Skip to main content
Log in

Air temperature feedback and its contribution to global warming

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Air temperature feedback results from the thermal-radiative coupling between the atmosphere and the surface and plays an important role in surface energy balance. This paper reveals the contribution of air temperature feedback to the global warming from 1980 to 2000. The air temperature feedback kernel, evaluated using the ERA-Interim reanalysis data, is used to discuss the physical mechanism for air temperature feedback, the dependency of the strength of air temperature feedback on the climatological spatial distributions of air temperature, water vapor and cloud content, and the contributions of air temperature feedback to rapid global warming. The coupling between temperature feedback and each of the external forcings and individual feedback processes will amplify the anomaly of direct energy flux convergence at the surface induced by the external forcings and individual processes. The air temperature feedback amplifies the initial surface warming due to the increase in CO2 concentration, ice and snow melting, increase in water vapor, and change in ocean heat storage. It also amplifies the surface warming due to the longwave radiaitve forcing associated with the increase in cloud cover, which acts to suppress the cooling of the shortwave effect of cloud forcing. Overall, temperature feedback plays an important role in the global warming from 1980 to 2000, as the net positive contribution to the perturbation of global mean energy flux at the surface from the air temperature feedback is larger than the net negative contribution from external forcing and all non-temperature feedbacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler R F, Huffman G J, Chang A, Ferraro R, Xie P P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E. 2003. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol, 4: 1147–1167

    Article  Google Scholar 

  • Albrecht B A. 1989. Aerosols, cloud microphysics, and fractional cloudiness. Science, 245: 1227–1230

    Article  Google Scholar 

  • Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones P, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin J M, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E. 2007. HISTALP—Historical instrumental climatological surface time series of the greater alpine region. Int J Climatol, 27: 17–46

    Article  Google Scholar 

  • Brasseur G, Hitchman M H. 1988. Stratospheric response to trace gas perturbations: Changes in ozone and temperature distributions. Science, 240: 634–637

    Article  Google Scholar 

  • Cai M, Lu J H. 2009. A new framework for isolating individual feedback processes in coupled general circulation climate models. Part II: Method demonstrations and comparisons. Clim Dyn, 32: 887–900

    Google Scholar 

  • Cai M, Tung K K. 2012. Robustness of dynamical feedbacks from radiative forcing: 2% solar versus 2×CO2 experiments in an idealized GCM. J Atmos Sci, 69: 2256–2271

    Article  Google Scholar 

  • Dai A, Karl T R, Sun B, Trenberth K E. 2006. Recent trends in cloudiness over the United States: A tale of monitoring inadequacies. Bull Amer Meteorol Soc, 87: 597–606

    Article  Google Scholar 

  • Dee D P, Uppala S M, Simmons A J, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M A, Balsamo G, Bauer P, Bechtold P, Beljaars A C M, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer A J, Haimberger L, Healy S B, Hersbach H, Hólm E V, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally A P, Monge-Sanz B M, Morcrette J J, Park B K, Peubey C, de Rosnay P, Tavolato C, Thépaut J N, Vitart F. 2011. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q J R Meteorol Soc, 137: 553–597

    Article  Google Scholar 

  • Ding S, Zhao C, Shi G, Wu C. 2005. Analysis of global total cloud amount variation over the past 20 years (in Chinese). J Appl Meteorol, 16: 670–677

    Google Scholar 

  • Eastman R, Warren S G. 2013. A 39-yr survey of cloud changes from land stations worldwide 1971–2009: Long-term trends, relation to aerosols, and expansion of the tropical belt. J Clim, 26: 1286–1303

    Article  Google Scholar 

  • Fu Q, Liou K N. 1993. Parameterization of the radiative properties of cirrus clouds. J Atmos Sci, 50: 2008–2025

    Article  Google Scholar 

  • Guan X, Huang J, Guo R, Lin P. 2015a. The role of dynamically induced variability in the recent warming trend slowdown over the Northern Hemisphere. Sci Rep, 5: 12669

    Article  Google Scholar 

  • Guan X, Huang J, Guo R, Yu H, Lin P, Zhang Y. 2015b. Role of radiatively forced temperature changes in enhanced semi-arid warming in the cold season over east Asia. Atmos Chem Phys, 15: 13777–13786

    Article  Google Scholar 

  • Hall A, Manabe S. 1999. The role of water vapor feedback in unperturbed climate variability and global warming. J Clim, 12: 2327–2346

    Article  Google Scholar 

  • Hansen J, Ruedy R, Sato M, Lo K. 2010. Global surface temperature change. Rev Geophys, 48: RG4004

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R. 1997. Radiative forcing and climate response. J Geophys Res, 102: 6831–6864

    Article  Google Scholar 

  • Held I M, Soden B J. 2000. Water vapor feedback and global warming. Annu Rev Energy Environ, 25: 441–475

    Article  Google Scholar 

  • Held I M, Soden B J. 2006. Robust responses of the hydrological cycle to global warming. J Clim, 19: 5686–5699

    Article  Google Scholar 

  • Holland M M, Bitz C M. 2003. Polar amplification of climate change in coupled models. Clim Dyn, 21: 221–232

    Article  Google Scholar 

  • Hu X, Li Y, Yang S, Deng Y, Cai M. 2017. Process-based decomposition of the decadal climate difference between 2002–13 and 1984–95. J Clim, 30: 4373–4393

    Article  Google Scholar 

  • Huang J, Xie Y, Guan X, Li D, Ji F. 2017. The dynamics of the warming hiatus over the Northern Hemisphere. Clim Dyn, 48: 429–446

    Article  Google Scholar 

  • IPCC. 2013. Climate change 2013. In: Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M, eds. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. 1535

  • IPCC. 2007: Climate change 2007. In: Solomon S, Qin D, Manning M. Chen Z, Marquis M, Averyt K B, Tignor M, Miller H L, eds. The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press

  • Jones P D, Moberg A. 2003. Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001. J Clim, 16: 206–223

    Article  Google Scholar 

  • Kaiser D P. 1998. Analysis of total cloud amount over China, 1951–1994. In: Proceedings of the Ninth Symposium on Global Change Studies. American Meteorological Society. Boston. 168–171

    Google Scholar 

  • Li C, Weng H, Gao X, Zhong M. 2003. Initial investigation of another possible reason to cause global warming (in Chinese). Chin J Atmos Sci, 27: 789–797

    Article  Google Scholar 

  • Li J, Ren R, Qi Y, Wang F, Lu R, Zhang P, Jiang Z, Duan W, Yu F, Yang Y. 2013. Progress in air-land-sea interactions in Asia and their role in global and Asian climate change (in Chinese). Chin J Atmos Sci, 37: 518–538

    Google Scholar 

  • Li L J, Wang B, Zhou T J. 2007. Impacts of external forcing on the 20th century global warming. Chin Sci Bull, 52: 3148–3154

    Article  Google Scholar 

  • Lu J H, Cai M. 2009. A new framework for isolating individual feedback processes in coupled general circulation climate models. Part I: Formulation. Clim Dyn, 32: 873–885

    Google Scholar 

  • Maugeri M, Bagnati Z, Brunetti M, Nanni T. 2001. Trends in Italian total cloud amount, 1951–1996. Geophys Res Lett, 28: 4551–4554

    Article  Google Scholar 

  • Polyakov I V, Alekseev G V, Bekryaev R V, Bhatt U, Colony R L, Johnson M A, Karklin V P, Makshtas A P, Walsh D, Yulin A V. 2002. Observationally based assessment of polar amplification of global warming. Geophys Res Lett, 29: 25-1–25-4

    Article  Google Scholar 

  • Qian Y, Kaiser D P, Leung L R, Xu M. 2006. More frequent cloud-free sky and less surface solar radiation in China from 1955 to 2000. Geophys Res Lett, 33: L01812

    Google Scholar 

  • Ramanathan V. 1977. Interactions between ice-albedo, lapse-rate and cloud-top feedbacks: An analysis of the nonlinear response of a GCM climate model. J Atmos Sci, 34: 1885–1897

    Article  Google Scholar 

  • Ramanathan V, Carmichael G. 2008. Global and regional climate changes due to black carbon. Nat Geosci, 1: 221–227

    Article  Google Scholar 

  • Rudolf B, Hauschild H, Rueth W, Schneider U. 1994. Terrestrial precipitation analysis: Operational method and required density of point measurements. In: Desbois M, Désalmand F, eds. Global Precipitations and Climate Change. NATO ASI Series (Series I: Global Environmental Change), vol 26. Berlin: Springer

    Google Scholar 

  • Schneider E K, Kirtman B P, Lindzen R S. 1999. Tropospheric water vapor and climate sensitivity. J Atmos Sci, 56: 1649–1658

    Article  Google Scholar 

  • Sejas S A, Cai M. 2016. Isolating the temperature feedback loop and its effects on surface temperature. J Atmos Sci, 73: 3287–3303

    Article  Google Scholar 

  • Shell K M, Kiehl J T, Shields C A. 2008. Using the radiative kernel technique to calculate climate feedbacks in NCAR’s community atmospheric model. J Clim, 21: 2269–2282

    Article  Google Scholar 

  • Simmons A J, Jones P D, da Costa Bechtold V, Beljaars A C M, Kållberg P W, Saarinen S, Uppala S M, Viterbo P, Wedi N. 2004. Comparison of trends and low-frequency variability in CRU, ERA-40, and NCEP/NCAR analyses of surface air temperature. J Geophys Res, 109: D24115

    Article  Google Scholar 

  • Soden B J, Held I M, Colman R C, Shell K M, Kiehl J T, Shields C A. 2008. Quantifying climate feedbacks using radiative kernels. J Clim, 21: 3504–3520

    Article  Google Scholar 

  • Stephens G L, Li J, Wild M, Clayson C A, Loeb N, Kato S, L’Ecuyer T, Stackhouse P W, Lebsock M, Andrews T. 2012a. An update on Earth’s energy balance in light of the latest global observations. Nat Geosci, 5: 691–696

    Article  Google Scholar 

  • Stephens G L, Wild M, Stackhouse Jr P W, L’Ecuyer T, Kato S, Henderson D S. 2012b. The global character of the flux of downward longwave radiation. J Clim, 25: 2329–2340

    Article  Google Scholar 

  • Sun B, Groisman P Y. 2000. Cloudiness variations over the former Soviet Union. Int J Climatol, 20: 1097–1111

    Article  Google Scholar 

  • Taylor P C, Cai M, Hu A, Meehl J, Washington W, Zhang G J. 2013. A decomposition of feedback contributions to polar warming amplification. J Clim, 26: 7023–7043

    Article  Google Scholar 

  • Trenberth K E, Fasullo J, Smith L. 2005. Trends and variability in columnintegrated atmospheric water vapor. Clim Dyn, 24: 741–758

    Article  Google Scholar 

  • Tyndall J. 1861. On the absorption and radiation of heat by gases and vapours. Philos Mag, 22: 169–194, 273–285

    Article  Google Scholar 

  • Wang K C, Dickinson R E. 2013. Global atmospheric downward longwave radiation at the surface from ground-based observations, satellite retrievals, and reanalyses. Rev Geophys, 51: 150–185

    Article  Google Scholar 

  • Wetherald R T, Manabe S. 1988. Cloud feedback processes in a general circulation model. J Atmos Sci, 45: 1397–1416

    Article  Google Scholar 

  • Wu Z, Huang N E, Long S R, Peng C K. 2007. On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc Natl Acad Sci USA, 104: 14889–14894

    Article  Google Scholar 

  • Zheng B, Shi C. 2006. Temperature cooling in lower stratosphere and its effects on zonal wind (in Chinese). Meteorol Sci Technol, 34: 538–541

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key Scientific Research Plan of China (Grant No. 2014CB953900), the Natural Science Foundation of Guangdong Province (Grant No. 2017A030310571), and the Fundamental Research Funds for the Central Universities (Grant No. 17LGPY21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Cai, M., Yang, S. et al. Air temperature feedback and its contribution to global warming. Sci. China Earth Sci. 61, 1491–1509 (2018). https://doi.org/10.1007/s11430-017-9226-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-017-9226-6

Keywords

Navigation