Advertisement

Sulfur metabolism by marine heterotrophic bacteria involved in sulfur cycling in the ocean

  • Xin Hu
  • Jihua Liu
  • Huaiwei Liu
  • Guangchao Zhuang
  • Luying Xun
Review SPECIAL TOPIC: Microbial Oceanography
  • 4 Downloads

Abstract

Sulfur cycling in the biosphere is tightly interwoven with the cycling of carbon and nitrogen, through various biological and geochemical processes. Marine microorganisms, due to their high abundance, diverse metabolic activities, and tremendous adaptation potential, play an essential role in the functioning of global biogeochemical cycles and linking sulfur transformation to the cycling of carbon and nitrogen. Currently many coastal regions are severely stressed by hypoxic or anoxic conditions, leading to the accumulation of toxic sulfide. A number of recent studies have demonstrated that dissimilatory sulfur oxidation by heterotrophic bacteria can protect marine ecosystems from sulfide toxicity. Sulfur-oxidizing bacteria have evolved diverse phylogenetic and metabolic characteristics to fill an array of ecological niches in various marine habitats. Here, we review the recent findings on the microbial communities that are involved in the oxidation of inorganic sulfur compounds and address how the two elements of sulfur and carbon are interlinked and influence the ecology and biogeochemistry in the ocean. Delineating the metabolic enzymes and pathways of sulfur-oxidizing bacteria not only provides an insight into the microbial sulfur metabolism, but also helps us understand the effects of changing environmental conditions on marine sulfur cycling and reinforces the close connection between sulfur and carbon cycling in the ocean.

Keywords

Sulfur cycling Sulfur oxidation Heterotrophic bacteria Metabolic pathway 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFA0601103), the National Natural Science Foundation of China (Grant No. 41606134) and the Fundamental Research Funds of Shandong University as well.

References

  1. Bamford V A, Bruno S, Rasmussen T, Appia–Ayme C, Cheesman M R, Berks B C, Hemmings A M. 2002. Structural basis for the oxidation of thiosulfate by a sulfur cycle enzyme. Embo J, 21: 5599–5610CrossRefGoogle Scholar
  2. Bao P, Li G X, Sun G X, Xu Y Y, Meharg A A, Zhu Y G. 2018. The role of sulfate–reducing prokaryotes in the coupling of element biogeochemical cycling. Sci Total Environ, 613–614: 398–408Google Scholar
  3. Bardischewsky F, Quentmeier A, Rother D, Hellwig P, Kostka S, Friedrich C G. 2005. Sulfur dehydrogenase of Paracoccus pantotrophus: The heme–2 domain of the molybdoprotein cytochrome c complex is dispensable for catalytic activity. Biochemistry, 44: 7024–7034CrossRefGoogle Scholar
  4. Barton L L, Fardeau M L, Fauque G D. 2014. Hydrogen sulfide: A toxic gas produced by dissimilatory sulfate and sulfur reduction and consumed by microbial oxidation. Met Ions Life Sci, 14: 237–277CrossRefGoogle Scholar
  5. Barton L L, Fauque G D. 2009. Biochemistry, physiology and biotechnology of sulfate–reducing bacteria. Adv Appl Microbiol, 68: 41–98CrossRefGoogle Scholar
  6. Boden R, Borodina E, Wood A P, Kelly D P, Murrell J C, Scha fer H. 2011. Purification and characterization of dimethylsulfide monooxygenase from hyphomicrobium sulfonivorans. J Bacteriol, 193: 1250–1258CrossRefGoogle Scholar
  7. Bowles M W, Mogollón J M, Kasten S, Zabel M, Hinrichs K U. 2014. Global rates of marine sulfate reduction and implications for sub–seafloor metabolic activities. Science, 344: 889–891CrossRefGoogle Scholar
  8. Brinkhoff T, Giebel H A, Simon M. 2008. Diversity, ecology, and genomics of the Roseobacter clade: A short overview. Arch Microbiol, 189: 531–539CrossRefGoogle Scholar
  9. Brito J A, Sousa F L, Stelter M, Bandeiras T M, Vonrhein C, Teixeira M, Pereira M M, Archer M. 2009. Structural and functional insights into sulfide: Quinone oxidoreductase. Biochemistry, 48: 5613–5622CrossRefGoogle Scholar
  10. Brüser T, Lens P N L, Truper H G. 2000. The biological sulfur cycle. In: Lens P N L, Pol L, eds. Environmental Technologies to Treat Sulfur Pollution. London: IWA PublishingGoogle Scholar
  11. Bullock H A, Luo H, Whitman W B. 2017. Evolution of dimethylsulfoniopropionate metabolism in marine phytoplankton and bacteria. Front Microbiol, 8: e0127288Google Scholar
  12. Curson A R J, Todd J D, Sullivan M J, Johnston A W B. 2011. Catabolism of dimethylsulphoniopropionate: Microorganisms, enzymes and genes. Nat Rev Microbiol, 9: 849–859CrossRefGoogle Scholar
  13. Diaz R J, Rosenberg R. 2008. Spreading dead zones and consequences for marine ecosystems. Science, 321: 926–929CrossRefGoogle Scholar
  14. Dolata M M, Van Beeumen J J, Ambler R P, Meyer T E, Cusanovich M A. 1993. Nucleotide sequence of the heme subunit of flavocytochrome c from the purple phototrophic bacterium, Chromatium vinosum. A 2.6–kilobase pair DNA fragment contains two multiheme cytochromes, a flavoprotein, and a homolog of human ankyrin. J Biol Chem, 268: 14426–14431Google Scholar
  15. Durham B P, Sharma S, Luo H, Smith C B, Amin S A, Bender S J, Dearth S P, Van Mooy B A S, Campagna S R, Kujawinski E B, Armbrust E V, Moran M A. 2015. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc Natl Acad Sci USA, 112: 453–457CrossRefGoogle Scholar
  16. Epel B, Schäfer K O, Quentmeier A, Friedrich C, Lubitz W. 2005. Multifrequency EPR analysis of the dimanganese cluster of the putative sulfate thiohydrolase SoxB of Paracoccus pantotrophus. J Biol Inorg Chem, 10: 636–642CrossRefGoogle Scholar
  17. Friedrich C G, Bardischewsky F, Rother D, Quentmeier A, Fischer J. 2005. Prokaryotic sulfur oxidation. Curr Opin Microbiol, 8: 253–259CrossRefGoogle Scholar
  18. Friedrich C G, Rother D, Bardischewsky F, Quentmeier A, Fischer J. 2001. Oxidation of reduced inorganic sulfur compounds by bacteria: Emergence of a common mechanism? Appl Environ Microbiol, 67: 2873–2882CrossRefGoogle Scholar
  19. Frigaard N U, Dahl C. 2009. Sulfur metabolism in phototrophic sulfur bacteria. Adv Microb Physiol, 54: 103–200CrossRefGoogle Scholar
  20. González J M, Covert J S, Whitman W B, Henriksen J R, Mayer F, Scharf B, Schmitt R, Buchan A, Fuhrman J A, Kiene R P, Moran M A. 2003. Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate–demethylating bacteria from marine environments. Int J Syst Evol Microbiol, 53: 1261–1269CrossRefGoogle Scholar
  21. González J M, Kiene R P, Moran M A. 1999. Transformation of sulfur compounds by an abundant lineage of marine bacteria in the α–Subclass of the class proteobacteria. Appl Environ Microbiol, 65: 3810–3819Google Scholar
  22. González J M, Moran M A. 1997. Numerical dominance of a group of marine bacteria in the alpha–subclass of the class Proteobacteria in coastal seawater. Appl Environ Microbiol, 63: 4237–4242Google Scholar
  23. Gregersen L H, Bryant D A, Frigaard N U. 2011. Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria. Front Microbiol, 2: 116CrossRefGoogle Scholar
  24. Griesbeck C, Schütz M, Schödl T, Bathe S, Nausch L, Mederer N, Vielreicher M, Hauska G. 2002. Mechanism of sulfide–quinone reductase investigated using site–directed mutagenesis and sulfur analysis. Biochemistry, 41: 11552–11565CrossRefGoogle Scholar
  25. Grote J, Jost G, Labrenz M, Herndl G J, Jürgens K. 2008. Epsilonproteobacteria represent the major portion of chemoautotrophic bacteria in sulfidic waters of pelagic redoxclines of the Baltic and Black Seas. Appl Environ Microbiol, 74: 7546–7551CrossRefGoogle Scholar
  26. Howard E C, Sun S, Biers E J, Moran M A. 2008. Abundant and diverse bacteria involved in DMSP degradation in marine surface waters. Environ Microbiol, 10: 2397–2410CrossRefGoogle Scholar
  27. Jiao N, Herndl G J, Hansell D A, Benner R, Kattner G, Wilhelm S W, Kirchman D L, Weinbauer M G, Luo T, Chen F, Azam F. 2010. Microbial production of recalcitrant dissolved organic matter: Long–term carbon storage in the global ocean. Nat Rev Microbiol, 8: 593–599CrossRefGoogle Scholar
  28. Jiao N, Robinson C, Azam F, Thomas H, Baltar F, Dang H, Hardman–Mountford N J, Johnson M, Kirchman D L, Koch B P, Legendre L, Li C, Liu J, Luo T, Luo Y W, Mitra A, Romanou A, Tang K, Wang X, Zhang C, Zhang R. 2014. Mechanisms of microbial carbon sequestration in the ocean—Future research directions. Biogeosciences, 11: 5285–5306CrossRefGoogle Scholar
  29. Jørgensen B B. 1982. Mineralization of organic matter in the sea bed—The role of sulphate reduction. Nature, 296: 643–645CrossRefGoogle Scholar
  30. Jørgensen B B. 2010. Big sulfur bacteria. Isme J, 4: 1083–1084CrossRefGoogle Scholar
  31. Jørgensen B B, Nelson D C. 2004. Sulfide oxidation in marine sediments: Geochemistry meets microbiology. Geol Soc Am Spec Pap, 379: 63–81Google Scholar
  32. Kai F, Liesack W, Bo T. 1998. Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov. a new anaerobic bacterium isolated from marine surface sediment. Appl Environ Microbiol, 64: 119–125Google Scholar
  33. Kappler U, Bennett B, Rethmeier J, Schwarz G, Deutzmann R, McEwan A G, Dahl C. 2000. Sulfite:Cytochromec oxidoreductase fromThiobacillus novellus. J Biol Chem, 275: 13202–13212CrossRefGoogle Scholar
  34. Kappler U, Maher M J. 2013. The bacterial SoxAX cytochromes. Cell Mol Life Sci, 70: 977–992CrossRefGoogle Scholar
  35. Kappler U, Schäfer H. 2014. Transformations of dimethyl sulfide. In: The Metal–Driven Biogeochemistry of Gaseous Compounds in the Environment. Springer Netherlands. 279–313Google Scholar
  36. Kim H G, Doronina N V, Trotsenko Y A, Kim S W. 2007. Methylophaga aminisulfidivorans sp. nov., a restricted facultatively methylotrophic marine bacterium. Int J Syst Evol Microbiol, 57: 2096–2101CrossRefGoogle Scholar
  37. Lavik G, Stührmann T, Brüchert V, Van der Plas A, Mohrholz V, Lam P, Mussmann M, Fuchs B M, Amann R, Lass U, Kuypers M M M. 2009. Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature, 457: 581–584CrossRefGoogle Scholar
  38. Legendre L, Rivkin R B, Jiao N. 2018. Advanced experimental approaches to marine water–column biogeochemical processes. Ices J Mar Sci, 75: 30–42CrossRefGoogle Scholar
  39. Leloup J, Fossing H, Kohls K, Holmkvist L, Borowski C, Jørgensen B B. 2009. Sulfate–reducing bacteria in marine sediment (Aarhus Bay, Denmark): Abundance and diversity related to geochemical zonation. Environ Microbiol, 11: 1278–1291CrossRefGoogle Scholar
  40. Lenk S. 2011. Molecular ecology of key organisms in sulfur and carbon cycling in marine sediments. Dissertation for Doctoral Degree. Bremen: Max Planck Institute for Marine MicrobiologyGoogle Scholar
  41. Lenk S, Arnds J, Zerjatke K, Musat N, Amann R, Mussmann M. 2011. Novel groups of Gammaproteobacteria catalyse sulfur oxidation and carbon fixation in a coastal, intertidal sediment. Environ Microbiol, 13: 758–774CrossRefGoogle Scholar
  42. Lenk S, Moraru C, Hahnke S, Arnds J, Richter M, Kube M, Reinhardt R, Brinkhoff T, Harder J, Amann R, Mußmann M. 2012. Roseobacter clade bacteria are abundant in coastal sediments and encode a novel combination of sulfur oxidation genes. Isme J, 6: 2178–2187CrossRefGoogle Scholar
  43. Li C, Cheng M, Algeo T J, Xie S C. 2015. A theoretical prediction of chemical zonation in early oceans (>520 Ma). Sci China Earth Sci, 58: 1901–1909CrossRefGoogle Scholar
  44. Li H, Li J, Lü C, Xia Y, Xin Y, Liu H, Xun L, Liu H. 2017. FisR activates σ54–dependent transcription of sulfide–oxidizing genes in Cupriavidus pinatubonensis JMP134. Mol Microbiol, 105: 373–384CrossRefGoogle Scholar
  45. Lidbury I, Kröber E, Zhang Z, Zhu Y, Murrell J C, Chen Y, Schäfer H. 2016. A mechanism for bacterial transformation of dimethyl sulfide to dimethyl sulfoxide: A missing link in the marine organic sulfur cycle. Environ Microbiol, 18: 2754–2766CrossRefGoogle Scholar
  46. Lin X, Wakeham S G, Putnam I F, Astor Y M, Scranton M I, Chistoserdov A Y, Taylor G T. 2006. Comparison of vertical distributions of prokaryotic assemblages in the anoxic Cariaco Basin and Black Sea by use of fluorescence in situ hybridization. Appl Environ Microbiol, 72: 2679–2690CrossRefGoogle Scholar
  47. Liu H, Xin Y, Xun L. 2014. Distribution, diversity, and activities of sulfur dioxygenases in heterotrophic bacteria. Appl Environ Microbiol, 80: 1799–1806CrossRefGoogle Scholar
  48. Luther G W, Findlay A J, MacDonald D J, Owings S M, Hanson T E, Beinart R A, Girguis P R. 2011. Thermodynamics and kinetics of sulfide oxidation by oxygen: A look at inorganically controlled reactions and biologically mediated processes in the environment. Front Microbio, 2: 62CrossRefGoogle Scholar
  49. Lü C, Xia Y, Liu D, Zhao R, Gao R, Liu H, Xun L. 2017. Cupriavidus necator H16 uses flavocytochrome c–sulfide dehydrogenase to oxidize self–produced and added sulfide. Appl Environ Microbiol, 83: e01610–17Google Scholar
  50. Mangold S, Valdés J, Holmes D S, Dopson M. 2011. Sulfur metabolism in the extreme acidophile Acidithiobacillus caldus. Front Microbiol, 2: 17CrossRefGoogle Scholar
  51. Marcia M, Ermler U, Peng G, Michel H. 2010. A new structure–based classification of sulfide: quinone oxidoreductases. Proteins, 78: 1073–1083CrossRefGoogle Scholar
  52. Moran M A, Belas R, Schell M A, González J M, Sun F, Sun S, Binder B J, Edmonds J, Ye W, Orcutt B, Howard E C, Meile C, Palefsky W, Goesmann A, Ren Q, Paulsen I, Ulrich L E, Thompson L S, Saunders E, Buchan A. 2007. Ecological genomics of marine Roseobacters. Appl Environ Microbiol, 73: 4559–4569CrossRefGoogle Scholar
  53. Moran M A, González J M, Kiene R P. 2003. Linking a bacterial taxon to sulfur cycling in the sea: Studies of the marine Roseobacter group. Geomicrobiol J, 20: 375–388CrossRefGoogle Scholar
  54. Mussmann M, Schulz H N, Strotmann B, Kjaer T, Nielsen L P, Rossello–Mora R A, Amann R I, Jorgensen B B. 2003. Phylogeny and distribution of nitrate–storing Beggiatoa spp. in coastal marine sediments. Environ Microbiol, 5: 523–533CrossRefGoogle Scholar
  55. Ogawa T, Furusawa T, Shiga M, Seo D, Sakurai H, Inoue K. 2010. Biochemical studies of a soxF–encoded monomeric flavoprotein purified from the green sulfur bacterium Chlorobaculum tepidum that Stimulates in Vitro thiosulfate oxidation. Biosci Biotech Biochem, 74: 771–780CrossRefGoogle Scholar
  56. Pokorna D, Zabranska J. 2015. Sulfur–oxidizing bacteria in environmental technology. Biotech Adv, 33: 1246–1259CrossRefGoogle Scholar
  57. Preisler A, de Beer D, Lichtschlag A, Lavik G, Boetius A, Jørgensen B B. 2007. Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment. Isme J, 1: 341–353CrossRefGoogle Scholar
  58. Quentmeier A, Friedrich C G. 2001. The cysteine residue of the SoxY protein as the active site of protein–bound sulfur oxidation of Paracoccus pantotrophus GB17. Febs Lett, 503: 168–172CrossRefGoogle Scholar
  59. Quentmeier A, Hellwig P, Bardischewsky F, Grelle G, Kraft R, Friedrich C G. 2003. Sulfur oxidation in Paracoccus pantotrophus: Interaction of the sulfur–binding protein SoxYZ with the dimanganese SoxB protein. Biochem Biophys Res Commun, 312: 1011–1018CrossRefGoogle Scholar
  60. Quentmeier A, Kraft R, Kostka S, Klockenkämper R, Friedrich C G. 2000. Characterization of a new type of sulfite dehydrogenase from Paracoccus pantotrophus GB17. Arch Microbiol, 173: 117–125CrossRefGoogle Scholar
  61. Reinartz M, Tschäpe J, Brüser T, Trüper H G, Dahl C. 1998. Sulfide oxidation in the phototrophic sulfur bacterium Chromatium vinosum. Archives Microbiol, 170: 59–68CrossRefGoogle Scholar
  62. Schäfer H. 2007. Isolation of Methylophaga spp. from marine dimethylsulfide–degrading enrichment cultures and identification of polypeptides induced during growth on dimethylsulfide. Appl Environ Microbiol, 73: 2580–2591CrossRefGoogle Scholar
  63. Schulz H N, Jørgensen B B. 2001. Big bacteria. Annu Rev Microbiol, 55: 105–137CrossRefGoogle Scholar
  64. Schütz M, Maldener I, Griesbeck C, Hauska G. 1999. Sulfide–quinone reductase from Rhodobacter capsulatus: Requirement for growth, periplasmic localization, and extension of gene sequence analysis. J Bacteriol, 181: 6516–6523Google Scholar
  65. Schütz M, Shahak Y, Padan E, Hauska G. 1997. Sulfide–quinone reductase from Rhodobacter capsulatus. Purification, cloning, and expression. J Biol Chem, 272: 9890–9894Google Scholar
  66. Selman M, Greenhalgh S, Diaz R, Sugg, Z. 2008. Eutrophication and hypoxia in coastal areas: A global assessment of the state of knowledge. J Am Geriatr Soc, 51: 1305–1317Google Scholar
  67. Sievert S, Kiene R, Schulz–Vogt H. 2007. The sulfur cycle. Oceanography, 20: 117–123CrossRefGoogle Scholar
  68. Sorokin D Y, Tourova T P, Muyzer G. 2005. Citreicella thiooxidans gen. nov., sp. nov., a novel lithoheterotrophic sulfur–oxidizing bacterium from the Black Sea. Syst Appl Microbiol, 28: 679–687CrossRefGoogle Scholar
  69. Thamdrup B, Finster K, Hansen J W, Bak F. 1993. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl Environ Microbiol, 59: 101–108Google Scholar
  70. Verté F, Kostanjevecki V, De Smet L, Meyer T E, Cusanovich M A, Van Beeumen J J. 2002. Identification of a thiosulfate utilization gene cluster from the green phototrophic bacterium Chlorobium limicola. Biochemistry, 41: 2932–2945CrossRefGoogle Scholar
  71. Wagner–Döbler I, Biebl H. 2006. Environmental Biology of the marine Roseobacter lineage. Annu Rev Microbiol, 60: 255–280CrossRefGoogle Scholar
  72. Walsh D A, Zaikova E, Howes C G, Song Y C, Wright J J, Tringe S G, Tortell P D, Hallam S J. 2009. Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science, 326: 578–582CrossRefGoogle Scholar
  73. Wasmund K, Mußmann M, Loy A. 2017. The life sulfuric: Microbial ecology of sulfur cycling in marine sediments. Environ Microbol Rep, 9: 323–344CrossRefGoogle Scholar
  74. Winkel M, de Beer D, Lavik G, Peplies J, Mußmann M. 2014. Close association of active nitrifiers with Beggiatoa mats covering deep–sea hydrothermal sediments. Environ Microbiol, 16: 1612–1626CrossRefGoogle Scholar
  75. Xia Y, Lü C, Hou N, Xin Y, Liu J, Liu H, Xun L. 2017. Sulfide production and oxidation by heterotrophic bacteria under aerobic conditions. Isme J, 11: 2754–2766CrossRefGoogle Scholar
  76. Xie S C, Chen J F, Wang F P, Xun L Y, Tang K, Zhai W D, Liu J H, Ma W T. 2017. Mechanisms of carbon storage and the coupled carbon, nitrogen and sulfur cycles in regional seas in response to global change. Sci China Earth Sci, 60: 1010–1014CrossRefGoogle Scholar
  77. Xin Y, Liu H, Cui F, Liu H, Xun L. 2016. Recombinant Escherichia coli with sulfide:quinone oxidoreductase and persulfide dioxygenase rapidly oxidises sulfide to sulfite and thiosulfate via a new pathway. Environ Microbiol, 18: 5123–5136CrossRefGoogle Scholar
  78. Zaikova E, Walsh D A, Stilwell C P, Mohn W W, Tortell P D, Hallam S J. 2009. Microbial community dynamics in a seasonally anoxic fjord: Saanich Inlet, British Columbia. Environ Microbiol, 12: 172–191CrossRefGoogle Scholar
  79. Zeyer J, Eicher P, Wakeham S G, Schwarzenbach R P. 1987. Oxidation of dimethyl sulfide to dimethyl sulfoxide by phototrophic purple bacteria. Appl Environ Microbiol, 53: 2026–2032Google Scholar
  80. Zhang L, Kuniyoshi I, Hirai M, Shoda M. 1991. Oxidation of dimethyl sulfide by Pseudomonas acidovorans DMR–11 isolated from peat biofilter. Biotechnol Lett, 13: 223–228CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xin Hu
    • 1
  • Jihua Liu
    • 1
  • Huaiwei Liu
    • 2
  • Guangchao Zhuang
    • 3
  • Luying Xun
    • 2
  1. 1.Institute of Marine Science and TechnologyShandong UniversityQingdaoChina
  2. 2.State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
  3. 3.Department of Marine SciencesUniversity of GeorgiaAthensUSA

Personalised recommendations