subdivision and correlation on the basis of detailed biostratigraphy mainly from South China, and summarizes the Carboniferous chronostratigraphic framework of China. High-resolution biostratigraphic study reveals 37 conodont zones, 24 foraminiferal (including fusulinid) zones, 13 ammonoid zones, 10 brachiopod zones, and 10 rugose coral zones in the Carboniferous of China. The biostratigraphic framework based on these biozones warrants the precise correlation of regional stratigraphy of China (including 2 subsystems, 4 series, and 8 stages) to that of the other regions globally. Meanwhile, the Carboniferous chemo-, sequence-, cyclo-, and event-stratigraphy of China have been intensively studied and can also be correlated worldwide. Future studies on the Carboniferous in China should focus on (1) the correlation between shallow- and deep-water facies and between marine and continental facies, (2) high-resolution astronomical cyclostratigraphy, and (3) paleoenvironment and paleoclimate analysis based on geochemical proxies such as strontium and oxygen isotopes, as well as stomatal indices of fossil plants.

Keywords

Carboniferous Chronostratigraphy Biostratigraphy Chemostratigraphy Event stratigraphy Stratotype Stratigraphic correlation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Chinese Academy of Sciences (Grant Nos. XDB26000000, 18000000 and XDPB05), the National Natural Science Foundation of China (Grant No. 41290263), and the Ministry of Science and Technology of China (Grant No. 2013FY111000).

References

  1. Alekseev A S, Goreva N V, Isakova T N, Makhlina M Kh. 2004. Biostratigraphy of the Carboniferous in the Moscow Syneclise, Russia. Newsl Carb Stratigr, 22: 28–35Google Scholar
  2. Alekseev A S, Kononova L I, Nikishin A M. 1996. The Devonian and Carboniferous of the Moscow Syneclise (Russian Platform): Stratigraphy and sea-level changes. Tectonophysics, 268: 149–168Google Scholar
  3. Aretz M, Chevalier E. 2007. After the collapse of stromatoporid-coral reefs-the Famennian and Dinantian reefs of Belgium: Much more than Waulsortian mounds. In: Álvaro J J, Aretz M, Boulvain F, Munnecke A, Vachard D, Vennin E, eds. Palaeozoic Reefs and Bioaccumulations: Climatic and Evolutionary Controls. Geol Soc Spec Publ, 275: 163–188Google Scholar
  4. Aretz M, Poty E, Devuyst F X, Hance L, Hou H. 2012. Late Tournaisian Waulsortian-like carbonate mud banks from South China (Longdianshan Hill, central Guangxi): Preliminary investigations. Geol J, 47: 450–461Google Scholar
  5. Aretz M, Webb G E. 2007. Western European and eastern Australian Mississippian shallow-water reefs: a comparison. In: Wong T E, ed. Proceedings of the XVth International Congress on Carboniferous and Permian Stratigraphy. Utrecht, the Netherlands, 10–16 August 2003. Den Haag: Royal Netherlands Academy of Arts and Sciences. 433–442Google Scholar
  6. Barrick J E, Lambert L L, Heckel P H, Darwin R B. 2004. Pennsylvanian conodont zonation for Midcontinent North America. Rev Espan Micropaleontol, 36: 231–250Google Scholar
  7. Barrick J E, Lambert L L, Heckel P H, Rosscoe S J, Boardman D R. 2013. Midcontinent Pennsylvanian conodont zonation. Stratigraphy, 10: 55–72Google Scholar
  8. Barskov I S. 1984. Upper Carboniferous and Permian (Asselian) conodont zonation and zonal scale and problems of its perfection. In: Menner V V, Grigorieva A D, eds. Upper Carboniferous of the USSR. Proceedings of the Interdepartmental Stratigraphic Committee of the USSR, 13: 102–107Google Scholar
  9. Batt L S, Montañez I P, Isaacson P, Pope M C, Butts S H, Abplanalp J. 2007. Multi-carbonate component reconstruction of mid-carboniferous (Chesterian) seawater δ13C. Palaeogeogr Palaeoclimatol Palaeoecol, 256: 298–318Google Scholar
  10. Berner R A. 1990. Atmospheric carbon dioxide levels over Phanerozoic Time. Science, 249: 1382–1386Google Scholar
  11. Berner R A. 1997. The rise of plants and their effect on weathering and atmospheric CO2. Science, 276: 544–546Google Scholar
  12. Brand U, Tazawa J I, Sano H, Azmy K, Lee X, 2009. Is mid-late Paleozoic ocean-water chemistry coupled with epeiric seawater isotope records? Geology, 37: 823–826Google Scholar
  13. Bruckschen P, Bruhn F, Veizer J, Buhl D. 1995. isotopic evolution of Lower Carboniferous seawater: Dinantian of western Europe. Sediment Geol, 100: 63–81Google Scholar
  14. Bruckschen P, Oesmann S, Veizer J. 1999. Isotope stratigraphy of the European Carboniferous: Proxy signals for ocean chemistry, climate and tectonics. Chem Geol, 161: 127–163Google Scholar
  15. Buggisch W, Joachimski M M, Sevastopulo G, Morrow J R. 2008. Mississippian δ13Ccarb and conodont apatite δ18O records — Their relation to the Late Palaeozoic Glaciation. Palaeogeogr Palaeoclimatol Palaeoecol, 268: 273–292Google Scholar
  16. Buggisch W, Wang X, Alekseev A S, Joachimski M M. 2011. Carboniferous-Permian carbon isotope stratigraphy of successions from China (Yangtze platform), USA (Kansas) and Russia (Moscow Basin and Urals). Palaeogeogr Palaeoclimatol Palaeoecol, 301: 18–38Google Scholar
  17. Caplan M L, Bustin R M. 1999. Devonian-Carboniferous Hangenberg mass extinction event, widespread organic-rich mudrock and anoxia: Causes and consequences. Palaeogeogr Palaeoclimatol Palaeoecol, 148: 187–207Google Scholar
  18. Chao Y T. 1927. Productidae of China (part 1). Palaeontol Sin Ser B, 5: 1–244Google Scholar
  19. Chao Y T. 1928. Productidae of China (part 2). Palaeontol Sin Ser B, 5: 1–100Google Scholar
  20. Chao Y T. 1929. Carboniferous and Permian spiriferids of China. Palaeont Sin Ser B, 11: 1–133Google Scholar
  21. Chen B, Joachimski M M, Wang X, Shen S, Qi Y, Qie W. 2016. Ice volume and paleoclimate history of the Late Paleozoic Ice Age from conodont apatite oxygen isotopes from Naqing (Guizhou, China). Palaeogeogr Palaeoclimatol Palaeoecol, 448: 151–161Google Scholar
  22. Chen J, Montañez I P, Qi Y, Shen S, Wang X. 2018. Strontium and carbon isotopic evidence for decoupling of pCO2 from continental weathering at the apex of the late Paleozoic glaciation. Geology, 46: 395–398Google Scholar
  23. Chen J, Montañez I P, Qi Y, Wang X, Wang Q, Lin W. 2016. Coupled sedimentary and δ13C records of late Mississippian platform-to-slope successions from South China: Insight into δ13C chemostratigraphy. Palaeogeogr Palaeoclimatol Palaeoecol, 448: 162–178Google Scholar
  24. Chen S. 1934a. Fusulinidae of the Huanglung and Maping limestones, Kwangsi. Mem Nat Res Ins Geol, 14: 33–54Google Scholar
  25. Chen S. 1934b. Fusulinidae of South China, Part 1. Palaeont Sin Ser B, 4: 1–185Google Scholar
  26. Cohen K M, Finney S C, Gibbard P L, Fan J X. 2013. The ICS International Chronostratigraphic Chart. Episodes, 36: 199–204Google Scholar
  27. Collinson C, Rexroad C B, Thompson T L. 1971. Conodont Zonation of the North American Mississippian. Geol Soc Am Mem, 127: 358–394Google Scholar
  28. Danshin, B M. 1947. Geological Structure and Minerals of Moscow and its Environs (in Russian). Moscow: Moscow Society of Naturalist Press. 308Google Scholar
  29. Davydov V I, Crowley J L, Schmitz M D, Poletaev V I. 2010. Highprecision U-Pb zircon age calibration of the global Carboniferous time scale and Milankovitch band cyclicity in the Donets Basin, eastern Ukraine. Geochem Geophys Geosyst, 11: Q0AA04–22Google Scholar
  30. Devuyst F-X, Hance L, Hou H F, Wu X H, Tian S G, Coen M, Sevastopulo G. 2003. A proposed global stratotype section and point for the base of the Visean Stage (Carboniferous): The Pengchong section, Guangxi, South China. Episodes, 26: 105–115Google Scholar
  31. Eros J M, Montañez I P, Osleger D A, Davydov V I, Nemyrovska T I, Poletaev V I, Zhykalyak M V. 2012. Sequence stratigraphy and onlap history of the Donets Basin, Ukraine: Insight into Carboniferous icehouse dynamics. Palaeogeogr Palaeoclimatol Palaeoecol, 313–314: 1–25Google Scholar
  32. Fan J S, Rigby J K. 1994. Upper carboniferous phylloid algal mounds in South Guizhou, China. Brigham Young Univ Geol Stud, 40: 17–24Google Scholar
  33. Fielding C R, Frank T D, Birgenheier L P, Rygel M C, Jones A T, Roberts J. 2008. Stratigraphic imprint of the Late Palaeozoic Ice Age in eastern Australia: A record of alternating glacial and nonglacial climate regime. J Geol Soc, 165: 129–140Google Scholar
  34. Gong E P, Samankassou E, Guan C Q, Zhang Y L, Sun B L. 2007. Paleoecology of Pennsylvanian phylloid algal buildups in south Guizhou, China. Facies, 54: 615–623Google Scholar
  35. Gong E P, Zhang Y L, Guan C Q. 2012. The Carboniferous reefs in China. J Palaeogeogr, 1: 27–42Google Scholar
  36. Goreva N, Alekseev A, Isakova T, Kossovaya O. 2009. Biostratigraphical analysis of the Moscovian-Kasimovian transition at the neostratotype of Kasimovian Stage (Afanasievo section, Moscow Basin, Russia). Palaeoworld, 18: 102–113Google Scholar
  37. Goreva N V, Alekseev A S. 2010. Upper carboniferous conodont zones of Russia and their global correlation. Stratigr Geol Correl, 18: 593–606Google Scholar
  38. Grabau A W. 1936. Fauna of the Maping Limestone of Kwangsi and Kweichow. Palaeont Sin Ser B, 8: 1–441Google Scholar
  39. Grossman E L, Yancey T E, Jones T E, Bruckschen P, Chuvashov B, Mazzullo S J, Mii H. 2008. Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes. Palaeogeogr Palaeoclimatol Palaeoecol, 268: 222–233Google Scholar
  40. Hance L, Hou H F, Vachard D. 2011. Upper Famennian to Visean Foraminifers and Some Carbonate Microproblematica from South China-Hunan, Guangxi and Guizhou. Beijing: Geological Publishing House. 359Google Scholar
  41. Hance L, Poty E, Devuyst F X. 2006a. Tournaisian. In: Dejonghe L, ed. Current status of chronostratigraphic units named from Belgium and adjacent areas. Geol Belg, 9: 47–53Google Scholar
  42. Hance L, Poty E, Devuyst F X. 2006b. Visean. In: Dejonghe L, ed. Current status of chronostratigraphic units named from Belgium and adjacent areas. Geol Belg, 9: 55–62Google Scholar
  43. Heckel P H, Alekseev A S, Barrick J E, Boardman D R, Goreva N V, Isakova T N, Nemyrovska T I, Ueno K, Villa E, Work D M. 2008. Choice of conodont Idiognathodus simulator (sensu stricto) as the event marker for the base of the global Gzhelian Stage (Upper Pennsylvanian Series, Carboniferous System). Episodes, 31: 319–325Google Scholar
  44. Heckel P H. 2001. New proposal for series and stage subdivision of Carboniferous System. Newsl Carb Stratigr, 19: 12–14Google Scholar
  45. Heckel P H. 2008. Pennsylvanian cyclothems in Midcontinent North America as far-field effects of waxing and waning of Gondwana ice sheets. In: Fielding C R, Frank T D, Isbell J L, eds. Resolving the Late Paleozoic Ice Age in Time and Space. Geol Soc Am Boulder Spec Publ, 441: 275–289Google Scholar
  46. Henderson C M, Wardlaw B R, Vladimir I D, Schmitz M D, Schiappa T A, Tierney K E, Shen S Z, 2012. Proposal for base-Kungurian GSSP. Permophiles, 56: 8–21Google Scholar
  47. Hou H F, Wang Z J, Wu X H, Yang S P. 1982. The Carboniferous system of China. In: Chinese Academy of Geological Sciences, ed. Stratigraphy in China (1): Introduction (in Chinese with English abstract). Beijing: Geological Publishing House. 187–218Google Scholar
  48. Hou H F, Wu X H, Zhou H L, Hance L, Devuyst F X, Sevastopulo G. 2013. The GSSP for Visean stage (Mississippian Subsystem, Carboniferous System). In: Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, ed. Global Standard Stratotype-sections and Points in China (In Chinese). Hangzhou: Hangzhou University Press. 215–239Google Scholar
  49. Hou H F, Zhou H L, Liu J B. 2011. Microbial sediments occurring after the end-Devonian extinction event on the Hunan Platform (in Chinese with English abstract). Acta Geol Sin, 85: 145–156Google Scholar
  50. Hounslow M W, Davydov V I, Klootwijk C T, Turner P. 2004. Magnetostratigraphy of the Carboniferous: A review and future prospects. Newsl Carb Stratigr 22: 35–41Google Scholar
  51. Hu K Y. 2016. Early-Middle Pennsylvanian conodonts of South China and their global correlation. Doctoral Dissertation. Beijing: The University of Chinese Academy of Sciences. 1–289Google Scholar
  52. Hu K Y, Qi Y P, Wang Q L, Nemyrovska T I, Chen J T. 2017. Early Pennsylvanian conodonts from the Luokun section of Luodian, Guizhou, South China. Palaeoworld, 26: 64–82Google Scholar
  53. Hu K, Qi Y. 2017. The Moscovian (Pennsylvanian) conodont genus Swadelina from Luodian, southern Guizhou, South China. Stratigraphy, 14: 197–215Google Scholar
  54. Ivanov A P. 1926. Middle and Upper Carboniferous deposits of Moscow province (in Russian). Otdel Geologicheskiy, 5: 133–180Google Scholar
  55. Jin Y G, Fan Y N, Wang X D, Wang R N. 2000. Stratigraphical Lexicon of China, Carboniferous System (in Chinese). Beijing: Geological Publishing House. 138Google Scholar
  56. Jin Y G. Additional brachiopods from the Kinling Formation of the Lower Yangtze District (in Chinese with English abstract). Acta Palaeontol Sin, 9: 272–290Google Scholar
  57. Kaiser S I, Aretz M, Becker R T. 2016. The global Hangenberg Crisis (Devonian-Carboniferous transition): Review of a first-order mass extinction. In: Becker R T, Königshof P, Brett C E, eds. Devonian Climate, Sea Level and Evolutionary Events. Geol Soc Spec Publ, 423: 387–437Google Scholar
  58. Korn D, Klug C. 2015. Paleozoic ammonoid biostratigraphy. In: Klug C, Korn D, de Baets K, Kruta I, Mapes R H, eds. Ammonoid Paleobiology: From Macroevolution to Paleogeography. Dordrecht: Springer. 299–328Google Scholar
  59. Kulagina E I, Pazukhin V N, Kotschetkova N M, Sinitsyna Z A, Kochetova N N. 2001. Stratotipicheskiei opornye razrezy bashkirskogo yarusa karbonaYuzhnogo Urala. Ufa: Gilem. 138Google Scholar
  60. Kump L R, Arthur M A, 1997. Global chemical erosion during the Cenozoic: weatherability balances the budgets. In: Ruddiman W F, ed. Tectonic Uplift and Climate Change. New York: Plenum Press. 399–426Google Scholar
  61. Lane H R, Brenckle P L. 2005. Type Mississippian Subdivisions and Biostratigraphic Succession. In: Heckle P H, ed. Stratigraphy and Biostratigraphy of the Mississippian Subsystem (Carboniferous System) in its type region, the Mississippi River Valley of Illinois, Missouri, and Iowa. Champaign: Illinois State Geological Survey. 76–105Google Scholar
  62. Lee J S. 1927. Fusulinidae of North China. Palaeont Sin Sers B, 4: 1–172Google Scholar
  63. Lees A, Miller J. 1985. Facies variations in Waulsortian buildups: Part 2. Mid-Dinantian buildups from Europe and North America. Geol J, 20: 159–180Google Scholar
  64. Li R F, Liu B P, Zhao C L. 1997. Correlation of Carboniferous depositional sequences on the Yangtze Plate with others on a global scale (in Chinese with English abstract). Acta Sediment Sin, 15: 23–28Google Scholar
  65. Li S J. 1987. Late Early Carboniferous to early Late Carboniferous brachiopods from Qixu, Nandan, Guangxi and their palaeoecological significance. In: Wang C Y, ed. Carboniferous Boundaries in China. Beijing: Science Press. 132–150Google Scholar
  66. Liang X L, Wang M Q. 1991. Carboniferous cephalopods of Xinjiang (in Chinese with English abstract). Palaeontol Sin N Ser B, 27: 1–171Google Scholar
  67. Lin J X, Li J X, Sun Q Y. 1990. Late Palaeozoic Foraminifera from South China (in Chinese). Beijing: Science Press. 297Google Scholar
  68. Liu Z H. 2002. On factors of Carboniferous reef developing in Hunan: A comparing study with Akiyoshi reef in Japan (in Chinese with English abstract). Chin J Geol, 37: 38–46Google Scholar
  69. McArthur J M, Howarth R J, Shields G A, 2012. Strontium Isotope Stratigraphy. In: Gradstein F, Ogg J, Schmitz M, Ogg G, eds. The Geologic Time Scale 2012. London: Elsevier. 127–144Google Scholar
  70. Mii H, Grossman E L, Yancey T E. 1999. Carboniferous isotope stratigraphies of North America: Implications for Carboniferous paleoceanography and Mississippian glaciation. Geological Soc Am Bull, 111: 960–973Google Scholar
  71. Montañez I P, Poulsen C J. 2013. The Late Paleozoic Ice Age: An Evolving Paradigm. Annu Rev Earth Planet Sci, 41: 629–656Google Scholar
  72. Munier C, Lapparent A. 1893. Note sur la nomenclature des terrains sédimentaires. Bulletin de la Société géologique de France, 3ès, 21: 438–488Google Scholar
  73. Myrow P M, Ramezani J, Hanson A E, Bowring S, Racki G, Rakociński M. 2014. High-precision U-Pb age and duration of the latest Devonian (Famennian) Hangenberg event, and its implications. Terra Nova, 26: 222–229Google Scholar
  74. Nemyrovska T I. 1999. Bashkirian conodonts of the Donets Basin, Ukraine. Sci Geol, 119: 1–115Google Scholar
  75. Nemyrovska T I. 2011. Preliminary Moscovian conodont scale of the Donets Basin, Ukraine. Newsl Carb Stratigr, 29: 56–61Google Scholar
  76. Nemyrovska T I. 2017. Late Mississippian-Middle Pennsylvanian conodont zonation of Ukraine. Stratigraphy, 14: 299–318Google Scholar
  77. Nikitin S N. 1890. The Carboniferous of the Moscow Basin and artesian water in the region of the Moscow Basin (in French). Trans Geol Comm, 5: 139–182Google Scholar
  78. Poletaev V I, Brazhnikova N E, Vasilyuk N P, Vdovenko M V. 1990. Local zones and major Lower Carboniferous biostratigraphic boundaries of the Donets Basin (Donbass), Ukraine, U.S.S.R. Courier Forsch Senekenberg, 130: 47–59Google Scholar
  79. Popp B N, Anderson T F, Sandberg P A. 1986. Brachiopods as indicators of original isotopic compositions in some Paleozoic limestones. Geol Soc Am Bull, 97: 1262–1269Google Scholar
  80. Poty E, Devuyst F X, Hance L. 2006. Upper Devonian and Mississippian foraminiferal and rugose coral zonations of Belgium and northern France: A tool for Eurasian correlations. Geol Mag, 143: 829–857Google Scholar
  81. Qi Y P, Hu K Y, Barrick J E, Wang Q L, Lin W. 2012. Discovery of the conodont lineage from Idiognathodus swadei to I. turbatus in South China and its implications (in Chinese with English abstract). J Stratigr, 36: 551–557Google Scholar
  82. Qi Y P, Lambert L L, Nemyrovska T I, Wang X D, Hu K Y, Wang Q L. 2016. Late Bashkirian and early Moscovian conodonts from the Naqing section, Luodian, Guizhou, South China. Palaeoworld, 25: 170–187Google Scholar
  83. Qi Y, Nemyrovska T I, Wang X, Chen J, Wang Z, Lane H R, Richards B C, Hu K, Wang Q. 2014. Late Visean-early Serpukhovian conodont succession at the Naqing (Nashui) section in Guizhou, South China. Geol Mag, 151: 254–268Google Scholar
  84. Qie W K, Zhang X H, Du Y S, Zhang Y. 2011. Lower Carboniferous carbon isotope stratigraphy in South China: Implications for the Late Paleozoic glaciation. Sci China Earth Sci, 54: 84–92Google Scholar
  85. Ramsbottom W H C. 1984. The founding of the Carboniferous System. In: Gordon M Jr, ed. Official Reports. Compte Rendu IX Congrès International du Stratigraphieet Géologie du Carbonifère, Washington & Champaign-Urbana 1979, 1: 109–112Google Scholar
  86. Richards B C. 2013. Current status of the International Carboniferous timescale. In: Lucas S G, ed. The Carboniferous-Permian Transition. New Mexico Mus Nat Hist Sci Bull, 60: 348–353Google Scholar
  87. Ross C A, Ross J R P. 1987. Late Paleozoic sea levels and depositional sequences. In: Ross C A, Haman D, eds. Timing and Depositional History of Eustatic Sequences: Constraints on Seismic Stratigraphy. Cushman Found Foraminiferal Res Spec Publ, 24: 137–149Google Scholar
  88. Ross C A, Ross J R P. 1988. Late Paleozoic transgressive-regressive deposition. In: Wilgus C K, Hastings B S, Kendall C G S C, eds. Sea-level changes: An integrated approach. Society of Economic Paleontologists and Mineralogists Special Publication. 227–247Google Scholar
  89. Rosscoe S J, Barrick J E. 2013. North American species of the conodont genus Idiognathodus from the Moscovian-Kasimovian boundary composite sequence and correlation of the Moscovian-Kasimovian Stage boundary. In: Lucas S G, Dimichele W A, Barrick J E, Schneider J W, Spielmann J A, eds. The Carboniferous-Permian Transition. New Mexico Mus Nat Hist Sci Bull, 60: 354–371Google Scholar
  90. Ruan Y P. 1981a. Devonian and earliest Carboniferous ammonoids from Guangxi and Guizhou (in Chinese with English abstract). Mem Nanjing Ins Geol Palaeont Acad Sin, 15: 1–152Google Scholar
  91. Ruan Y P. 1981b. Carboniferous ammonoid faunas from Qixu in Nandan of Guangxi (in Chinese with English abstract). Mem Nanjing Ins Geol Palaeont Acad Sin, 15: 152–232Google Scholar
  92. Ruan Y P, Zhou Z R. 1987. Carboniferous cephalopods in Ningxia Hui Autonomous Region. In: Ningxia Bureau of Geology and Mineralogy and Nanjing Institute of Geology and Palaeontology, ed. Namurian Strata and Fossils of Ningxia, China (in Chinese with English abstract). Nanjing: Nanjing University Press. 55–177Google Scholar
  93. Rui L, Wang Z H, Zhang L X. 1987. Luosuan Stage—A new chronostratigraphic unit for the lowermost Upper Carboniferous (in Chinese). J Stratigr, 11: 103–115Google Scholar
  94. Rygel M C, Fielding C R, Frank T D, Birgenheier L P. 2008. The magnitude of Late Paleozoic glacioeustatic fluctuations: A synthesis. J Sediment Res, 78: 500–511Google Scholar
  95. Saltzman M R. 2002. Carbon and oxygen isotope stratigraphy of the Lower Mississippian (Kinderhookian-lower Osagean), western United States: Implications for seawater chemistry and glaciation. Geol Soc Am Bull, 114: 96–108Google Scholar
  96. Saltzman M R. 2003. The Late Paleozoic Ice Age: Oceanic gateway or pCO2? Geology, 31: 151–154Google Scholar
  97. Saltzman M R, Gonzalez L A, Lohmann K C. 2000. Earliest Carboniferous cooling step triggered by the Antler orogeny? Geology, 28: 347–350Google Scholar
  98. Saltzman M, Groessens E, Zhuravlev A. 2004. Carbon cycle models based on extreme changes in δ13C: An example from the lower Mississippian. Palaeogeogr Palaeoclimatol Palaeoecol, 213: 359–377Google Scholar
  99. Sandberg C A, Ziegler W, Leuteritz K, Brill S M. 1978. Phylogeny, speciation, and zonation of Siphonodella (Conodonta, Upper Devonian and Lower Carboniferous). Newsl Stratigr, 7: 102–120Google Scholar
  100. Schmidt H. 1925. Die carbonischen Goniatiten Deutschlands. Jahrb Preuss Geol Landesanst, 45: 489–609Google Scholar
  101. Semikhatova S V. 1934. Moscovian deposits of Lower and Middle Volga area and position of the Moscovian Stage in general Carboniferous scale of the US (in Russian). Problems Soviet Geol, 3/8: 73–92Google Scholar
  102. Sheng H B. 1983. The ammonoids of late Lower Carboniferous from Yongzhu Village, Xainza District in North Xizang (in Chinese with English abstract). Contrib Geol Qinghai-Xizang Plateau, 8: 41–68Google Scholar
  103. Sheng Q Y. 2016. Mississippian foraminifers from South China. Doctoral Dissertation. Beijing: The University of Chinese Academy of Sciences. 1–285Google Scholar
  104. Sheng Q, Wang X, Brenckle P, Huber B T. 2018. Serpukhovian (Mississippian) foraminiferal zones from the Fenghuangshan section, Anhui Province, South China: Implications for biostratigraphic correlations. Geol J, 53: 45–57Google Scholar
  105. Shi Y K, Yang X L, Liu J R. 2012. Early Carboniferous to Early Permian Fusulinids from Zongdi Section in Southern Guizhou (in Chinese with English summary). Beijing: Science Press. 271Google Scholar
  106. Tarling D H. 1991. Applications of Palaeomagnetism in the Carboniferous. Compte Rendu XI Congres International de Stratigraphie et de Géologie du Carbonifere, Beijing 1987, 1: 205–212Google Scholar
  107. Teodorovich G I. 1949. On the subdivision of Upper Carboniferous into stages (in Russian). Doklady Akademii Nauk SSSR, 67: 537–540Google Scholar
  108. Ting V K, Grabau A W. 1936. The Carboniferous of China and its bearing on the classification of the Mississippian and Pennsylvanian. Rept 16th Internat Geol Congr 1933, 1: 555–571Google Scholar
  109. Trapp E, Kaufmann B, Mezger K, Korn D, Weyer D. 2004. Numerical calibration of the Devonian-Carboniferous boundary: Two new U-Pb isotope dilution-thermal ionization mass spectrometry single-zircon ages from Hasselbachtal (Sauerland, Germany). Geology, 32: 857–860Google Scholar
  110. Ueno K, Hayakawa N, Nakazawa T, Wang Y, Wang X. 2013. Pennsylvanian- Early Permian cyclothemic succession on the Yangtze Carbonate Platform, South China. Geol Soc London Spec Publ, 376: 235–267Google Scholar
  111. Ueno K, Task Group. 2014. Report of the task group to establish the Moscovian-Kasimovian and Kasimovian-Gzhelian boundaries. Newsl Carb Stratigr, 31: 36–40Google Scholar
  112. Ueno K, Task Group. 2017. Report of the task group to establish the Moscovian-Kasimovian and Kasimovian-Gzhelian boundaries. Newsl Carb Stratigr, 33: 18–20Google Scholar
  113. Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden G A F, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha O G, Strauss H. 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol, 161: 59–88Google Scholar
  114. Villa E, Task Group. 2008. Progress report of the Task Group to establish the Moscovian-Kasimovian and Kasimovian-Gzhelian boundaries. Newsl Carb Stratigr, 26: 12–13Google Scholar
  115. Wagner R H, Winkler Prins C F. 1991. Major subdivisions of the Carboniferous System. Compte Rendu XI Congres International de Stratigraphie et de Géologie du Carbonifere, Beijing 1987, 1: 213–245Google Scholar
  116. Wagner R H, Winkler Prins C F. 2016. History and current status of the Pennsylvanian chronostratigraphic units: Problems of definition and interregional correlation. Newsl Stratigr, 49: 281–320Google Scholar
  117. Walliser O H. 1995. Global events in the Devonian and Carboniferous. In: Walliser O H, ed. Global Events and Event Stratigraphy. Berlin: Springer-Verlag. 225–250Google Scholar
  118. Wang K L. 1983. Early Carboniferous Foraminifera from Shaoyang area of Hunnan Province and their stratigraphic significance (in Chinese with English abstract). Bull Nanjing Inst Geol Palaeont Acad Sin, 6: 209–224Google Scholar
  119. Wang Q L. 2014. Conodonts from the Kasimovian-Gzhelian boundary intervals in South China. Master Thesis. Beijing: University of Chinese Academy of Sciences. 1–94Google Scholar
  120. Wang X D, Jin Y G. 2000. An outline of Carboniferous chronostratigraphy (in Chinese with English abstract). J Stratigr, 24: 90–98Google Scholar
  121. Wang X D, Jin Y G. 2003. Carboniferous Biostratigraphy of China. In: Zhang W T, Chen P J, Palmer A R, eds. Biostratigraphy in China. Beijing: Science Press. 281–330Google Scholar
  122. Wang X D, Jin Y G. 2005. Achievements in the establishment of the Carboniferous GSSPs (in Chinese with English abstract). J Stratigr, 29: 147–153Google Scholar
  123. Wang X, Qi Y, Lambert L, Wang Z, Wang Y, Hu K, Lin W, Chen B. 2011. A potential global standard stratotype-section and point of the Moscovian Stage (Carboniferous). Acta Geol Sin, 85: 366–372Google Scholar
  124. Wang X D, Qie W K, Sheng Q Y, Qi Y P, Wang Y, Liao Z T, Shen S Z, Ueno K. 2013. Carboniferous and Lower Permian sedimentological cycles and biotic events of South China. In: Gasiewicz A, Słowakiewicz M, eds. Palaeozoic Climate Cycles: Their Evolutionary and Sedimentological Impact. Geol Soc Spec Publ, 376: 33–46Google Scholar
  125. Wang X D, Wang X J, Zhang F, Zhang H. 2006. Diversity patterns of Carboniferous and Permian rugose corals in South China. Geol J, 41: 329–343Google Scholar
  126. Wang Z H. 1990. Conodont zonation of the Lower Carboniferous in South China and phylogeny of some important species. Courier Forsch Senckenberg, 130: 41–46Google Scholar
  127. Wang Z H, Qi Y P. 2003. Upper Carboniferous (Pennsylvanian) conodonts from South Guizhou of China. Riv Ital Paleontol S, 109: 379–397Google Scholar
  128. Wang Z H, Qi Y P, Wang X D. 2008. Stage boundaries of the Pennsylvanian in the Nashui Section, Luodian of Guizhou, South China (in Chinese with English abstract). Acta Micropalaeont Sin, 25: 205–214Google Scholar
  129. Wu W S, Zhao J M. 1989. Carboniferous and Early Permian Rugosa from Western Guizhou and Eastern Yunnan, SW. China (in Chinese with English summary). Palaeontol Sin Ser B, 21: 1–230Google Scholar
  130. Wu X H. 2008. Report on integrated study of the Chinese Dewuan (Mississippian). In: The 3rd National Commission on Stratigraphy, ed. Reports on the Subdivision and Establishment of the Chinese Stages (in Chinese). Beijing: Geological Publishing House. 255–286Google Scholar
  131. Yang F Q. 1978. The strata and Cephalopod fauna of the Lower and Middle Carboniferous in western Guizhou (in Chinese). Prof Papers Stratigr Palaeont, 5: 143–200Google Scholar
  132. Yang J Z, Sheng J Z, Wu W S, Lu L H. 1962. Proceeding of The National Meeting on Stratigraphy, The Carboniferous in China (in Chinese). Beijing: Science Press. 113Google Scholar
  133. Yang J Z, Wu W S, Zhang L X, Liang Z T, Ruan Y P. 1979. New perspectives on the Series level subdivision of Carboniferous (in Chinese). Acta Stratigr Sin, 3: 188–192Google Scholar
  134. Yao L, Qie W, Luo G, Liu J, Algeo T J, Bai X, Yang B, Wang X. 2015. The TICE event: Perturbation of carbon-nitrogen cycles during the mid- Tournaisian (Early Carboniferous) greenhouse-icehouse transition. Chem Geol, 401: 1–14Google Scholar
  135. Yao L, Aretz M, Chen J, Webb G E, Wang X. 2016. Global microbial carbonate proliferation after the end-Devonian mass extinction: Mainly controlled by demise of skeletal bioconstructors. Sci Rep, 6: 39694Google Scholar
  136. Yao L, Wang X D. 2016. Distribution and evolution of Carboniferous reefs in South China. Palaeoworld, 25: 362–376Google Scholar
  137. Yin T H. 1932. Gastropoda of Penchi and Taiyuan Series. Palaeontol Sin Ser B, 11: 1–53Google Scholar
  138. Yin T H. 1933. Cephalopoda of Penchi and Taiyuan Series of North China. Palaeontol Sin Ser B, 11: 1–46Google Scholar
  139. Yu C C. 1931. The correlation of the Fengning System, the Chinese Lower Carboniferous, as based on coral zones. Geol Soc China Bull, 10: 1–30Google Scholar
  140. Yu C C. 1933. Lower Carboniferous corals of China. Palaeontol Sin Ser B, 12: 1–211Google Scholar
  141. Yu C M. 1988. Devonian-Carboniferous boundary in Nanbiancun, Guilin, China —— Aspects and Records. Beijing: Science Press. 379Google Scholar
  142. Zhang L X. 1987. Carboniferous Stratigraphy in China. Beijing: Science Press. 160Google Scholar
  143. Zhang L X, Zhou J P, Sheng J Z. 2010. Upper Carboniferous and Lower Permian Fusulinids from Western Guizhou (in Chinese with English summary). Palaeontol Sin Ser B, 34: 1–296Google Scholar
  144. Zhang Z Q. 1988. The Carboniferous System in China. Newsl Stratigr, 18: 51–73Google Scholar
  145. Zhang Z H, Wang Z H, Li C Q. 1988. A Suggestion for Classification of Permian in South Guizhou (in Chinese with English summary). Guiyang: Guizhou People’s Publishing House. 113Google Scholar
  146. Zong P, Becker R T, Ma X. 2015. Upper Devonian (Famennian) and Lower Carboniferous (Tournaisian) ammonoids from western Junggar, Xinjiang, northwestern China—Stratigraphy, taxonomy and palaeobiogeography. Palaeobio Palaeoenv, 95: 159–202Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiangdong Wang
    • 1
    • 2
    Email author
  • Keyi Hu
    • 2
    Email author
  • Wenkun Qie
    • 1
  • Qingyi Sheng
    • 3
  • Bo Chen
    • 4
  • Wei Lin
    • 1
  • Le Yao
    • 3
  • Qiulai Wang
    • 1
  • Yuping Qi
    • 1
  • Jitao Chen
    • 1
  • Zhuoting Liao
    • 3
  • Junjun Song
    • 3
  1. 1.CAS Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and PalaeontologyChinese Academy of SciencesNanjingChina
  2. 2.Center for Research and Education on Biological Evolution and EnvironmentNanjing UniversityNanjingChina
  3. 3.Nanjing Institute of Geology and PalaeontologyChinese Academy of SciencesNanjingChina
  4. 4.State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and PalaeontologyChinese Academy of SciencesNanjingChina

Personalised recommendations